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The Chu-Vandermonde convolution
generates transformation formulas

for hypergeometric series*

by Kazuo UENO 7
College of Liberal Arts, University of Saga

1 Honjo, Saga 840, Japan
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’ (*This note is an abbreviation of an article submitted for

publication in a journal.)

Abstract: Several well-known hypergeometric series identities are
proved using only powerseries computation and the Chu-Vandermonde

convolution for binomial coefficients.

1. Introduction. ’

The close relationship between binomial coefficient identities
and hypergeometric series has been noticed by several authors; see
for example [1, 6]. In this note we will show how some of thé

well-known hypergeometric series identities can be derived by using

only powerseries computation and the Chu-Vandermonde convolutiocon

(the CV for short) for binomial coefficients (2.1).
In Section 2 we review the powerseries computation proof of the

Kummer transformations for 1F1 and 2F1 (2.2)-(2.3). Some

authors write this proof in their textbooks ( [4; p.76]1, [7;
p.31] ); however, since such a proof does not seem to be widespread
and the Kummer transformations are referred to in later sections, we
repeat the proof here.

In Section 3 the transformation formulas for the Lauricella
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series FA and FD " (3.1)-(3.4) are proved using only powerseries

computation and the CV. The proof of (3.4) goes aiong a line
slightly different froﬁithose fof (3.1)-(3.3), which appeals to
something of powerserieé operatof calculus. ‘In fact we can also
give purely in an operator calculus manner a proof of (3.4) as well
as those of other identities for hypergéometric series of one or
severalkindeterminateég éee [8]. | |

In Section 4 we first‘réview the’interréiAtionship between the

CV, the Kummer transformation for F1, the Saalschitz formula for

2

3F2, and a quadratic transformation for 2F1 (4.2). We show three

more examples of quadratic transformations for 2F1 (4.3)-(4.5)

which can be proved using the CV through powerseries computation.
The proof of (4;5) would perhaps be more interesting than those of

(4.3) and (4.4), as it makes use of the Lagrange inversion formula.

2. Kumher Transformations.
Throughout the present article we fix a base field K of

characteristic zero and the letters a, b, c, ...,'xl, xz,\... etc.

denote indeterminates; thus thefhypergeometric series

s 8 a(1)p(d) 4
" L,F,(a, b; c; x) := ——TTT—_—X o
2 T . ieN c.l_i!

is considered to be an element of  K(a, b, c)[[x]]. and the

‘Lauricella series

FD(é; Dyy oens bﬁé Ci Xyy ooy X))
| o (dgweeeri) (1) (i,) 5
. 8 NPT b1 ,-~~bn 5 11 win
= 2 (I 7+, 1"
l-l,..*.:, I'IE]N ¢ N n il!."..in! :

is considered to be an:element of ‘K{a, bI;z;..; bn,kc)[[xi,A...,



(1) .

x 11, where a = a(a + 1)--+(a + i - 1) denotes the rising

factorial. Similar consideration applies to all the powerseries
appearing in the sequel.

We have

S ) B0 wem e

by the Chu-Vandermonde convolution which we call the CV throughout

this paper.
Thecrem 2.1. The Kummer transformations

1Fl(a; cy; X) = exlFl(c - aj c3 —‘x), ' (2.2)

-b

ZFl(a’ b; c; X) = (1 - X) ZFl(C - a, b; cs "}E_}_(_—l)’ (203)
and the formula (2.1) are equivalent to each other, where 1F1
denotes the confluent hypergeometric series.
Proof. The formula (2.1) is equivalent to

k ' c
a( ) _ 2 (c - a)(j)(_ l)j. B (2.4)
Ty 1u5=k 1140 ) . '

Multiplying both sides of (2.4) by xK and?summing these terms over

k € N, we obtain (2.2). To show (2.3) we multiply both sides of
(2.4)'by‘ b(k)xk and sum these terms 6vér k € N; the 1eff?hénd
side equals 2F1(a, b; ¢; x). Noting that b(k),= b(q)(b + j)(l)

(i + j = k), we see that

the right-hand side

- 2 b(j)(c - a)(j)(— x)j 2 (b+12(i)xi

49



90

= (1 - x)’szl(c'— a, b; c; ).

X
x -1
Conversely, we can reverse the above reaéoning by taking the

k

.coefficients of x (k € N).

Remark 2.2. Using the Hadamard product of powerseries (fsg

= figixl for £ = 3 fixi and g = 3 gixi), we can summarize
ieN » ielN ieN _

the proof of Theorem 2.1 as

- 1 i
F.(a; ¢; x) = (1 - x) 8, X
17135 & ieNcii;

([}

1 - “C(q - c-ay ., 1. i
(1 - %)™ - ) 3 —ryx

exlFl(c - aj; ¢c; - x)
and

- b( i
F,(a, b; c; x) = (1 - x) a, NEk
21 ielNc i

1
-
1
»
I

o
-
l
]
o
®
Py
M
>

(1 - x)_bZFl(c - a, b; c3 f ).

3. Transformation formulas for the Lauricella series.
We give the proofs,'making use of only powerseries computation
and the CV, of the transformation formulas for the Lauricella series

F and F_.:

A D

(1) FA(a; bl’ e bn; Cis wees Cpi Xys oo xn)

= (1 -xg =« - xn)-aFA(a; Cy = byy cees ©p = b Cyy enn,
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n; X1+"‘+X - 1! ""x1+"°+xn-1)’ » (3.1)

where the left-hand side denotes

(il+---+in) (il) (in) ) )
a b +e+b i i
z 1 n X 1"'X n
i,,...,1 €N (il) (in). ' Y 1 n ’
1 n ¢4 RN ] 11.---in.
(ii) FA(g; bl’ ey bn; Cir +evr Cpi Xy ...,'xn)
' X
- - -a . - . . 1
= (1 xl) FA(a, cy bl’ b2, oo bn’ Cys =+ Cps X, - I
X . X
2 n
Ty ceey TT—/—), (3.2)
1 X4 '1 X, :
(iii) FD(a; bl’ oo bn; S ) xn)
X X, - X
_ _ -a . _ . 1 1 2
= (1 xl) FD(a, c B, b2’ RN bn, cs X, - 1 %] = Tr =
X, - X ‘
1
1) (3.3)
1
(iv) FD(a; bl' ey bn; C3 Xyy ovey xn)
-b -bn Xy
= (1 - Xl) cee(1 - xn) FD(c - aj bl’ ey bn’ c; %] - T,
*n
—) (3.4)
? X 1
Proof of (i). We compute:
the right-hand side of (3.1)
= SalPa -y v e x N7
ielN )
(1,) (1)
‘ (cl B bl) "'(cn B bn) 1 i,
x 2 3 B Xy ¥ (3.5)
ig#eeesd =i 7L LRy iy
1 n 1° "n’




52

Substituting (1 - (il +oeve + Xn))—a—i = 2 iﬁ.ﬁj%lﬁilx
_ jeN )

Y J J » - _ v
x > v—TT%fg—Txl 1---xn T into (3.5) and noting that a(i)(a
APRERRES BCE LS R |

+ i)(j) = a(k) with k =1 + j, we have

(3.5) = 3 al®x

kelN
(1,) (1)
17 n
y s ( (;1 b%),) oeley - by N
. - . i i
i, ++ce+i +j,40-+J =k J'1“. n’,
1 nvi n Cq < i! in!jl' Jn!
i+ +1 i . +j i +3
x(-1) 1 ) 191 X n *“n
k k
=‘, a(k) N xl 1.0 xn nX
kelN k1+ +kn=k
i (i)
n (-1) ™(c, - b)) "
X Hl i ? N (1) . (3.6)
m= + = m
mvm m im!jm!cm
The last summation factor is transformed into
1 z (bm - Cm) (Cm + km - 1)
(kmji +j =k In jm
c mvm m
m
(k)
= __Tﬁ_Tf__ , - (3.7)
o . L
Cm km! .

by the CV. Substitution of (3.7) into (3.6) yields the’left—hand

side of (3.1).

Proof of (ii). We compute:

the right-hand side of (3.2)

6 -



o i, ) )
_ (1) (g - -a-1 1 1. P2 n
2 a ( xl) 2 (i ) (i ) X
ielN il+ +i =1 17 n
¢ Cn
i i i i
(-1) 1, 71, 72,4 'n :
% 1 2 n (3 8)
EPREPAEERE T y | y
‘ s (i) ‘ ’ v
‘Substituting (1 - xl) a=1i . a g'i le into (3.8) and noting
JeN
| (1), . oy (3) _  GEgreeerigsd)
that a (a + i) = a , we have
(i +4e-++1_+3) i (1i,)
a * B e1) My - by) P
(3-8 = A e (i) () "
1r°° ’ c e
1 '"n cq ch j!il!
(i,) (1)
2 n
xbz ---bn . 114—;]X 12. . in
P EER Ay 1 2 n
(k+iz+---+in) (iz) (in) )
a b - eeeb i i
= > 2 _n X kx 2 x_ Px
kydy, .o, ien Ul U)o o T2 n
2 n - 2 n
i (1,)
(-1) Yy - b ? S ,,
x. z. (i ) ) . ‘ . (3'9)
1435k grigre, t C
The last summation factor is transformed into
b, - ciy sc. + k= 1y . b, (K
o 2 R0 - S
¢y il+j=k 1 ) cq k!

by the CV. Substitution of (3.10) into (3.9) yields the left-hand
side of (3.2).

Proof of (iii). . - ~ We compute:

the right-hand side of (3.3)
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N P (-x5)

(1) i (m)
a (-1) (a + 1) m,
igw (1) mgw ml 1

(c - B) >

X

jn+ kn=in n

3 1k 1%
n

jn n
1 (—Xn)

(1) (k) (dpvky)

2
il+j2+k2+---+jn+kn=i

+e0 o4k k

SEREPASRRRS k> n, X2

n
XXy (-1) Xy Teeex

EPRFPRISSEREE I

(i+m) i
_ a -1 m J k+j
= ————TT§——l—x x,Y(-1) x
i,%ew Doy 1 g™

(ky) (k)
b, etb

k +---+kn=k 2

KTk T X2 "Xy

x

" 2 u ‘1 ( PZJ; kz)"'(- bnd; kn)'

il+j2+v--+jn=j

The last summation factor is equal to (

multivariate CV. Thus, putting

- Cc + b1 - k
J

) by the

(3.11)

(3.12)
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(1+k) (m) - ¢ + b, - k
= S a (C + J + k) .91 i
i,gem b jim=1 cli*k)g, ( J )x1
(i+k) - c‘+ b, - k
= a i c+1+k -1 1
) i9§eNSk (] 1+k X1 j+g'=i[ m )( J . ). (3’13)

' b, + 1 -1
The last summation factor is transformed into ( 1 i ) =
bl(i)/i! by the CV. Substitution of (3.12) into (3.13) yields the

left-hand side of (3.3).

Proof of (iv). (See also [8]. ) ~  We make use of the Kummer

transformation (2.2). Writing L := K(a, bl’ ceey bn’ c), we
define the L-linear endomorphism .o of ‘L[[xl, Ceey xn]] by
i i n i i
1 ny .. . 1., n
o(xy RE ) := ng(bj + iJ.)xj X4 X
(il’ ey in € N).
By induction we have
(kq) (k) k k
o(1) = RTerirby Py D oxg eeexg "
k,++¢e4k =k T1° n’ ‘
1 n
(k € N). _  (3.14)

41 (1 e m);

With M being the maximal ideal we have ‘a(Mi) c M
hence any f(o) € L[[0]] acts as an L-linear endomorphism of

L[[xl, ceey xn]]. Thus we have from (2.2) that
(Fi(as c5 0)(1) = e’ F (c - a3 c; - o)(1). (3.15)
The left-hand side of (3.15) is equal to that of (3.4) by virtue of

(3.14). The right-hand side of (3.15) is

i

i
sle- ™ 1),
ieN c*77/4i! :
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hence it suffices to'show that

-b . -b
(- o)te’(1) = (1 - x) leee(1-x) "

(i) (i)
i! 1 n
X b b X
il+o~§+in=1 il' 'in! 1 n
i1 in
x(xy/(xg = 1)) Peenlxp/(xg = 1) (1 e W) (3.16)

to obtain (3.4). We show an equivalent form of (3.16):

, (i,) (1) 1 i
otef(1) = > —I—T%%TI—Tbl o m Xy lo.x Px
o400 o+i =1 11° n' n n
1 n
-b,-i -b_-i
1711 o
x(1 - x;) et -x ) T (e, (3.17)
We compute: ;
the right-hand side of (3.17)
(1,+34)
il 1 11+34
= 2 _ 11!."1 ! EN j ! xl -.('x
11+...+in_1 n jle 1
(1 +3.)
b n n i+
x z n — ” n n
j..€N In n
: 1 g3 i!
= .2 37 2 T3 T3 1 2 IR DN TS N i
jeN SPREERES I 1 n’ i4eeed+i =171 n
(1,+34) (1 +3 ) 1,+] i +j .
1 Y1 n.vn’_ 1'VY1. . n ¥n
xbl ..-bn xl ...xn(
_ 1 L ) k) ey g
T SEN 3T e Sk sieg b n X Xn
J€ 17 n-
i J! | | . 18
XEA.il!-"in!jl!-o-jn!’ (3.18)

where the summation ZA ranges over the set { (11,,,..; in; jl’

- 10 -



|11+j1=k1,...,in+jnj-‘kn,il+---+i =1,

jl + v +jn = j }o Eliminating jl’ 00y jn,

_ 1y ()i
2ple-e) = : 1,)777 4, )k Tk 1
‘ il+-o-+1 =i\l n/ 1 n
n
(1 + §)! '
Sk Tk ! (3.19)
n

by the multivariate CV. Substitution of (3.19) into (3.18) yields

the left~hand side of (3.17) by virtue of (3.14), completing the

.proof.

We note that, since (3.15) follows from (2.2) which is a
consequence of the CV, the proof of (3.4) is in fact performed using

only powerseries computation and. the CV,

4, Quadratic transformations.
As we have seen in Section 2, the Kummer transformation for F
i= 2F1 (2.3) follows from the CV. Applying (2.3) twice, we have
F(a, by c; x) = (1 - x)c_a—bF(c - a, c -b; c; x). (4.1)

As shown in [3; pp.65-66] and [7; pp.48-497, (4.1) is equivalent

to the Saalschﬁtz'fbrmula for terminating L3F2. Thus we see:

Proposition Q.l. ] ‘ The Saalschiitz formula is a consequence of

the_CV.

Using the Saalschiitz formula, we can directly prove one 6f the
quadratic transformations for F = oF4

F(a, b; 1 + a - b; x)

= (1 - x)"®F(a/2, (a +1-2b)/2; 1 +a~-b; - bx/(1-x)%);

- 11 -
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(4.2)
see [3; pb66] or '[7; pp.49-50]. By Proposition 4.1 we can say

that (4.2) is also a consequence of the CV. We will further give

the proofs of some other quadratic transformations for F = 2F1

using only powerseries computation and the CV:

(1) ( [3; p.65, (26)] ) F(a, a + 1/2; b;_X)

. (2/(1»+ (1 - ;)1/2))23F(2a. 2a - b+ 1; b |

(1 - (1 -x0Y3/0 - a -3y, (4.3)
(i1) ( [35 p.65, (27)] ) - F(a, b; a + b + 1/2; 4x(1 - x))

= F(2a, 2b; a + b + 1/2; x), (4.4)
(iii) ( [3; 9-66. (33)1 ) F(a, b; 2b; x)

= (1 - x/2)"®F(a/2, a/2 + 1/2; b + 1/2; (x/(2 - x))%).  (4.5)
Proof of (i). It is sufficient to show that

(1 + £)"%®F(a, a + 1/2; b; bt/(1 + t)2)

= F(2a, 2a - b + 1; b; t); (4.6)

replacing t by (1 - (1 - x)l/z)/(l + (1 - x)l/z) gives (4.3).

Note that 2/(1 + (1 - x)l/z) is a powerseries with constant term

unity so that (4.3) has no ambiguity as a powerseries identity.

Comparing.the coefficients of xk of both sides of (4.6), we

have to show

al®) (a « 172352155 4 24)(3)(oq)d
145k NEFEY

_ (2a) M) (2a - b + 1)K

P (k e N). (4.7)

- 12 -
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We compute:

the left-hand side of (4.7)

(Za)(2%+j)(—1)j

5=k pWirg
- (2a (k) (2a + k)(i)(_l)j(b + i)(j)
- %k5 2 i! jr
b U 1+J=_k ) .

(2a)i?i§r1)%i+§=k(- 2a - k)(b . ? - 1)’

which is equal to the right-hand side of (4.7) by the CV.

Proof of (ii). Replacing a by 2a, b by a - b+ 1/2, and

- 4x/(1 - x)2 by t in (4i2), we have
F(a, b; a + b+ 1/2; t) = (2/((1 - £)/2 + 1))2%F(2a, a - b .+

1/2; a + b + 1/2; ((1 - t)l/2 - 1)/((1 - t)l/2 + 1)).

Applying (2.3) to the right-hand side of the above identity, we see
that '

F(a, b; a + b + 1/2; t)

= F(2a, 2b; a + b + 1/2; (1 - (1 - t)l/z)/z).

which is equivalent to (4.4) through the substitution x = (1 - (1 -

1/2

t) ' 7)/2.

Proof of (iii). We compute:

the right-hand side of (4.5)

g altyt 2Q/Z)(J)(a/?_ + 1/2)3)52,

. )23
ien 1121 jew (b + 1/2) 34

2 - X

. xi+2j+k%(i)(a/2)(j)(5/2 + 1/2)(3)(2j)(k)
i,59ken 2123k (p 4 172)(3) 51

- 13 -



0 a(1)5(23)(3) 54y (1)

meN 2™ 1+254k=m 11(2b)(23) jrx

(4.8)

The last summation factor is transformed as

a(20),(0) (1) oy (k)
~§__—TE"T—— a” (23)" °
ngm (2b) 23y i+k§m—2j ilk!

(23),.(3) ot (e a o |
a b (-1)® Zj( a Zj) (by the CV)

2j§m (2b) (33 4, m - 2J

a(m)y(3)
23<m (2b) (2331 (m - 29)1

a(Am) ) b(j)(Zb + 23)("‘"2.1)
(2b)im5 2j<m J'(m - 23!

i

(m) ) o
(Zbr;l(mj 2j§m(—1)j( db)(me -m2j 1)_

(m) o
zﬂ—yrayx(the coefficient of x™ in the powerseries expansion
2b .

of (1 - x2)7P(1 + %)% _ (1 - x)7P(1 4 x)PEL), (4.9)

We show that the coefficient in the parentheses is equal to

om b+m-1
m

), which is the coefficient of x™ 4in the expansion of

(1 + 2x)P*™"1. substitution of this equality into (4.9) will yield

that (4.8) is equal to the left-hand side of (4.5).
To show that the above two coefficients are mutually equal we
use a form of the Lagrange inversion-.formula [2; p.150, Theorem D]:

Let K be a field of characteristic zero. For f(x) € K{[x]]

invertible with respect to powerseries composition, g(x) € K[[x]]

its compositional inverse, and H(x) € K[[x]] any powerseries, the

coefficients of x" in the expansions of xH(g(x))/g(x)f'(g(x))

and ng)(f(x)/x)_m are mutually eqﬁal, where f'(x) denotes the

- 14 -



derivative of f(x) with respect to x. Take f(x) := x/(1 - x),

g(x) := x/(1 + x), and H(x) := (1 - x)-b_m(l + x)b+m-1 to obtain
the desired result.
Remark 4.2. As shown in [3; p.66], the formula

F(a, b; 2b; Ux/(1 + x)2) = (1 + x)zax

xF(a, a + 1/2 - b; b+ 1/2; x2) | (4.10)

follows from (4.3) and (4.5); hence (4.10) is also a consequence of

the CV through powerseries computation.
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