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1. Introduction
We prove the following conjecture [1]:

$R_{0}\oplus R_{1}$ is left-linear and complete (complete $=$ confluent $+terminat-$
$ing)$ iff $R_{0}$ and $R_{1}$ are so.

Note that $R_{O}\oplus R_{1}$ is confluent iff $R_{O}$ and $R_{1}$ are so [3]. Clearly, the direct sum
of two systems always preserves their left-linearity. It is trivial that if $R_{0}\oplus R_{1}$

is terminating then $R_{0}$ and $R_{1}$ are so. Thus, in this paper, we shall prove the
termination property of $R_{O}\oplus R_{1}$ , assuming that $R_{O}$ and $R_{1}$ are left-linear and
complete.

2. Notations and Definitions
Assuming that the reader is familiar with the basic concepts and notations con-
cerning term rewriting systems in [3], we briefly explain notations and definitions
for the following discussions.

Let $F$ be a set of function symbols, and let $V$ be a set of variable symbols. By
$T(F, V)$ , we denote the set of terms constructed from $F$ and $V$ .

Consider disjoint systems $R_{O}$ on $T(F_{0}, V)$ and $R_{1}$ on $T(F_{1}, V)$ . Then the direct
sum system $R_{0}\oplus R_{1}$ is the term rewriting system on $T(F_{0}\cup F_{1}, V)$ . From here on
the $notationarrow represents$ the reduction $1^{\cdot}(\backslash lation$ on $R_{O}\oplus R_{1}$ .
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Lemma 2.1. $R_{O}\oplus R_{1}$ is weakly normalizing, i.e., every term $M$ has a normal
form (denoted by $M\downarrow$ ).

The identity of terms of $T(F_{O}\cup F_{1}, V)$ (or syntactical equality) is denoted by
$\equiv$ . $arrow^{*}$ is the transitive refJexive closure $ofarrow,$ $arrow+is$ the transitive closure $ofarrow$ ,
$arrow\underline{=}$ is the reflexive closure $ofarrow$ , and $=is$ the equivalence relation generated $byarrow$

(i.e., the transitive reflexive symmetric closure $ofarrow$ ). $arrow m$ denotes a reduction of
$m(m\geq 0)$ steps.

Deflnition. A root is a mapping from $T(F_{0}\cup F_{1}, V)$ to $F_{0}\cup F_{1}\cup V$ as follows:
For $M\in T(F_{0}\cup F_{1}, V)$ ,

root$(M)=\{MfifM\equiv f(M_{1},\ldots, M_{n})ifMisaconstantora$

variable.

Deflnition. Let $M\equiv C[B_{1}, \ldots , B_{n}]\in T(F_{0}\cup F_{1}, V)$ and $C\not\equiv\square$ . Then write
$M\equiv C[B_{1},$

$\ldots,$
$B_{n}I$ if $C[$ , , $]$ is a context on $F_{d}$ and $\forall i,$ $root(B_{i})\in F_{\overline{d}}(d\in$

$\{0,1\}$ and $\overline{d}=1-d$). Then the set $S(M)$ of the special subterms of $M$ is
inductively defined as follows:

$S(M)=\{\begin{array}{l}\{M\}\bigcup_{i}S(B_{i})\cup\{M\}\end{array}$ $ifM\equiv C[B_{1},. .,B_{n}J(n>0)ifM\in T(F_{d},V).(d=0or1),$

.

The set of the special subterms having the root symbol in $F_{d}$ is denoted by
$S_{d}(M)=$ {$N|N\in S(M)$ and root$(N)\in F_{d}$ }.

Let $M\equiv C[B_{1}, \ldots, B_{n}]$ and $Marrow AN$ (i.e., $N$ results from $M$ by contracting
the redex occurrence $A$). If the redex occurrence $A$ occurs in some $B_{j}$ , then we
write $Marrow N;$: otherwise $Marrow_{\circ}N$ . Here, $arrow andiarrow 0$ are called an inner and an outer
reduction, respectively.

Deflnition. For a term $M\in T(F_{0}\cup F_{1}, V)$ , the rank of layers of contexts on
$F_{0}$ and $F_{1}$ in $M$ is inductively defined as follows:

rank$(M)=\{\begin{array}{l}1ifM\in T(F_{d},V)(d=0or1)\max_{i}\{rank(B_{i})\}+1ifM\equiv C[B_{1},\ldots,B_{n}I(n>0)\end{array}$

Lemma 2.2. If $Marrow N$ then rank$(M)\geq rank(N)$ .

Lemma 2.3. Let $Marrow N$ and root$(M),$ $root(N)\in F_{d}$ . Then there exists
a reduction $M\equiv M_{0}arrow M_{1}arrow M_{2}arrow\cdotsarrow M_{n}\equiv N$ $(n\geq 0)$ such that
root$(M_{i})\in F_{d}$ for any $i$ .
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The set of terms in the reduction graph of $M$ is denoted by $G(M)=\{N|Marrow^{*}N\}$ .
The set of terms having the root symbol in $F_{d}$ is denoted by $G_{d}(M)=\{N|N\in$

$G(M)$ and root$(N)\in F_{d}$ }.

Deflnition. A term $M$ is persistent iff $G(M)=G_{d}(M)$ for some $d$ .

Deflnition. A term $M$ is erasable iff $Marrow^{*}x$ for some $x\in V$ .
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reduction $M\equiv C[P]arrow^{*}P$ (denoted by $Marrow^{*}P$)
$pull$

under $R_{0}\oplus R_{1}$ . We say that the

reduction $Marrow^{*}Ppull$ pulls up the occurrence $P$ from $M$.

Example 3.1. Consider the two systems $R_{0}$ and $R_{1}$ :

$R_{0}$ $\{\begin{array}{l}F(x)arrow G(x,x)G(C,x)arrow x\end{array}$

$R_{1}$ $\{h(x)arrow x$

Then we have the reduction:
$F(e(h(C)))arrow G(e(h(C), e(h(C)))earrow G(h(C), e(h(C)))earrow G(C, e(h(C)))earrow e(h(C))e$

Hence $F(h(C))arrow^{*}h\not\in C)pull$ However, we cannot obtain $F(z)arrow^{*}Zpull$ Thus, in

generally, we cannot obtain $C[z]arrow^{*}Zpull$ from $C[P]arrow^{pull*}$ P. $\square$

Lemma 3.3. Let $Parrow^{*}Q$ and let $C[Q]arrow^{*}Qpull$ Then $C[P]arrow^{*}Ppull$

Lemma 3.4. $\forall N\in G_{d}(M)\exists P\in S_{d}(M),$ $Marrow^{*}Ppullarrow^{*}N$ .

Now, we introduce the concept of the essential subterms. The set $E_{d}(M)$ of
the essential subterms of the term $M\in T(F_{0}\cup F_{1}, V)$ is defined as follows:

$E_{d}(M)=$ {$P|P\in G(M)\cap S_{d}(M)$ and $\neg\exists Q\in G(M)\cap S_{d}(M)[Qarrow+P]$ }.

The following lemmas are easily obtained from the definition of the essential
subterms and Lemma 3.4.

Lemma 3.5. $\forall N\in G_{d}(M)\exists P\in E_{d}(M),$ $Parrow^{*}N$ .

Lemma 3.6. $E_{d}(M)=\phi$ iff $G_{d}(M)=\phi$ .

We say $M$ is deterministic for $d$ if I $E_{d}(M)|=1;M$ is nondeterministic for $d$ if
$|E_{d}(M)|\geq 2$ . The following lemma plays an important role in the next section.
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Lemma 3.7 If root$(M\downarrow)\in F_{d}$ then $|E_{d}(M)|=1$ , i.e., $M$ is deterministic for
$d$ .

4. Termination for the Direct Sum

In this section we will show that $R_{O}\oplus R_{1}$ is terminating. Roughly speaking,
termination is proven by showing that any infinite reduction $M_{O}arrow M_{1}arrow M_{2}arrow$

. . . of $R_{0}\oplus R_{1}$ can be translated into an infinite reduction $M_{0}’arrow M_{1}’arrow M_{2}’arrow\cdots$

of $R_{d}$ .

We first define the term $M^{d}\in T(F_{d}, V)$ for any term $M$ and any $d$.

Deflnition. For any $M$ and any $d,$ $M^{d}\in T(F_{d}, V)$ is defined by induction on
rank$(M)$ :

(1) $M^{d}\equiv M$ if $M\in T(F_{d}, V)$ .
(2) $M^{d}\equiv x$ if $E_{d}(M)=\phi$ .
(3) $M^{d}\equiv C[M_{1}^{d}, \cdots, M_{m}^{d}]$ if root$(M)\in F_{d}$ and $M\equiv C[M_{1},$ $\cdots,$ $M_{m}I(m>0)$ .
(4) $M^{d}\equiv P^{d}$ if root $(M)\in F_{\overline{d}}$ and $E_{d}(M)=\{P\}$ . Note that rank$(P)<$

$rank(M)$ .
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Lemma 4.2. If $P\in E_{d}(M)$ then $M^{d}arrow^{*}P^{d}$ .

We wish to translate directly an infinite reduction $M_{0}arrow M_{1}arrow M_{2}arrow\cdots$

into an infinite reduction $M_{0^{d}}arrow^{*}M_{1}^{d}arrow^{*}M_{2}^{d}arrow^{*}\cdots$ . However, the following example
shows that $M_{i}arrow M_{i+1}$ cannot be translated into $M_{i}^{d}arrow^{*}M_{i+1}^{d}$ in generally.

Example 4.1. Consider the two systems $R_{0}$ and $R_{1}$ :

$R_{0}$ $\{\begin{array}{l}F(C,x)arrow xF(x,C)arrow x\end{array}$

$R_{1}$ $\{\begin{array}{l}f(x)f(x)arrow h(x)arrow g(x)g(x)arrow xh(x)arrow x\end{array}$

Let $M\equiv F(f(C), h(C))arrow N\equiv F(g(C), h(C))$ . Then $E_{1}(M)=\{f(C)\}$ and
$E_{1}(N)=\{g(C), h(C)\}$ . Thus $M^{1}\equiv f(x),$ $N^{1}\equiv g(h(x))$ . It is obvious that
$M^{1}arrow^{*}N^{1}$ does not hold. $\square$

Now we will consider to translate indirectly an infinite reduction of $R_{O}\oplus R_{1}$

into an infinite reduction of $R_{d}$ .
We write $M\equiv N\circ$ when $M$ and $N$ have the same outermost-layer context, i.e.,

$M\equiv C[M_{1},$ $\cdots,$ $M_{m}J$ and $N\equiv C[N_{1},$ $\cdots,$ $N_{m}J$ for some $M_{i},$ $N_{i}$ .

Lemma 4.3. Let $A\div M,$ $Marrow_{\circ}N,$ $A\equiv_{o}M$ , and root$(M),$ $root(N)\in F_{d}$ . Then,
for any $A^{d}$ there exist $B$ and $B^{d}$ such that
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M $N$

$*$ $*$

$A$ $\exists B$

$A^{d}----------------------------arrow$ $\exists B^{d}$

Proof. Let $A\equiv c\mathbb{I}A_{1},$
$\cdots,$

$A_{m}$], $M\equiv C[M_{1},$ $\cdots$ , $M_{m}IN\equiv C’[M_{1_{1}},$ $\cdots,$
$M_{1_{n}}J$

$(i_{j}\in\{1, \cdots, m\})$ . Take $B\equiv C’[A_{i_{1}}, \cdots, A;_{n}]$ . Then, we can obtain $Aarrow_{O}B$ and
$Barrow^{*}N:$ . From $A^{d}\equiv C[A_{1}^{d}, \cdots , A_{m}^{d}]$ and $B^{d}\equiv C’[A_{i}^{d_{1}}, \cdots, A_{i}^{d_{n}}]$ , it follows that
$A^{d}arrow B^{d}$ . $\square$

Then, for any $M^{d}$ there exist
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$M$ $*$ $N$

$\overline{\backslash \backslash \backslash \backslash \backslash \iota}-$

$\mathfrak{l}$

$\backslash$

$c$

$\backslash _{s}$

$-$
$\backslash _{s}$ 1

1
$s_{\vee}$

$*$

$\backslash _{s}$

$iI|$ $*$
$\sim$

$\backslash \backslash$

$t$

1
$\backslash$ ’

$\backslash \backslash$

$\backslash \sim$

$s$ $11$

$\backslash _{s_{1}}\backslash _{s_{c}|,\sim|}$

$*$
$\exists A$

$(A\equiv_{o}N)$

$*$

$M^{d}.----------------------------arrow$ $\exists A^{d}$

Proof. We will prove the lemma by induction on rank$(M)$ . The case rank$(M)=$
$1$ is trivial by taking $A\equiv N$ . Assume the lemma for rank$(M)<k$ . Then we will
prove the case rank$(M)=k$ . We start from the following claim.

Claim. The lemma holds if $Marrow^{*}Ni$

8



$\iota v$

$M_{1}$ $*$ $N$;

$\overline{\backslash \backslash _{\backslash }\backslash \backslash t}-$

’
$\backslash$

$t$

$\backslash _{c}$

$.\backslash$

$t$

$c_{\backslash }$ $*$
1

$s_{\backslash }$

$i111$
$*$

$\sim$

$.\backslash$

$\backslash$

$\mathfrak{l}$

$c_{s}$.
1$c_{s}$

$\iota$

$\backslash$

$t$

$\backslash _{s}$ ’
$\sim\backslash \backslash ^{1}$ $\exists A$;

$(A_{i}\equiv N:)0$

$*$

$M_{*}^{d}-----------------------------arrow$ $\exists A^{d}$

Now, take $A\equiv C[x, \cdots, x, A_{p}, \cdots, A_{q-1}, M_{q}, \cdots, M_{m}]$ . It is obvious that $Marrow^{*}A$ .
$\mathbb{R}om$ Lemma 2.3, we can have the reductions $A;arrow^{*}N_{2}(p\leq i<q)$ and $M_{j}arrow^{*}N_{j}$

$(q\leq j\leq m)$ in which every term has a root symbol in $F_{\overline{d}}$. Thus it follows that
$Aarrow^{*}N$ and $A\equiv N\circ\cdot$ From Lemma 4.1 and $M_{1}\downarrow\equiv x$ $(1 \leq i<p),$ $M_{1}^{d}\downarrow\equiv x$ .
Therefore, since

$M^{d}\equiv C[M_{1}^{d}, \cdots,M_{p-1}^{d}, M_{p}^{d}, \cdots,M_{q-1}^{d}, M_{q}^{d}, \cdots , M_{m}^{d}]$

and $A^{d}\equiv C[x, \cdots, x, A_{p}^{d}, \cdots, A_{q-1}^{d}, M_{q}^{d}, \cdots, M_{m}^{d}]$ , it follows that $M^{d}arrow^{*}A^{d}$ . (end
of the claim)

Now we will prove the lemma for rank$(M)=k$ . Consider two cases.

Case 1. root$(M)\in F_{d}$ .
From Lemma 2.3, we may assume that every term in the reduction $Marrow^{*}N$ has

a root symbol in $F_{d}$ . By splitting $Marrow^{*}N$ into $Marrow^{*}:arrow 0\sim_{j}^{*}arrow 0$
$arrow^{*}N$

: and using the
claim for diagram (1) and Lemma 5.1 for diagram (2), we can draw the following
diagram:
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$M$ $*$ $*$ $*$ $N$

$-\backslash \cdot$$-1$ 1.11. $-1$

$\backslash$

$\iota$ [ $o$ [ $\iota$ 1 $o$ \dagger ? 1
$\backslash$

$\mathfrak{l}$$t$

$\backslash$

1II $t$

$cc_{s_{\backslash _{\backslash }}}$ (1) $111$ $|$ $t|t$ $||1$ $1I|$

1 I1

$\backslash \backslash _{\backslash }*_{\backslash }$ $*|||i$ (2) $*|||i$ (1) $*II|i$ (2) $*|i$ (1) $*|||i$
I $t$ $t$ $1$

$c$

111 $t$ 1$c$

1 $t$ I 1
$\backslash$ 1 1 $\mathfrak{l}$

$\backslash \searrow^{11}------------arrow 1I1l-------*_{-}----\lrcorner------------arrow 11|1-------*_{-}----\lrcorner$
$\exists A$

$(A\equiv_{o}N)$

$*$ $*$ $*$

$M_{-------------arrow------------arrow------------arrow------------arrow------------arrow}^{d}\exists A^{d}$

Case 2. root $(M)\in F_{\overline{d}}$.
Then we have some essential subterm $Q\in E_{d}(M)$ such that $Marrow^{*:}Qarrow^{*}N$ . From

Lemma 4.2, it follows that $M^{d}arrow^{*}Q^{d}$ . It is obvious that rank$(Q)<k$ . Hence, we
can show the following diagram, drawing diagram (1) by the induction hypothesis:

$M\underline{*Q_{\backslash }*}\backslash |\backslash \backslash -\iota_{1}$ $N$

$\backslash$.
$\backslash$

$1$(1)
$\backslash _{\backslash }\tau_{c_{\backslash }*}$

$|\dagger$

$\backslash _{\backslash }\backslash$

$*\iota||\iota_{i}$

$\backslash$

1
$\backslash$

$\backslash$

$\backslash _{\backslash }1$

$\backslash 11|\exists A$

$(A\equiv_{o}N)$

$*$ $Q^{d}$ $*$

$M^{d}-------------arrow------------arrow\exists A^{d}$

口

Now we can prove the following theorem:
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Theorem 4.1. Every term $M$ has no infinite reduction.

Proof. We will prove the theorem by induction on rank$(M)$ . The case
rank$(M)=1$ is trivial. Assume the theorem for rank$(M)<k$ . Then, we will
show the case rank$(M)=k$ . Suppose $M$ has an infinite reduction $Marrowarrowarrow\cdots$ .
From the induction hypothesis, we can have no infinite inner $reductionarrow:arrow:arrow:\cdots$

in this reduction. Thus,
$arrow_{\circ}$ must infinitely appear in the infinite reduction. From

the induction hypothesis, all of the terms appearing in this reduction have the
same rank; hence, their root symbols are in $F_{d}$ if root$(M)\in F_{d}$ . Hence, from the
discussion for Case 1 in the proof of Lemma 4.4, it follows that $M^{d}$ has an infinite
reduction. This contradicts that $R_{d}$ is terminating. $\square$
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