# Termination for the Direct Sum of Left－Linear Term Rewriting Systems －Preliminary Draft＊－ 

Yoshihito Toyama<br>NTT Basic Research Laboratories<br>3－9－11 Midori－cho，Musashino－shi，Tokyo 180，Japan

## 1．Introduction

We prove the following conjecture［1］：
$R_{0} \oplus R_{1}$ is left－linear and complete（complete $=$ confluent + terminat－ ing）iff $R_{0}$ and $R_{1}$ are so．

Note that $R_{0} \oplus R_{1}$ is confluent iff $R_{0}$ and $R_{1}$ are so［3］．Clearly，the direct sum of two systems always preserves their left－linearity．It is trivial that if $R_{0} \oplus R_{1}$ is terminating then $R_{0}$ and $R_{1}$ are so．Thus，in this paper，we shall prove the termination property of $R_{0} \oplus R_{1}$ ，assuming that $R_{0}$ and $R_{1}$ are left－linear and complete．

## 2．Notations and Definitions

Assuming that the reader is familiar with the basic concepts and notations con－ cerning term rewriting systems in［3］，we briefly explain notations and definitions for the following discussions．

Let $F$ be a set of function symbols，and let $V$ be a set of variable symbols．By $T(F, V)$ ，we denote the set of terms constructed from $F$ and $V$ ．

Consider disjoint systems $R_{0}$ on $T\left(F_{0}, V\right)$ and $R_{1}$ on $T\left(F_{1}, V\right)$ ．Then the direct sum system $R_{0} \oplus R_{1}$ is the term rewriting system on $T\left(F_{0} \cup F_{1}, V\right)$ ．From here on the notation $\rightarrow$ represents the reduction relation on $R_{0} \oplus R_{1}$ ．

[^0]Lemma 2.1. $R_{0} \oplus R_{1}$ is weakly normalizing, i.e., every term $M$ has a normal form (denoted by $M \downarrow$ ).

The identity of terms of $T\left(F_{0} \cup F_{1}, V\right)$ (or syntactical equality) is denoted by $\equiv . \stackrel{*}{\rightarrow}$ is the transitive reflexive closure of $\rightarrow, \stackrel{ \pm}{\rightarrow}$ is the transitive closure of $\rightarrow$, $\equiv$ is the reflexive closure of $\rightarrow$, and $=$ is the equivalence relation generated by $\rightarrow$ (i.e., the transitive reflexive symmetric closure of $\rightarrow$ ). $\xrightarrow{m}$ denotes a reduction of $m(m \geq 0)$ steps.

Definition. A root is a mapping from $T\left(F_{0} \cup F_{1}, V\right)$ to $F_{0} \cup F_{1} \cup V$ as follows: For $M \in T\left(F_{0} \cup F_{1}, V\right)$,

$$
\operatorname{root}(M)= \begin{cases}f & \text { if } M \equiv f\left(M_{1}, \ldots, M_{n}\right), \\ M & \text { if } M \text { is a constant or a variable }\end{cases}
$$

Definition. Let $M \equiv C\left[B_{1}, \ldots, B_{n}\right] \in T\left(F_{0} \cup F_{1}, V\right)$ and $C \not \equiv \square$. Then write $M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket$ if $C[, \ldots$,$] is a context on F_{d}$ and $\forall i, \operatorname{root}\left(B_{i}\right) \in F_{\bar{d}}(d \in$ $\{0,1\}$ and $\bar{d}=1-d)$. Then the set $S(M)$ of the special subterms of $M$ is inductively defined as follows:

$$
S(M)= \begin{cases}\{M\} & \text { if } M \in T\left(F_{d}, V\right)(d=0 \text { or } 1) \\ \bigcup_{i} S\left(B_{i}\right) \cup\{M\} & \text { if } M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket(n>0) .\end{cases}
$$

The set of the special subterms having the root symbol in $F_{d}$ is denoted by $S_{d}(M)=\left\{N \mid N \in S(M)\right.$ and $\left.\operatorname{root}(N) \in F_{d}\right\}$.

Let $M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket$ and $M \xrightarrow{A} N$ (i.e., $N$ results from $M$ by contracting the redex occurrence $A$ ). If the redex occurrence $A$ occurs in some $B_{j}$, then we write $M \underset{i}{\rightarrow} N$; otherwise $M \underset{o}{\rightarrow} N$. Here, $\underset{i}{\rightarrow}$ and $\vec{o}$ are called an inner and an outer reduction, respectively.

Definition. For a term $M \in T\left(F_{0} \cup F_{1}, V\right)$, the rank of layers of contexts on $F_{0}$ and $F_{1}$ in $M$ is inductively defined as follows:

$$
\operatorname{rank}(M)= \begin{cases}1 & \text { if } M \in T\left(F_{d}, V\right)(d=0 \text { or } 1) \\ \max _{i}\left\{\operatorname{rank}\left(B_{i}\right)\right\}+1 & \text { if } M \equiv C \llbracket B_{1}, \ldots, B_{n} \rrbracket(n>0)\end{cases}
$$

Lemma 2.2. If $M \rightarrow N$ then $\operatorname{rank}(M) \geq \operatorname{rank}(N)$.
Lemma 2.3. Let $M \rightarrow N$ and $\operatorname{root}(M), \operatorname{root}(N) \in F_{d}$. Then there exists a reduction $M \equiv M_{0} \rightarrow M_{1} \rightarrow M_{2} \rightarrow \cdots \rightarrow M_{n} \equiv N \quad(n \geq 0)$ such that $\operatorname{root}\left(M_{i}\right) \in F_{d}$ for any $i$.

The set of terms in the reduction graph of $M$ is denoted by $G(M)=\{N \mid M \xrightarrow{*} N\}$. The set of terms having the root symbol in $F_{d}$ is denoted by $G_{d}(M)=\{N \mid N \in$ $G(M)$ and $\left.\operatorname{root}(N) \in F_{d}\right\}$.

Definition. A term $M$ is persistent iff $G(M)=G_{d}(M)$ for some $d$.
Definition. A term $M$ is erasable iff $M \xrightarrow{*} x$ for some $x \in V$.

From now on we assume that every term $M \in T\left(F_{0} \cup F_{1}, V\right)$ has only $x$ as variable occurrences, unless it is stated otherwise. Since $R_{0} \oplus R_{1}$ is left-linear, this variable convention may be assumed in the following discussions without loss of generality. If we need fresh variable symbols not in terms, we use $z, z_{1}, z_{2}, \cdots$.

## 3. Essential Subterms

In this section we introduce the concept of the essential subterms. We first prove the following property:

$$
\forall N \in G_{d}(M) \exists P \in S_{d}(M), M \xrightarrow{*} P \xrightarrow{*} N .
$$

Lemma 3.1. Let $M \rightarrow N$ and $Q \in S_{d}(N)$. Then, there exists some $P \in S_{d}(M)$ such that $P \stackrel{\equiv}{\Longrightarrow} Q$.
$R_{e}$ consists of the single rule $e(x) \triangleright x . \vec{e}^{\rightarrow}$ denotes the reduction relation of $R_{e}$, and $\underset{e^{\prime}}{\rightarrow}$ denotes the reduction relation of $R_{e} \oplus\left(R_{0} \oplus R_{1}\right)$ such that if $C[e(P)] \underset{e^{\prime}}{\Delta} N$ then the redex occurrence $\Delta$ does not occur in $P$. It is easy to show the confluence property of $\overrightarrow{e^{\prime}}$.

Lemma 3.2. Let $C\left[e\left(P_{1}\right), \cdots, e\left(P_{i-1}\right), e\left(P_{i}\right), e\left(P_{i+1}\right), \cdots, e\left(P_{p}\right)\right] \underset{e^{\prime}}{k} e\left(P_{i}\right)$. Then $C\left[P_{1}, \cdots, P_{i-1}, e\left(P_{i}\right), P_{i+1}, \cdots, P_{p}\right] \xrightarrow[e^{\prime}]{\stackrel{k^{\prime}}{\prime}} e\left(P_{i}\right) \quad\left(k^{\prime} \leq k\right)$.

Let $M \equiv C[P] \in T\left(F_{0} \cup F_{1}, V\right)$ be a term containing no function symbol $e$. Now, consider $C[e(P)]$ by replacing the occurrence $P$ in $M$ with $e(P)$. Assume $C[e(P)] \underset{e^{\prime}}{*} e(P)$. Then, by tracing the reduction path, we can also obtain the
reduction $M \equiv C[P] \xrightarrow{*} P($ denoted by $M \underset{\text { pull }}{*} P)$ under $R_{0} \oplus R_{1}$. We say that the reduction $M \underset{\text { pull }}{*} P$ pulls up the occurrence $P$ from $M$.

Example 3.1. Consider the two systems $R_{0}$ and $R_{1}$ :
$R_{0} \quad\left\{\begin{array}{l}F(x) \rightarrow G(x, x) \\ G(C, x) \rightarrow x\end{array}\right.$
$R_{1} \quad\{h(x) \rightarrow x$

Then we have the reduction:
$F(e(h(C))) \underset{e^{\prime}}{\rightarrow} G\left(e(h(C), e(h(C))) \underset{e^{\prime}}{\rightarrow} G(h(C), e(h(C))) \underset{e^{\prime}}{\vec{\prime}} G(C, e(h(C))) \underset{e^{\prime}}{\rightarrow} e(h(C))\right.$.
Hence $F(h(C)) \underset{\text { pull }}{*} h(C)$. However, we cannot obtain $F(z) \underset{\text { pull }}{\stackrel{*}{\rightarrow}} z$. Thus, in generally, we cannot obtain $C[z] \underset{\text { pull }}{\stackrel{*}{\longrightarrow}} z$ from $C[P] \stackrel{*}{\text { pull }} P$.

Lemma 3.3. Let $P \stackrel{*}{\rightarrow} Q$ and let $C[Q] \underset{\text { pull }}{\stackrel{*}{\rightarrow}} Q$. Then $C[P] \stackrel{*}{\text { pull }} P$.

Lemma 3.4. $\forall N \in G_{d}(M) \exists P \in S_{d}(M), M \underset{\text { pull }}{*} P \xrightarrow{*} N$.

Now, we introduce the concept of the essential subterms. The set $E_{d}(M)$ of the essential subterms of the term $M \in T\left(F_{0} \cup F_{1}, V\right)$ is defined as follows:
$E_{d}(M)=\left\{P \mid P \in G(M) \cap S_{d}(M)\right.$ and $\left.\neg \exists Q \in G(M) \cap S_{d}(M)[Q \xrightarrow{+} P]\right\}$.
The following lemmas are easily obtained from the definition of the essential subterms and Lemma 3.4.

Lemma 3.5. $\forall N \in G_{d}(M) \exists P \in E_{d}(M), P \xrightarrow{*} N$.
Lemma 3.6. $E_{d}(M)=\phi$ iff $G_{d}(M)=\phi$.
We say $M$ is deterministic for $d$ if $\left|E_{d}(M)\right|=1 ; M$ is nondeterministic for $d$ if $\left|E_{d}(M)\right| \geq 2$. The following lemma plays an important role in the next section.

Lemma 3.7 If $\operatorname{root}(M \downarrow) \in F_{d}$ then $\left|E_{d}(M)\right|=1$, i.e., $M$ is deterministic for $d$.

## 4. Termination for the Direct Sum

In this section we will show that $R_{0} \oplus R_{1}$ is terminating. Roughly speaking, termination is proven by showing that any infinite reduction $M_{0} \rightarrow M_{1} \rightarrow M_{2} \rightarrow$ $\cdots$ of $R_{0} \oplus R_{1}$ can be translated into an infinite reduction $M_{0}^{\prime} \rightarrow M_{1}^{\prime} \rightarrow M_{2}^{\prime} \rightarrow \cdots$ of $R_{d}$.

We first define the term $M^{d} \in T\left(F_{d}, V\right)$ for any term $M$ and any $d$.
Definition. For any $M$ and any $d, M^{d} \in T\left(F_{d}, V\right)$ is defined by induction on $\operatorname{rank}(M)$ :
(1) $M^{d} \equiv M \quad$ if $M \in T\left(F_{d}, V\right)$.
(2) $M^{d} \equiv x \quad$ if $E_{d}(M)=\phi$.
(3) $M^{d} \equiv C\left[M_{1}^{d}, \cdots, M_{m}^{d}\right]$ if $\operatorname{root}(M) \in F_{d}$ and $M \equiv C \llbracket M_{1}, \cdots, M_{m} \rrbracket(m>0)$.
(4) $M^{d} \equiv P^{d} \quad$ if $\operatorname{root}(M) \in F_{\bar{d}}$ and $E_{d}(M)=\{P\}$. Note that $\operatorname{rank}(P)<$ $\operatorname{rank}(M)$.
(5) $M^{d} \equiv C_{1}\left[C_{2}\left[\cdots C_{p-1}\left[C_{p}[x]\right] \cdots\right]\right]$ if $\operatorname{root}(M) \in F_{\bar{d}}, E_{d}(M)=\left\{P_{1}, \cdots, P_{p}\right\}(p>$ $1)$, and every $P_{i}^{d}$ is erasable. Here $P_{i}^{d} \equiv C_{i}[x] \underset{\text { pull }}{*} x \quad(i=1, \cdots, p)$. Note that $\operatorname{rank}\left(P_{i}\right)<\operatorname{rank}(M)$ for any $i$.
(6) $M^{d} \equiv x \quad$ if $\operatorname{root}(M) \in F_{\bar{d}},\left|E_{d}(M)\right| \geq 2$, and not (5).

Note that $M^{d}$ is not unique if a subterm of $M^{d}$ is constructed with (5) in the above definition.

Lemma 4.1. $\operatorname{root}(M \downarrow) \notin F_{d}$ iff $M^{d} \downarrow \equiv x$.
Note. Let $E_{d}(M)=\left\{P_{1}, \cdots, P_{p}\right\}(p>1)$. Then, from Lemma 3.6 and Lemma 4.1, it follows that every $P_{i}$ is erasable. Hence case (6) can be removed from the definition of $M^{d}$.

Lemma 4.2. If $P \in E_{d}(M)$ then $M^{d} \xrightarrow{*} P^{d}$.
We wish to translate directly an infinite reduction $M_{0} \rightarrow M_{1} \rightarrow M_{2} \rightarrow \cdots$ into an infinite reduction $M_{0}^{d} \xrightarrow{*} M_{1}^{d} \xrightarrow{*} M_{2}^{d} \xrightarrow{*} \cdots$. However, the following example shows that $M_{i} \rightarrow M_{i+1}$ cannot be translated into $M_{i}^{d} \xrightarrow{*} M_{i+1}^{d}$ in generally.

Example 4.1. Consider the two systems $R_{0}$ and $R_{1}$ :
$R_{0} \quad\left\{\begin{array}{l}F(C, x) \rightarrow x \\ F(x, C) \rightarrow x\end{array}\right.$
$R_{1} \quad\left\{\begin{array}{l}f(x) \rightarrow g(x) \\ f(x) \rightarrow h(x) \\ g(x) \rightarrow x \\ h(x) \rightarrow x\end{array}\right.$

Let $M \equiv F(f(C), h(C)) \rightarrow N \equiv F(g(C), h(C))$. Then $E_{1}(M)=\{f(C)\}$ and $E_{1}(N)=\{g(C), h(C)\}$. Thus $M^{1} \equiv f(x), N^{1} \equiv g(h(x))$. It is obvious that $M^{1} \xrightarrow{*} N^{1}$ does not hold.

Now we will consider to translate indirectly an infinite reduction of $R_{0} \oplus R_{1}$ into an infinite reduction of $R_{d}$.

We write $M \equiv N$ when $M$ and $N$ have the same outermost-layer context, i.e., $M \equiv C \llbracket M_{1}, \cdots, M_{m} \rrbracket$ and $N \equiv C \llbracket N_{1}, \cdots, N_{m} \rrbracket$ for some $M_{i}, N_{i}$.

Lemma 4.3. Let $A \underset{i}{*} M, M \underset{o}{\rightarrow} N, A \underset{\bar{o}}{\bar{b}} M$, and $\operatorname{root}(M), \operatorname{root}(N) \in F_{d}$. Then, for any $A^{d}$ there exist $B$ and $B^{d}$ such that


Proof. Let $A \equiv C \llbracket A_{1}, \cdots, A_{m} \rrbracket, M \equiv C \llbracket M_{1}, \cdots, M_{m} \rrbracket, N \equiv C^{\prime} \llbracket M_{i_{1}}, \cdots, M_{i_{n}} \rrbracket$ $\left(i_{j} \in\{1, \cdots, m\}\right)$. Take $B \equiv C^{\prime} \llbracket A_{i_{1}}, \cdots, A_{i_{n}} \rrbracket$. Then, we can obtain $A \rightarrow B$ and $B \underset{i}{*} N$. From $A^{d} \equiv C\left[A_{1}^{d}, \cdots, A_{m}^{d}\right]$ and $B^{d} \equiv C^{\prime}\left[A_{i_{1}}^{d}, \cdots, A_{i_{n}}^{d}\right]$, it follows that $A^{d} \xrightarrow{i} B^{d}$.

Lemma 4.4. Let $M \xrightarrow{*} N, \operatorname{root}(N) \in F_{d}$. Then, for any $M^{d}$ there exist $A(A \equiv N)$ and $A^{d}$ such that


Proof. We will prove the lemma by induction on $\operatorname{rank}(M)$. The case $\operatorname{rank}(M)=$ 1 is trivial by taking $A \equiv N$. Assume the lemma for $\operatorname{rank}(M)<k$. Then we will prove the case $\operatorname{rank}(M)=k$. We start from the following claim.

Claim. The lemma holds if $M \underset{i}{*} N$.
Proof of the Claim. Let $M \equiv C \llbracket M_{1}, \cdots, M_{m} \rrbracket \stackrel{*}{\rightarrow} N \equiv C\left[N_{1}, \cdots, N_{m}\right]$ where $M_{i} \xrightarrow{*} N_{i}$ for every $i$. We may assume that $N_{1} \equiv x, \cdots, N_{p-1} \equiv x, \operatorname{root}\left(N_{i}\right) \in$ $F_{d}(p \leq i \leq q-1)$, and $\operatorname{root}\left(N_{j}\right) \in F_{\bar{d}}(q \leq j \leq m)$ without loss of generality. Thus $N \equiv C\left[x, \cdots, x, N_{p}, \cdots, N_{q-1}, N_{q}, \cdots, N_{m}\right]$. Then, by using the induction hypothesis, every $M_{i}(p \leq i \leq q-1)$ has $A_{i}\left(A_{i} \overline{\bar{o}} N_{i}\right)$ and $A_{i}^{d}$ such that


Now, take $A \equiv C\left[x, \cdots, x, A_{p}, \cdots, A_{q-1}, M_{q}, \cdots, M_{m}\right]$. It is obvious that $M \xrightarrow{*} A$. From Lemma 2.3, we can have the reductions $A_{i} \xrightarrow{*} N_{i}(p \leq i<q)$ and $M_{j} \xrightarrow{*} N_{j}$ $(q \leq j \leq m)$ in which every term has a root symbol in $F_{\bar{d}}$. Thus it follows that $A \underset{i}{*} N$ and $A \equiv N$. From Lemma 4.1 and $M_{i} \downarrow \equiv x \quad(1 \leq i<p), M_{i}^{d} \downarrow \equiv x$. Therefore, since
$M^{d} \equiv C\left[M_{1}^{d}, \cdots, M_{p-1}^{d}, M_{p}^{d}, \cdots, M_{q-1}^{d}, M_{q}^{d}, \cdots, M_{m}^{d}\right]$
and $A^{d} \equiv C\left[x, \cdots, x, A_{p}^{d}, \cdots, A_{q-1}^{d}, M_{q}^{d}, \cdots, M_{m}^{d}\right]$, it follows that $M^{d} \xrightarrow{*} A^{d} .($ end of the claim)

Now we will prove the lemma for $\operatorname{rank}(M)=k$. Consider two cases.
Case 1. $\operatorname{root}(M) \in F_{d}$.
From Lemma 2.3, we may assume that every term in the reduction $M \xrightarrow{*} N$ has a root symbol in $F_{d}$. By splitting $M \xrightarrow{*} N$ into $M \xrightarrow[i]{\vec{i}} \rightarrow \stackrel{*}{\vec{i}} \rightarrow \cdots \xrightarrow[i]{\vec{i}} N$ and using the claim for diagram (1) and Lemma 5.1 for diagram (2), we can draw the following diagram:


Case 2. $\operatorname{root}(M) \in F_{\bar{d}}$.
Then we have some essential subterm $Q \in E_{d}(M)$ such that $M \xrightarrow{*} Q \xrightarrow{*} N$. From Lemma 4.2, it follows that $M^{d} \xrightarrow{*} Q^{d}$. It is obvious that $\operatorname{rank}(Q)<k$. Hence, we can show the following diagram, drawing diagram (1) by the induction hypothesis:


Now we can prove the following theorem:

Theorem 4.1. Every term $M$ has no infinite reduction.
Proof. We will prove the theorem by induction on $\operatorname{rank}(M)$. The case $\operatorname{rank}(M)=1$ is trivial. Assume the theorem for $\operatorname{rank}(M)<k$. Then, we will show the case $\operatorname{rank}(M)=k$. Suppose $M$ has an infinite reduction $M \rightarrow \rightarrow \rightarrow \cdots$. From the induction hypothesis, we can have no infinite inner reduction $\underset{i}{\rightarrow} \rightarrow \vec{i} \rightarrow$ in this reduction. Thus, $\rightarrow$ must infinitely appear in the infinite reduction. From the induction hypothesis, all of the terms appearing in this reduction have the same rank; hence, their root symbols are in $F_{d}$ if $\operatorname{root}(M) \in F_{d}$. Hence, from the discussion for Case 1 in the proof of Lemma 4.4, it follows that $M^{d}$ has an infinite reduction. This contradicts that $R_{d}$ is terminating.

## References

[1] J. W. Klop and H. P. Barendregt, Private communication (January 19, 1986).
[2] M. Rusinowitch, On termination of the direct sum of term rewriting systems, Inform. Process. Lett. 26 (1987) 65-70.
[3] Y. Toyama, On the Church-Rosser property for the direct sum of term rewriting systems, J. ACM 34 (1987) 128-143.
[4] Y. Toyama, Counterexamples to termination for the direct sum of term rewriting systems, Inform. Process. Lett. 25 (1987) 141-143.


[^0]:    ＊This paper is for LA Symposium in February 1988，Kyoto，Japan

