A Rich Hierarchy on the Time Complexity of Uniform PRAMs

Kazuo Iwama

Computer Sciences Institute Kyoto Sangyo University

1. Introduction.

Motivation of introducing the unbounded fan-in circuit model is not unique: In [1] the authors found a connection between the complexity theory over this model and a famous open question (at that time) on the polynomial hierarchy. [4] proves that the model can simulate the parallel random access machines with simultaneous writes (CRCW-PRAMs) of almost the same depth and size. Recently the present author claims in [2] that the model can be much more useful than the bounded fan-in model to study the depth hierarchy of Boolean functions. To this goal, however, it turns out that the essential nonuniformity circuit models generally possess is a major obstacle and that the best possible model we have currently seems to be (uniform) CRCW-PRAMs. The main result of [2] is the following.

Let A(i,j) be the Ackermann function and let $\overline{A_k}(n)$ be its inverse function defined by $\overline{A_k}(n) = \text{least } j$ such that $A(k,j) \ge n$. CRCW-PRAMs here denote parallel RAMs with simultaneous writes and with operations +, - and I (bitwise OR). It should be noted again that CRCW-PRAMs in this paper are *uniform*, namely, each RAM has the same program not depending on the size of inputs. Then it follows:

Theorem 1. For any constant $c \ge 4$, there is a nondegenerate Boolean function G_c of *n* variables such that it takes $\Theta(\overline{A_c}(n))$ steps to compute G_c by CRCW-PRAMs with polynomial number of processors.

In this paper we extend this result, which suggests the existence of a rich hierarchy on the time complexity of Boolean functions. We will also show a result on a relation between the star-free regular expressions and the unbounded fan-in circuits which might help removing the obstacle above mentioned (the nonuniformity of the circuit models).

2. Time Hierarchy.

It should be noted that Theorem 1 is still true if $\overline{A_c}(n)$ is replaced by its composition like $\overline{A_c}_1(\overline{A_c}_2(\cdots(\overline{A_c}_i(n))\cdots))$ for constants $c_1, c_2, \cdots, c_i \ge 4$ (e.g., $\overline{A_4}(\overline{A_4}(\overline{A_4}(n))) = \log^* \log^* \log^* n$). In this section we demonstrate that the hierarchy is much more dense. Let M be a Turing machine computing an integer function f(n) by producing $1^{f(n)}$ on its output tape from 1^n on its input tape. Then f is called a

polynomial-time function if M halts within T(n) steps for some polynomial T. For simplicity, we assume that f is monotone, i.e., $f(n+1) \ge f(n)$ for all n.

Theorem 2. Theorem 1 is also true if $\overline{A}_c(n)$ is replaced by any polynomial-time function f.

Proof. A straightforward modification of the proof of Theorem 1 [2]. Use a sequence of configurations of the Turing machine that computes the polynomial-time function f instead of the sequence of binary numbers. Details are omitted. \Box

Corollary 1. Theorem 1 is still true for $A_n(n)$.

Proof. We will show that Ackermann function A(i,j) can be computed in a polynomial number of steps on its answer (not on its input). Then it immediately follows that $\overline{A}_n(n)$ is a polynomial-time function.

By definition A(i,j) can be obtained by applying the following operations as far as possible:

$$A(0, y) = y + 1$$
 (1)

$$A(x+1, 0) = A(x, 1)$$
 (2)

$$A(x+1, y+1) = A(x, A(x+1, y))$$
(3)

Thus, during the computation we always handle the form like

$$A(a_0, A(a_1, \cdots, A(a_{n-3}, A(a_{n-2}, a_{n-1}))))),$$

which we denote by string

$$\sigma = a_0 a_1 \cdots a_{n-1}$$
.

Let $L(\sigma)$ be the length of σ (=n) and $S(\sigma)$ be the sum of the integers (= a_0 +···+ a_{n-1}). Then one can see that:

(i) $L(\sigma)+S(\sigma)$ does not change before and after applying operation (1) or (2).

(ii) Applying operation (3) increases $L(\sigma)+S(\sigma)$ by x. Namely if x=0 then $L(\sigma)+S(\sigma)$ does not change either.

Since the final answer clearly does not exceed $L(\sigma)+S(\sigma)$, the number of times operation (3) for positive x (that makes $L(\sigma)+S(\sigma)$ larger at least one) is applied must be less than the value of the answer. Therefore the total number of necessary applications of operations (1)-(3) depends on the number of applications of those that do not change $L(\sigma)+S(\sigma)$ or operations (1), (2) and (3) for x=0. It should be observed that the application of the operations is deterministic, i.e., the next operation is determined uniquely by the current σ . For example, when $\sigma=a_0 \cdots a_{n-2}a_{n-1}$, operation (3) is applied if and only if both a_{n-2} and a_{n-1} are positive. Now one can see that a lot of consecutive applications of operations (1), (2) and (3) for x=0 occur when σ looks like

$$\sigma = \sigma_1 a \, 11 \cdots 1b$$
 (*m* 1's, $a \ge 2$ and $b \ge 1$).

For σ of this form, operation (3) has to be applied b times, operation (2) once and then operation (1) b+1 times, which leaves

$$\sigma = \sigma_1 a \, 11 \, \cdots \, 1(b+1) \quad (m-1 \, 1's).$$

This sequence of operations is repeated until we run out all the 1's. Thus those operations that do not change $L(\sigma)+S(\sigma)$ can only continue $O(y \cdot m)$ times. Since both y and m are less than the final answer, the total number of the whole operations do not exceed the cube of the answer.

To get $\overline{A_n}(n)$, we compute A(i,i) for $i=1,2,\cdots$ successively until the value exceeds the input n. On the tape, each a_i on the string σ may be represented by a binary number or a unary number. Clearly it does not take so many steps to carry out the operations (1)-(3). Also it should be noted that if $L(\sigma)$ becomes larger than n for the first time when computing A(i,i) then $\overline{A_n}(n)$ is i-1. \Box

Corollary 2. There do not exist nonconstant lower bounds for the computation time of CRCW-PRAMs.

Proof. It is enough to show that for any recursive function g(n) there exists a polynomial-time function f(n) such that:

(i) $f(n) \le \max_{0 \le i \le n} g(i)$ and

(ii) f(n) is not bounded by any constant if g is not.

Let M be a Turing machine which computes g(n). We construct the Turing machine T that computes f(n) as follows: By simulating M, T computes f(1), f(2) and so on successively and at the same time it counts the number N of its moving steps (one step for the simulation of M's one step). Suppose that when N becomes n (the input to T) T is computing f(i). Then T halts with leaving on its output tape the maximum value in f(1), f(2), \cdots , and f(i-1). It is not hard to see this f(n) meets the above conditions (i) and (ii). \Box

3. Star-Free Regular Expressions vs. Unbounded Fan-In Circuits.

In this section we show a sufficient condition analogous to the Unger's wellknown one [5] that says if a language L over $\{0,1\}$ is a regular set then L can be recognized by *bounded fan-in* circuits of depth $O(\log n)$ and size O(n). Our present one is:

Theorem 3. Let Σ be an alphabet, h be a homomorphism from Σ into $\{0,1\}^*$ and R be a star-free regular expression over Σ . Then if the on-set of a Boolean function f can be given by h(L(R)) (L(R)) is the language generated by R), f is computed by an unbounded fan-in circuit C of a constant depth and a polynomial size on n.

By definition, a star-free regular expression over alphabet Σ is a regular expression that can use ϕ , ε , σ for each σ in Σ and, as operations, complement, union \cup , intersection \cap and concatenation \cdot . Theorem 3 could help to introduce a desirable uniformity to the unbounded fan-in circuits. (The common uniformity for the bounded fan-in circuits [3] can of course be applied to the unbounded fan-in model but it is too weak to discuss relatively low depth complexity. See [2].)

Proof of Theorem 3. Let $\Sigma = \{a_1, a_2, \dots, a_m\}$ and suppose that the regular expression R consists of k subexpressions $R_1, R_2, \dots, R_k = R$. Then we construct Boolean expressions $f_{i,j}^1, f_{i,j}^2, \dots, f_{i,j}^k$ for each i and j such that $0 \le i \le j \le n$ where n is the number of variables x_1, x_2, \dots, x_n of the target Boolean expression (or

104

equivalently the circuit C). f is obtained as $f = f_{0,n}^k$. Now the expressions $f_{i,j}^l$ are of the following form:

(i) $R_l = \phi$. Then $f_{i,j}^l = 0$ for all *i* and *j*.

(ii) $R_i = \varepsilon$. Then $f_{i,i}^{l} = 1$ for all i and $f_{i,j}^{l} = 0$ for all i and j such that $i \neq j$.

(iii) $R_l = a_t \ (\in \Sigma)$. Suppose that $h(a_t) = c_1 c_2 \cdots c_p \ (c_1, \cdots, c_p \in \{0,1\})$. Then $f_{i,j}^l = 0$ if $j \neq i + p$. Otherwise $f_{i,i+p}^l = x'_{i+1} x'_{i+2} \cdots x'_{i+p}$ where x'_{i+s} is x_{i+s} if $c_s = 1$ and $\overline{x_{i+s}}$ if $c_s = 0$.

(iv) $R_l = R_p \cup R_q$. Then $f_{i,j}^l = (f_{i,j}^p + f_{i,j}^q)$ for all i and j. (v) $R_l = R_p \cap R_q$. Then $f_{i,j}^l = (f_{i,j}^p \cdot f_{i,j}^q)$ for all i and j. (vi) $R_l = \overline{R_p}$. Then $f_{i,j}^l = (\overline{f_{i,j}^p})$ for all i and j. (vii) $R_l = R_p \cdot R_q$. Then $f_{i,j}^l = (\sum_{i \le s \le j} f_{i,s}^p \cdot f_{s,j}^q)$ for all i and j.

To show the correctness of the construction, we prove the validity of the following sentence by the mathematical induction on the number of operations involved in the expression R:

$$f_{i,i}^{l}(x_{1}, x_{2}, \dots, x_{n}) = 1$$
 if and only if $v_{i+1}v_{i+2} \cdots v_{i} \in h(L(R))$

where v_{i+s} is the value (0 or 1) of the variable x_{i+s} . Details may be omitted since it is a standard application of the induction method.

As for the number of (unbounded fan-in) gates to realize the expression f, the following observation will be enough: (a) The number of Boolean expressions $f_{i,j}^l$ is $O(n^2)$. (Note that the length of R or the number k of its subexpressions is a constant.) (b) To realize $f_{i,j}^l$ by circuit, we need only O(1) gates for all the construction rules (i)-(vi). (c) For the rule (vii) also, one can see that O(n) gates are enough. Thus the total number of gates necessary for the above construction is $O(n^3)$. \Box

References

- 1. M. Furst, J. Saxe, and M. Sipser, "Parity, circuits and the polynomial-time hierarchy," *Proc. 22nd IEEE Symp. on Foundations of Computer Science*, pp. 260-270, 1981.
- 2. K. Iwama, "Very small tight bounds on the time of uniform PRAMs with simultaneous writes," Tech. Rep. COMP87-64, Institute of Elec. Inform. Comm. Eng. of Japan, 1987.
- 3. W. L. Ruzzo, "On uniform circuit complexity," J. Comput. Syst. Sci., vol. 22, pp. 365-383, 1981.
- 4. L. Stockmeyer and U. Vishkin, "Simulation of Parallel Random Access Machines by Circuits," *SIAM J. Comput.*, vol. 13, pp. 409-422, 1984.
- 5. S. H. Unger, "Tree Realization of Iterative Circuits," *IEEE Trans. Comput.*, vol. C-26, pp. 365-383, 1977.