A Rich Hierarchy on the Time Complexity of Uniform PRAMs

Kazuo Iwama
Computer Sciences Institute
Kyoto Sangyo University

1．Introduction．

Motivation of introducing the unbounded fan－in circuit model is not unique：In ［1］the authors found a connection between the complexity theory over this model and a famous open question（at that time）on the polynomial hierarchy．［4］proves that the model can simulate the parallel random access machines with simultaneous writes （CRCW－PRAMs）of almost the same depth and size．Recently the present author claims in［2］that the model can be much more useful than the bounded fan－in model to study the depth hierarchy of Boolean functions．To this goal，however，it turns out that the essential nonuniformity circuit models generally possess is a major obstacle and that the best possible model we have currently seems to be（uniform）CRCW－ PRAMs．The main result of［2］is the following．

Let $A(i, j)$ be the Ackermann function and let $\overline{A_{k}}(n)$ be its inverse function defined by $\bar{A}_{k}(n)=$ least j such that $A(k, j) \geq n$ ．CRCW－PRAMs here denote parallel RAMs with simultaneous writes and with operations + ，and I（bitwise OR）．It should be noted again that CRCW－PRAMs in this paper are uniform，namely，each RAM has the same program not depending on the size of inputs．Then it follows：

Theorem 1．For any constant $c \geq 4$ ，there is a nondegenerate Boolean function G_{c} of n variables such that it takes $\Theta\left(\overline{A_{c}}(n)\right)$ steps to compute G_{c} by CRCW－PRAMs with polynomial number of processors．

In this paper we extend this result，which suggests the existence of a rich hierar－ chy on the time complexity of Boolean functions．We will also show a result on a relation between the star－free regular expressions and the unbounded fan－in circuits which might help removing the obstacle above mentioned（the nonuniformity of the circuit models）．

2．Time Hierarchy．

It should be noted that Theorem 1 is still true if $\bar{A}_{c}(n)$ is replaced by its composi－ tion like $\overline{A_{c_{1}}}\left(\overline{A_{c_{2}}}\left(\cdots\left(\overline{A_{c_{i}}}(n)\right) \cdots\right)\right.$ ）for constants $c_{1}, c_{2}, \cdots, c_{i} \geq 4$（e．g．， $\left.\bar{A}_{4}\left(\bar{A}_{4}\left(\bar{A}_{4}(n)\right)\right)=\log ^{*} \log ^{*} \log { }^{*} n\right)$ ．In this section we demonstrate that the hierarchy is much more dense．Let M be a Turing machine computing an integer function $f(n)$ by producing $1^{f(n)}$ on its output tape from 1^{n} on its input tape．Then f is called a
polynomial-time function if M halts within $T(n)$ steps for some polynomial T. For simplicity, we assume that f is monotone, i.e., $f(n+1) \geq f(n)$ for all n.

Theorem 2. Theorem 1 is also true if $\overline{A_{c}}(n)$ is replaced by any polynomial-time function f.

Proof. A straightforward modification of the proof of Theorem 1 [2]. Use a sequence of configurations of the Turing machine that computes the polynomial-time function f instead of the sequence of binary numbers. Details are omitted.

Corollary 1. Theorem 1 is still true for $\bar{A}_{n}(n)$.
Proof. We will show that Ackermann function $A(i, j)$ can be computed in a polynomial number of steps on its answer (not on its input). Then it immediately follows that $\overline{A_{n}}(n)$ is a polynomial-time function.

By definition $A(i, j)$ can be obtained by applying the following operations as far as possible:

$$
\begin{gather*}
A(0, y)=y+1 \tag{1}\\
A(x+1,0)=A(x, 1) \tag{2}\\
A(x+1, y+1)=A(x, A(x+1, y)) \tag{3}
\end{gather*}
$$

Thus, during the computation we always handle the form like

$$
A\left(a_{0}, A\left(a_{1}, \cdots, A\left(a_{n-3}, A\left(a_{n-2}, a_{n-1}\right)\right) \cdots\right),\right.
$$

which we denote by string

$$
\sigma=a_{0} a_{1} \cdots a_{n-1}
$$

Let $L(\sigma)$ be the length of $\sigma(=n)$ and $S(\sigma)$ be the sum of the integers $\left(=a_{0}+\cdots+a_{n-1}\right)$. Then one can see that:
(i) $L(\sigma)+S(\sigma)$ does not change before and after applying operation (1) or (2).
(ii) Applying operation (3) increases $L(\sigma)+S(\sigma)$ by x. Namely if $x=0$ then $L(\sigma)+S(\sigma)$ does not change either.

Since the final answer clearly does not exceed $L(\sigma)+S(\sigma)$, the number of times operation (3) for positive x (that makes $L(\sigma)+S(\sigma)$ larger at least one) is applied must be less than the value of the answer. Therefore the total number of necessary applications of operations (1)-(3) depends on the number of applications of those that do not change $L(\sigma)+S(\sigma)$ or operations (1), (2) and (3) for $x=0$. It should be observed that the application of the operations is deterministic, i.e., the next operation is determined uniquely by the current σ. For example, when $\sigma=a_{0} \cdots a_{n-2} a_{n-1}$, operation (3) is applied if and only if both a_{n-2} and a_{n-1} are positive. Now one can see that a lot of consecutive applications of operations (1), (2) and (3) for $x=0$ occur when σ looks like

$$
\sigma=\sigma_{1} a 11 \cdots 1 b \quad\left(m \quad 1^{\prime} \mathrm{s}, a \geq 2 \text { and } b \geq 1\right) .
$$

For σ of this form, operation (3) has to be applied b times, operation (2) once and then operation (1) $b+1$ times, which leaves

$$
\sigma=\sigma_{1} a 11 \cdots 1(b+1) \quad\left(m-11^{\prime} s\right) .
$$

This sequence of operations is repeated until we run out all the 1 's. Thus those operations that do not change $L(\sigma)+S(\sigma)$ can only continue $\mathrm{O}(y \cdot m)$ times. Since both y and m are less than the final answer, the total number of the whole operations do not exceed the cube of the answer.

To get $\overline{A_{n}}(n)$, we compute $A(i, i)$ for $i=1,2, \cdots$ successively until the value exceeds the input n. On the tape, each a_{i} on the string σ may be represented by a binary number or a unary number. Clearly it does not take so many steps to carry out the operations (1)-(3). Also it should be noted that if $L(\sigma)$ becomes larger than n for the first time when computing $A(i, i)$ then $\overline{A_{n}}(n)$ is $i-1$.

Corollary 2. There do not exist nonconstant lower bounds for the computation time of CRCW-PRAMs.

Proof. It is enough to show that for any recursive function $g(n)$ there exists a polynomial-time function $f(n)$ such that:
(i) $f(n) \leq \max _{0 \leq i \leq n} g(i)$ and
(ii) $f(n)$ is not bounded by any constant if g is not.

Let M be a Turing machine which computes $g(n)$. We construct the Turing machine T that computes $f(n)$ as follows: By simulating M, T computes $f(1), f(2)$ and so on successively and at the same time it counts the number N of its moving steps (one step for the simulation of M 's one step). Suppose that when N becomes n (the input to T) T is computing $f(i)$. Then T halts with leaving on its output tape the maximum value in $f(1), f(2), \cdots$, and $f(i-1)$. It is not hard to see this $f(n)$ meets the above conditions (i) and (ii).

3. Star-Free Regular Expressions vs. Unbounded Fan-In Circuits.

In this section we show a sufficient condition analogous to the Unger's wellknown one [5] that says if a language L over $\{0,1\}$ is a regular set then L can be recognized by bounded fan-in circuits of depth $\mathrm{O}(\log n)$ and size $\mathrm{O}(n)$. Our present one is:

Theorem 3. Let Σ be an alphabet, h be a homomorphism from Σ into $\{0,1\}^{*}$ and R be a star-free regular expression over Σ. Then if the on-set of a Boolean function f can be given by $h(L(R))(L(R)$ is the language generated by $R), f$ is computed by an unbounded fan-in circuit C of a constant depth and a polynomial size on n.

By definition, a star-free regular expression over alphabet Σ is a regular expression that can use $\phi, \varepsilon, \sigma$ for each σ in Σ and, as operations, complement ${ }^{-}$, union \cup, intersection \cap and concatenation \cdot. Theorem 3 could help to introduce a desirable uniformity to the unbounded fan-in circuits. (The common uniformity for the bounded fan-in circuits [3] can of course be applied to the unbounded fan-in model but it is too weak to discuss relatively low depth complexity. See [2].)

Proof of Theorem 3. Let $\Sigma=\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ and suppose that the regular expression R consists of k subexpressions $R_{1}, R_{2}, \cdots, R_{k}=R$. Then we construct Boolean expressions $f_{i, j}^{1}, f_{i, j}^{2}, \cdots, f_{i, j}^{k}$ for each i and j such that $0 \leq i \leq j \leq n$ where n is the number of variables $x_{1}, x_{2}, \cdots, x_{n}$ of the target Boolean expression (or
equivalently the circuit C). f is obtained as $f=f_{0, n}^{k}$. Now the expressions $f_{i, j}^{l}$ are of the following form:
(i) $R_{l}=\phi$. Then $f_{i, j}^{l}=0$ for all i and j.
(ii) $R_{l}=\varepsilon$. Then $f_{i, i}^{l}=1$ for all i and $f_{i, j}^{l}=0$ for all i and j such that $i \neq j$.
(iii) $R_{l}=a_{t}(\in \Sigma)$. Suppose that $h\left(a_{t}\right)=c_{1} c_{2} \cdots c_{p}\left(c_{1}, \cdots, c_{p} \in\{0,1\}\right)$. Then $f_{i, j}^{l}=0$ if $j \neq i+p$. Otherwise $f_{i, i+p}^{l}=x_{i+1}^{\prime} x_{i+2}^{\prime} \cdots x_{i+p}^{\prime}$ where x_{i+s}^{\prime} is x_{i+s} if $c_{s}=1$ and $\overline{x_{i+s}}$ if $c_{s}=0$.
(iv) $R_{l}=R_{p} \cup R_{q}$. Then $f_{i, j}^{l}=\left(f_{i, j}^{p}+f_{i, j}^{q}\right)$ for all i and j.
(v) $R_{l}=R_{p} \cap R_{q}$. Then $f_{i, j}^{l}=\left(f_{i, j}^{p} \cdot f_{i, j}^{q}\right)$ for all i and j.
(vi) $R_{l}=\overline{R_{p}}$. Then $f_{i, j}^{l}=\left(\overline{f_{i, j}^{p}}\right)$ for all i and j.
(vii) $R_{l}=R_{p} \cdot R_{q}$. Then $f_{i, j}^{l}=\left(\sum_{i \leq s \leq j} f_{i, s}^{p} \cdot f_{s, j}^{q}\right)$ for all i and j.

To show the correctness of the construction, we prove the validity of the following sentence by the mathematical induction on the number of operations involved in the expression R :

$$
f_{i, j}^{l}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=1 \text { if and only if } v_{i+1} v_{i+2} \cdots v_{j} \in h(L(R))
$$

where v_{i+s} is the value (0 or 1) of the variable x_{i+s}. Details may be omitted since it is a standard application of the induction method.

As for the number of (unbounded fan-in) gates to realize the expression f, the following observation will be enough: (a) The number of Boolean expressions $f_{i, j}^{l}$ is $\mathrm{O}\left(n^{2}\right)$. (Note that the length of R or the number k of its subexpressions is a constant.) (b) To realize $f_{i, j}^{l}$ by circuit, we need only $\mathrm{O}(1)$ gates for all the construction rules (i)-(vi). (c) For the rule (vii) also, one can see that $\mathrm{O}(n)$ gates are enough. Thus the total number of gates necessary for the above construction is $\mathrm{O}\left(n^{3}\right)$.

References

1. M. Furst, J. Saxe, and M. Sipser, 'Parity, circuits and the polynomial-time hierarchy," Proc. 22nd IEEE Symp. on Foundations of Computer Science, pp. 260-270, 1981.
2. K. Iwama, "Very small tight bounds on the time of uniform PRAMs with simultaneous writes," Tech. Rep. COMP87-64, Institute of Elec. Inform. Comm. Eng. of Japan, 1987.
3. W. L. Ruzzo, "On uniform circuit complexity," J. Comput. Syst. Sci., vol. 22, pp. 365-383, 1981.
4. L. Stockmeyer and U. Vishkin, 'Simulation of Parallel Random Access Machines by Circuits," SIAM J. Comput., vol. 13, pp. 409-422, 1984.
5. S. H. Unger, "Tree Realization of Iterative Circuits," IEEE Trans. Comput., vol. C-26, pp. 365-383, 1977.
