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On the relation between the invariants of a doubly even
self-dual binary code C and the invariants of the even

unimodular lattice L(C) defined‘from the code c.
5'1\78‘7]-7\52 /J\ﬂﬁiﬁ;j( (Michio Ozeki)

§ 1. Introduction | |

Let n be a natural number divisible by 4 and C a doubly even
self—dual binary [2n,n] code. Furthermore We may assume that C
is extremal. L(C) denotes the lattice defined from the code C by
a modified Leech—Sloane construction. Here we give a sketchy de-
scription of L(C). Let fi (1L £1i & 2n)‘be orthogonal vectors
with the norm (fi,fi)=2, where ( , ) is the standard inner prod-
uct in Euclidean space R2n. We define vectors x satisfying the
following conditions :
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(i) x =-—2-(ai f.
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(ii) . ai:='il e for i =1y, 12,..§/i

(iii)-lsupp x'=-(xl,,....,x2n) eECc

where X is 1 if i=il,...,ir and 0 otherwise,
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(iv) "”aik=1 .

k=1

Note that r is divisible by 4 because C is doubly even.
Let M be the lattice generated by the vectors ifiifj (1£1i,J
£ 2n) over Z, the ring of rational integers. The lattice J is

generated by M and the vectors x in the above form. We set

1 —3f2n if 2n=8 (mod 16)
XO =-Z(fl+f2+...+f2n_l + )

\fn o if 2n=0 (mod 16) .

Then L(C) is the lattice generated by J’and the vector x We -

O.
can show that L(C) is an even unimodular extremal lattice of rank

2n when 82£2ns%£40 . Indeed we know that

(a) if 2n=8, then C is the Hamming code H, and L(C) is.the E

8 8

root lattice,

(b) if 2n=16, then C is the HB(D'HB,or,dlé

. code andﬁL(C)‘is
the lattice containing Dl6:o? Eé @)Eé '
(c) if 2n =24, then C is the extended Golay code, and L(C) is

the Leech lattice,

(d) if 2n=32, then C is each one of the five extremal codes
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of length 32 (conf[l]) and L(C) is an extremal (unnamed)
lattice,
(e) if 2n=40, then some examples of C are given in [31,[41
and [7] and L(C) are accounted in [5].
We now raise a fundamental problem
Problem (¥ ) Is the map C— L(C) injective ? Namely are
the lattices L(Cl) and L(C2) not isomorphic if the codes C1
and C2 are non-equivalent ?

One tool to treat this problem is theta-series Gm(Z,L(C)) of

various degrees m. We give two examples for this.

Example 1. =~ When 2n=32, we may prove that
for two binary self-dual [32,16,8] codes C; and C, , it holds
that
0,(z,L(c)) = 6,(z,L(Cy)), (1)
6,(z,L(cy)) = 6,(z,L(Cy)), (2)
65(z,L(cy)) = 65(2,L(cy)), (3)
but
0,(z,1(c)) % 6,(z,L(cy)) .



_The equalities (1),(2) and (3) can be proved with the help of
[8]1,[9]. The inequality (4) is not yet proved, but the éroof
would not be much difficult. The underlying fact for: this phe-
nomenon would be thatvthe codewords. of fixed weight (8,...) of
extremal binary[32,16] codes form a 3-design.

C, and

Example 2. . When 2n=40, in [4] I gave three examples C 5

ll

C, of extremal codes. In [5] I showed that

3

61(z/L(c;)) = B (z,L(cy)) i T

B,(2,L(c;)) % B,(2,L(cy)) :
In the same paper, I proposed a problem :

(¥ ﬁ) 52 distinguishes L(C) ?

Bef;re the publication of the above paper [5], I remarked a paper
by Iorgov [3], which treats the [40,20,8] coées. I examined the
codes given by Iorgov along my method in [5]. And I found that
my problem‘(ikﬁW is not a good one. Neverthless, the problem o)
seems to be valid. I will explain the detail in the next section.

§2. [40,20,8] codes and the derived lattices

Let C be a doubly even self-dual [40,20,8] code. O(C) de-
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notes the set of all octads in C. By a theorem of Assumus-Mattson,
O(C)vfofms a l-design, and the cardinality of 0O(C) i§>285; Let m
be any number with 1 £ m £ 40, then the number of‘octads in o(c)
whichvtake’the value 1 at the m-th coordinate position is 57, in-
dependently of m. As in [5], we say that an octad v in 0O(C)
passes through two coordinate positions (m,n) (l£mn£40) if v
takes the value 1 at m-th and n-th coordinate positions. (in ab-
breviation c.p.). We define the index ind(m,n) for (m,n) by
ind(m,n) = #{v€o(C){v passes through (myn)} .
We also define the supplementary index s-ind(m,n) and the half-
index h-ind(m,n) for (m,n) by

‘s-ind(m,n) = #{v€ 0(C)| v takes 0 at m-th and n-th c.p.}

It

h-ind(m;n) = #{v€0(C)| either v-takes 1 at m-th c.p. and 0

“at n-th c.p. or 0 at m-th c.p. and 1 at n-th

c.p.} .

The proof of the following lemma is found in [5].
Lemma 1. If ind(m,n)=q, then we have
h-ind(m,n) = 114-2qg
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s-ind(m,n) = 17l+q - . -
We need another kind of invariants for the.calculation:of theta-

series of -degree 2, For a fixed octad Vo in 0(C), we define

/(,Lj(vo) = #{uEO(C) ( u)KV0 = j} '

where uX‘vO is the number of common c.p. of u and v, which take

0
the value 1. One may note that M.(v,) ¥ 0 only when j=0,2,4 and

8. By virtue of Mendelsohn-Wilson equation for the design, we

can obtain

M2Vg)

224 - 2 M, (V)

and

/Lo(vo) 60 +/u4(v0) . .
Let M(2,k) be the épace of Siegel modﬁlar forms df aegree 2
and Weéht k.
It ié known -that
dim M(2,20) =5 - " (5)
and
GZ(Z,L(C)) € M(2,20).

Since L(C) is an extremal lattice we. know. the set:/\z(L(C)) = .-
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={}<GIAC) [(x,x)=2} is an empty set. And we set
A (L(c)y) ={»xeL(c:) | (x,x)=4} ;

Theta-series of degree 2 for L(C) 92(Z,L(C)) is expanded to

2LiC(TZ
6,(z,L(C)) = 3. a(r)e? 7 (T2 ,
T
a b/2 ; .
where T = ( runs over all positive semi-definite semi-
b/2 ¢

integral symmetric matrices of size 2 and 0"15 the trace of the
matrix. a(T) is the number of pairs <x,y> in L(C)xL(C) satisfy-
ing
(x,x) = 2a , (x,y) =Db, (y,y) = 2c .
An easy computation shows that
a(o 0):1, a(l °)=0, a(z 0):39500,&1(l 0>=o.
0 0 0 O . 0 0 0 1

If we can know one of a(z O), a(z 1/2 or a(z l) , then
0 2 1/2 2

GZ(Z,L(C)) must be determined uniquely because of (5). For x
€ A (L(C)) we define )Jr(x) = #{yeA‘l(L(C) | (x,y)=r} r=0,1,2 ,

then we see that

G B Y

r/2 2 xE/\4(L(C))

The set A4(L(C))'is divided into two subsets A and B :-
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A jm(cy) = auB (ANB =¢),

A= {:fi ifi} 1£i< 3 <40,

B ={ xlx is a vector of the form (i) in §1 and supp xEEO(C)}.
The cardinalities of A and B are 4x(%0)=3120" ana 285x27-36480
respectively. We call an x in A an X -type 4-vector and an x in
B a ﬂ—type 4-vector. The following two lemmas arevproved in [5].

Lemma 2. Let x be an A -type 4-vector, and x=ifmtfh‘, then
we have

24702 + 192 ind(m,n) ,

))O(X)
Vl(x) = 7296 - 128 ind(m,n),
Vz(x) = 152 + 32 ind(m,n) .

Lemma 3. Let x be a ﬁ—type 4-vector and supp X = u€0(C),

then we have

V%(x) = 2110 + 4844 (u) + 644k (u) + 128/ (u)
=24126 + 484, (u) ,

Vl(x) = 512 + 324,(u) * 3244, (u)
= 7680 - 324,(u) ,

V}(x) = 56 + Qﬂn(u) .



In [4] I gave three [40,20,8] binary codes C(NHl), C(NHZ) and
C(NH3) (C(NHl) is well-known), and in [5] I examined thé theta-
series of degree 2 attached to the lattices Ll=L(C(NHl)),L2=
L(C(NH,)) and Ly=L(C(NH,)). I computed the quantities rb(x),

P&(x), y&(x) and determined 92(Z,Li) ’(i=l,2,3) that are
mutually different. Later I became aware of a paper by Iorgov
[3], and I‘examined the lattices derivéd from the codes in [3].
Here I give some values of /Kz(supp (x)) )/i(x) attached to the
codes as tables. I utilize some of the notations in [3]. When
X is an o -type 4-vector and x=tfmtfn , we write supp (x) to
denote the coordinate positions (m,n).

Iorgov's code C, , L(Cl);

1

ind(supp (x))[ Vg (x) [ #1(x) | ¥, (x) | multiplicity

7 _ 26046 6400 376 - 2560 : . A& -type

25 129502 | 4096 952 560 4 -vector

/lz(supp (x)) VO(X) V&(x) y%(x) multiplicity‘

0 |29502| 4096 952 | 640=128 5 = B-type

144 26046 | 6400 376 | 35840=128 280 4 -vector

Iorgov's code C, , L(C,)




‘ind(supp (x)) Vo(x)' yl(x) Vé(x) multiplicity =
7 26046 | 6400 | 376 | 2304 ‘
13 27198 | 5632 568 448 & ~type
25 29502 | 4096 952 336 ‘4-vectpr
49 34110 | 1024 | 1720 32
My (supp (%)) | Vo(x) | V] (x) | ¥Vp(x) | multiplicity
0 29502 | 4096 | 952 384
96 27198 | 5632 | 568 1792 B -type
144 26046 | 6400 | 376 32256 4-vector
168 25470 | 0784 | 280 2048
Iorgov code C4 ' L(C4)
ind(supp (x)) Vo(x) y&(x) P&(x) multiplicity
7 26046 | 6400 | 376 2048
13 27198 | 5632 | 568 896 A -type
25 29502 | 4096 | 952 112 4-vector
49 34110 | 1024 | 1720 64
Mo(supp (%)) | V(x) | V1 (x) | Vy(x) | multiplicity
| 0 29502 | 4096 | 952 128
96 27196 ,5632 568 3584 B -type
144 26046 | 6400 | 376 28672 4 -vector
168 25470 | 6784 | 280 4096

These values mean that their theta-series GZ(Z,L) of degree co-

inside, contradictorily to the problem (ﬁ*). However the lattices

are not isomorphic to each other, because the values V;(x) and
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their multiplicities are isomorphism invariants for the_lattice.
In particular, the lattices L(Cz) and L(C4) are barely distingui-
shed by the multiplicities of thé invariants, By the same token
we can show that the latticeé for the code C(NHZ) and Iorgov's
code Cg have the identical theta-series of degree 2 but are not
isomorphic.

Finally I give four concluding remarks for the present re-
port.
Rem. 1. There are at least 11 nonfisomorphic even unimodular
extremal lattices of rank 40. Each of them is derived from a bi-
nary self-dual extremal [40,20] code.
Rem. 2. When we try to calculate the Fourier coefficients of
theta-series of various degfees attached to the extremal iattices
which come from binary or ternary extremal coddes, we must face
the various invariants of the codes similar to /uz(supp (x)),
ind(m,n) ;n the present report.
Rem. 3. It has now become clear that the problem (*ﬁ) is a ill-

posed problem, but the problem (%) is seemingly valid even now.
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Rem. 4. The invariants like )/i(x) for the lattice would be
finer invariants than theta-series of various"degreeé. But the
former is more computational than the latter. Thus at present we

can not see the structural beauty in the former.
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