A Criterion for Finding Existence and Nonexistence Domains of Solutions of Nonlinear Equations

X.Chen and T.Yamamoto Department of Mathematics Faculty of Science Ehime University,

Let X and Y be Banach spaces, f and g be operators on D⊊X with values in Y, where î is Fréchet differentiable in an open convex set $D_0 \subseteq D$, while the differentiability of g is not assumed. Let $B(x^0,r)$ be the open ball with center x^0 and radius r in X, $\tilde{B}(x^0,r)$ denote its closure and $\bar{B}(x^0, R) \subset D_0$.

To find a solution x^* of the equation

$$f(x)+g(x)=0, (1)$$

several authors[6,7,9-11] have considered the iteration

$$x_0 = x^0$$
, $x_{n+1} = x_n - f'(x_n)^{-1} (f(x_n) + g(x_n))$, $n \ge 0$.

In this paper, we consider the iteration

$$x_0 \in \bar{B}(x^0, R), \quad x_{n+1} = x_n - A(x_n)^{-1} (f(x_n) + g(x_n)), \quad n \ge 0,$$
 (2)

where A(x) is an approximation for f'(x). Assume that $A(x^0)^{-1}$ exists and that for any $x,y \in \overline{B}(x^0,r) \subseteq \overline{B}(x^0,R)$,

the following hold:

$$||A(x^{0})^{-1}(A(x)-A(x^{0}))|| \leq ||w_{0}(||x-x^{0}||)+b|,$$

$$||A(x^{0})^{-1}(f'(x+t(y-x))-A(x))||$$

$$\leq w(||x-x^{0}|+t||y-x||)-w_{0}(||x-x^{0}||)+c|, \quad t \in [0,1],$$

$$||A(x^0)^{-1}(g(x)-g(y))|| \le e(r)||x-y||,$$

where $w(r+\tau)-w_0(r), \tau \ge 0$ and e(r) are nondecreasing functions with $w(0)=w_0(0)=e(0)=0, w_0(r)$ is differentiable $w_0'(r)>0$ at every point of [0,R], and the constants b,c satisfy $b\ge 0$, $c\ge 0$ and b+c<1. Put

$$\eta = ||A(x^{0})^{-1}(f(x^{0}) + g(x^{0}))|| > 0 , \qquad \varphi(r) = \eta - r + \int_{0}^{r} w(t) dt,$$

$$\psi(r) = \int_{0}^{r} e(t) dt, \qquad \qquad \chi(r) = \varphi(r) + \psi(r) + (b+c)r,$$

and denote by X^* and r^* the minimal value and the minimal point of X(r) in [0,R]. Furthermore, let

$$w(r)=1-w_0(r)-b$$
, $r_x=(x-x^0)$,

$$\eta_{x} = |A(x)^{-1} (f(x) + g(x))|$$
, $v_{x}(r) = w(r_{x}) \eta_{x} - X(r_{x}) + X(r)$.

Theorem 1. For some $x_0^{\in \bar{B}(x^0,R)}$, the iteration (2) is well defined for all $n \ge 0$, and $\{x_n^{}\}$ converges to a solution $x^* \in B(x^0,r^*)$ of (1) if and only if there exists an $x \in B(x^0,r^*)$ such that $v_x^{}(r^*) < 0$.

Theorem 2. Let $x \in B(x^0, r^*)$.

(i) If $v_x(r^*)>0$, then there is no solution of (i) in $B(x,\delta)\cap \bar B(x^0,R)$, where δ is a unique positive root of the scalar equation

$$q(t) = \omega(r_x)^{-1} (X(t+r_x) - X(r_x)) + 2t - \eta_x = 0.$$

We have $\delta \ge \min\{r^* - r_X, a_X/2\}$ and $a_X > (\times (r_X) - \times (r^*))/\omega(r_X)$. (ii) If $\mathbf{v}_X(r^*) \le 0$, then there exists a unique solution \mathbf{x}^* of (1) in $\overline{\mathbf{B}}(\mathbf{x}, r^* - r_X) \subseteq \overline{\mathbf{B}}(\mathbf{x}^0, r^*)$, which can be obtained by (2) with $\mathbf{x}_0 = \mathbf{x}$.

For the case of Newton's method applied to the equation

$$f(x)=0, (3)$$

we assume that $f'(x^0)^{-1}$ exists and $f'(x^0)^{-1}f'(x)$ satisfies a Lipschitz condition in D_0 with a Lipschitz constant K>0 and $1/K \le R$. Then we can take A(x) = f'(x), g(x) = 0, $w_0(r) = w(r) = Kr$, b = c = e(r) = 0, so that we have $X(r) = \eta - r + Kr^2/2$. Hence Theorems 1 and 2 reduce to the following:

Corollary 1. For some $x_0 \in \bar{B}(x^0,R)$, Newton's method is well defined for all $n \ge 0$ and $\{x_n\}$ converges to a solution $x^* \in B(x^0,1/K)$ of (3), if and only if there is an $x \in B(x^0,1/K)$ such that $h_x = Ka_x/(1-Kr_x) < 1/2$.

Corollary 2. Let $x \in B(x^0, 1/K)$.

- (i) If h>1/2, then there is no solution of (3) in $B(x,\delta)\cap \bar{B}(x^0,R)$, where $\delta=2a_x/(1+\sqrt{1+2h_x})\geq \min\{r^*-r_x,a_x/2\}$, and $a_x>(1-Kr_x)/(2K)$.
- (ii) If $h_X \le 1/2$, then there exists a unique solution of (3) in $B(x, 1/K-r_X) \subseteq \tilde{B}(x^0, 1/K)$, which can be obtained by Newton's method starting from x.

Theorems 1 and 2 generalize and deepen Rheinboldt-Dennis's results for Newton-like methods. Furthermore, Theorem 2 gives a foundation for constructing an algorithm which finds all the solutions of the equation (1) in a domain.

References

- X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations, preprint;
- 2). J. E. Dennis, On the convergence of Newton-like methods, in Numerical Methods for Nonlinear Aigebraic Equations, ed. P.Rabinowitz, Gordon and Breach, New York(1970), 163-181;
- 3). W. B. Gragg and R. A. Tapia, Optimal error bounds for the Newton-Kantorovich theorem, SIAM J.Numer. Anal. 11(1974), 10-13;

- 4). L.V.Kantorovich, On Newton's method for functional equations, Dokl.Akad.Nauk SSSR59(1948),1237-1240;
- 5). J. M. Ortega and W. C. Rheinboldt, Iterative
 Solution of Nonlinear Equations in Several
 Variables, Academic Press, New York(1970);
- 6). W.C. Rheinboldt, A unified convergence theory for a class of iterative process, SIAM J. Numer. Anal. 5(1968),42-63;
- 7). T. Yamamoto, Error bounds for Newton-like methods under Kantorovich type assumptions, Japan J. Appl. Math. 3(1986),295-313;
- 8). T. Yamamoto, A convergence theorem for Newton-like methods in Banach spaces, Numer. Math. 51(1987), 545-557;
- 9). T. Yamamoto, A note on a posteriori error bound of Zabrejko and Nguen for Zincenko's iteration, Numer. Funct. Anal. and Optimiz.9(1987),987-994;
- 10). P. P. Zabrejko and D. F. Nguen, The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates, Numer. Funct. Anal. and Optimiz. 9(1987),671-684;
- 11). A. I. Zincenko, Some approximate methods of solving equations with nondifferentiable operators Dopovidi Akad. Nauk Ukrain. RSR(1963),156-161.