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1. Introduction

We described an interval method to compute the global maximum value of the mul-
timodal multivariable function. By using “interval analysis”, we can obtain an exact .
estimate of the global maximum value or the minimum value of unitary objective
functions, including the rigorous error bounds [1].

In the engineering and scientific fields, as well as in the field of social science, a
number of objective functions exist, and in many cases they come into conflict with
each other [2],[3]. ' .

In this paper, an interval analysis method is applied for finding the minima (or -
maxima) of multi-objective optimization.

2. Multi-objective optimization

Multi-objective optimization problems or multi-objective programming problems can
be formulated under the condition of an inequality constraint and/or equality con-
straints, as a problem to obtain a decision variable which optimizes more than one
objective function at the same time.
Here, objective functions are considerd to be the minima, but we can treat them
in the same way when a part or all of the objective functions are the maxima. '
Consider the following problem:
Minimize
f(@&) = (f1(2), fa(2), ..., fi(@))T (1)
subject to V
&€ X ={&€E"|j(&) < 0,h(2) = 0) (2)
where & = (z1, 23, ..., £,)T is an n-dimensional decision variable, f () = (fr(2), J
f2(2), ..., fr(2))T is a k-dimensional vector function, and §(z) = (g1(2), g2(2),

oy gr(8))T and h(2) = (h1(&), ha(2), ..., he(£))T are r-dimensional and g-dimensional |
vector constraint functions respectively.




If we apply the concept of the problem of an unitary objective case to the multi-
objective optimization problem, we can define the concept of the following complete
optimal solution.

Definition 2.1 A vector #* is called a complete optimal solution of the Eqgs.(1)
and (2) if there is &* € X with f(&*) < f(#).

A complete optimal solution which minimizes more than one objective function -
at the same time can not exist when the objective functions conflict with each other.
It is impossible to discuss the multi-objective optimization problem with the same
way of the case of the unitary optimization problem, because the objective functions
are vectors.

Instead, as a noninferior solutlon we are forced to obtain the Pareto optlmal
solution.

Definition 2.2 A vector z* is called a Pareto optimal solution of the Eqs. (1)
and (2) if there is no € X with f(z) < f(z*).

As a method to obtain a Pareto optimal solution of the multi- objective opti-
mization problem, the so called scalar method is well known in which we can change
multicriterion optimization problem to a scalar optimization problem.

Here, as with the typical scalar methods, we performed the experiments of weight-
ing method, global criterion method and min-max method to obtain the experimental
values. In weighting method, the total sum of weighted objective functions is mini-
mized as an unitary obJectlve function. That is, by obtaining the minimum value of
f(&) in the following equation

/

k ,
f(@) = Z w; fi(%) (3)

where w; > 0 are the weighting coefficients representing the relatlve importance of
the criteria and it 1s usually assumed that

k
E w; =
i=1

In this method an optimal solution is a vector of decision variables which minimizes
some global criterion. A function which describes this global criterion is a measure of
‘how close the decision maker can get to the ideal vector fO’

This can be formulated as follows,

(:L') - f'io ?

70 1<p< o. (4)

min f(¢) =

2



In the min-max method, the maximum value of the difference from the minimun, !
value of each objective function can be minimized.
When B ‘

(7)) — f0
5(d) = 'fz( ;@p f;

; ' (5)

# which satisfies : l

min max{z(#)}, (6)
is the solution of min-max (K = {1,2,...,k}). But when f? = 0, the right side of
Eq. (5) is [fi(2)]. t

3. Interval analysis applied to min-max algorithm

In interval analysis, we calculate the values which are considered to have an inter-
val [4].

In case of the unitary objective function, if it is a multimodal multivariable
functions, we can always obtain the global optimal solution (We can obtain all sets of
the decision variable, the value of at which gives the global optimal solution). In this
method, we can obtain an optimal solution, extending objective functions and decision
variables to the intervals, estimating the upper and lower limits of function value in |
each region by dividing the variable regions in order, and eliminating the region which
has no probability of having the optimal solution. Further the convergence can be
made fast by the interval analysis version of Newton’s method is very efficient for .
reducing the interval width [5].

In case of the multi-objective optimization, the weighting method and global
criterion method are the method used to transform into the unitary objective opti-
mization problems. Thus, we can apply this interval analysis optimization which we
have been developing.

The optimal solution in the min-max method is obtained by applying the interval
analysis, as follows;

When interval functions of each objective function in two subregions S, and Sp
are F; (i1=1,...,k). |

In the Figure 1,

Fy = | max F;, max F; |
: i€k — i€k
TES TES

is an interval whose upper and lower limits are the maximum values of each objective
functions upper and lower limits at S, respectively. Fjg is described similaly. F; and
F; show the upper and lower limits of all the Fj.
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Interval function value Interval function value
in subregion S. in subregion Sg.

Fig.1 Division and garning and eliminating the partial region.

In Fig. 1if F3 < Fy, 1t is obvious that there is no optimal solution, therefore
we can eliminate S,. Thus, dividing the region in order, we can obtain the opti-
mal solution by estimating the function values on a subregion in that region. But
this division method takes much time, and it is not accurate enough. So we use
the Lagrange-multiplier technique and Newton’s method. Now, we assume that the
following problem is to be solved by the min-max method:

minfy(2), minfa(s) | (7)
subject to the two inequality constraints
91() <0, g2(2) <0. (8)
It follow that Egs. (7) and (8) can be rewritten
minxg L (9)
subject to

2(d) -2 <0
22(#) = 20 < 0
g1(2) <0
g2(2) < 0

- (10)



The Lagrange function obtained by introducing the Lagrange-Multiplier technique is
as follows,

L=xo+pi{zn(¢)—zo+z5,,}
+pa{z2(&) — 2o + 25 10}
+p3{g1(2) + 2745}

+ pa{ga(2) + m721+4}~

If partial differentiation of L with respect to zg, 21, ..., Zn, Tnt1, vy Tnta, P1, P2, P3, P4
is equal 0, i.e.

(11)

oL
- = ) — 12
(‘3;131-—0’ j=0,1,...n+4, (12)

and
oL
Op;
the stationary points can be computed by solving these nonlinear simulataneous equa-
tions with by the interval Newton’s method.

0, i=1,..4 (13)

4. Numerical Examples

Several numerical examples have been computed by the method described above. The
calculations were done with HITAC M-680H of the Educational Center for Information
Processing of Kyoto University.

Find the minimum of the function,

fi(2) = 100(z2 ~ 21)* + (1 - z1)" + 1,

Fo(@) = 100(zo — 222 + (2 —21)2 +1 (14)
subject to additional constraints of the form |
0<e <3,  0<a <5

Example 1:
Weighting method and Newton’s method are applied to Eq. (14), in w;
= 0.5, ws = 0.5. The computed result is:

X; = [1.50000 00000 00000, 1.50000 00000 00218 1,
Xo = [2.24999 99999 99506,  2.25000 00000 00655 ],
F; = [1.25000 00000 00000,  1.25000 00000 00218 ],

b




Fy = [1.24999 99999 99781, 1.25000 00000 00000 ].

Example 2:
Global criterion method is applied to Eq. (14), in p=2. The computed result is:

X; = [1.49047 85156 25000, 1.50952 14843 75000 ],

X2 = [2.21954 34570 31250, 2.28073 12011 71875 ],

F; = [1.24861 71823 83895, 1.25832 45457 37095 ],

Fy = [1.24861 71823 83895, 1.25832 45457 37094 ].
Example 3:

Min-max algorithm is applied to Eq. (14). The computed result is:

X1 = [1.49999 99998 25377, 1.50000 00001 74623 ],

Xo = [2.24999 90652 43173, 2.25000 09347 27722 ],

Fy = [1.24999 99998 25377, 1.25000 00002 62100 ],

Fy = [1.24999 99998 25376, 1.25000 00002 62099 ].
Example 4:

Lagrange-multipler tequnique and Newton’s method are applied to Eq. (14).
The computed result is:

X; = [ 1.50000 00000 00000, 1.50000 00000 00000 ],
X> = [2.25000 00000 00000, 2.25000 00000 00000 ],
Fy = [1.25000 00000 00000, 1.25000 00000 00001 ],

Fy = [1.24999 99999 99999, 1.25000 00000 00000 ].

The values of Lagrange-multiplier p1, ps, slack variable z3, 24 and additional vari-
able zg are: ’

Py = [4.99999 99999 99999,  5.00000 00000 00000 ],

Py= [4. 99999 99999 99999,  5.00000 00000 00000 ],

X;= [0. 0.22539 92852 19884 x10-1° ],
Xs= [0. 0.0],

Xo= [2. 49999 99999 99999,  2.50000 00000 00000 ].

The computed time is each case is shown in Table 1.

Table 1. Computation time

Ex.1 Ex. 2 Ex. 3 Ex. 4
CPU Time(sec.) 690.59 325.46 3189.54 32.08
Ratio 21.5 10.1 99.4 1.0




5. Conclusion

We described an algorithm for minimizing multi-objective functions by using interval
analysis. It enables us to obtain the minimum in the domain or on the boundary. Both
constrained and unconstrained minimum can be computed. So far we have calculated
minima of two objective functions. If effective devices for reducing interval width
of functions are developed, this methods can be applied to many objectlve function
problems. :

Refferences

[1] K. Ichida and Y. Fujii, An interval arithmetic method for global optimization,
Computing 23,85-97(1979).

[2] A. Osyczka,“Multicriterion Op’clmlzatlon in Engineering”, Ellis Horwood, Chlchester,
1984.

[3] W. Stadler ed.,“Multicriteria Optimization in Engmeenng and in the Sciences” ,
Plenum press, New York, London 1988.

[4] G. Alefeld and J. Herzberger, “Introduction to Interval Computations”, Academic press,
New York,London,1983.

[5] Y. Fujii and K. Ichida, Maximization of multivariable functios using interval analysis,
Lecture note, Comp. S5ci.212, Sprmger \/erla.g,l? 26,(1986).




