
62

Fast Automatic Differentiation and Interval Estimates of rounding errors

Koich KUBOTA\dagger and Masao IRI \dagger

1. Introduction
By means of Fast Automatic Differentiation [4,5,6], we can practically estimate rounding

errors incurred in computed values of functions. Two kinds of estimates called “Absolute
Estimates” and “Probabilistic Estimates” were proposed and it was shown by numerical
experiments that they gave good approximations to the absolute values of rounding errors [6].
But we cannot theoretically rigorously assure those estimates to give a range for the function
value containing the exact value (i.e., the value which would have been obtained without
rounding errors). To obtain such a rigorous range for the function value, we may resort to a
kind of interval arithmetic by replacing arithmetic operations to be executed in computation
of the functions with the corresponding machine interval operations. However, when we do
it for large-complicated functions, the width of the resulting interval may be terribly wide.
In this paper, we propose an algorithm for calculating estimates which give rigorous and
sharp upper bounds for the absolute values of rounding errors and which are proved to be
“optimal” in the sense that will be defined later. We compare also the estimates obtained
by means of the proposed algorithm with those obtained by machine interval operations and
with the absolute estimates.

The proposed algorithm is a combination of Fast Automatic Differentiation and Machine
Interval Operations. We assume that there are no errors in input data for the function and
investigate the errors generated and accumulated in the course of computation only. (It is
straightforward to extend to the case when the input data are contaminated with errors,

too.) Our standpoint is as follows: “Each operation in computation is performed at the
highest precision with the available machine so that we cannot know the exact value of
rounding error or even its sign, but that we can only know the upper bound of the absolute
value of the rounding error generated on the operation.” This assumption will be accepted
as a plausible one when rounding errors are rigorously discussed.

The basic principle in our algorithm is the “mean value theorem” in differential calculus.
In interval analysis of a function with many variables, E. R. Hansen already used a method

\dagger Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University

of Tokyo, Bunkyo-ku, Tokyo 113, Japan.

数理解析研究所講究録
第 673巻 1988年 62-79

$t_{k}^{l\}$

based on the mean value theorem, but his method requires a computational time proportional
to the product of the number of the variables and the computational time for the function
itself $[3,10]$. Yu. V. Matiyasevich proposed another method which is an interval analysis with
mean value theorem and which makes use of the idea of Fast Differentiation, and showed that
the computational time of the method was independent of the number of variables [9]. Our
method proposed in this paper extends that method of Matiyasevich’s so as to be applied
to rounding error estimation.

In section 2, we shall explain what kinds of functions we are to consider and make clear
the concept of “computation with rounding errors”. In section 3, we shall introduce the
concept of machine interval operation, describe our algorithm and prove its optimality. In
section 4, we shall show the results of numerical experiments with some observations.

2. Computation with rounding errors

2.1. Piecewise factorable functions and computational process

We assume that the operations used in the computation of a function are either unary or
binary such $as+,$ $-,$ $\cross,$ $/,$ $exp,$ log , etc., which are continuously differentiable in their domain
of definition. We call them basic operations. The functions we shall treat in this paper are
the so-called piecewise factorable functions [7], of which the values are calculated by a finite
sequence of basic operations represented in the form of a procedure or a program. The
procedure for computing a piecewise factorable function may contain conditional branches
and iterations which depend on the values of the input variables. We call the sequence of
operations, which has actually been executed in the computation of the function value for
the given values of the input variables, the computational process. A computational process
consists of computational steps, each of which executes a basic operation and then stores
the value in a variable called an intermediate variable. For a function with n variables
$f(x_{1}, \ldots, x_{n})$, its computational process is represented as shown in Figure 1. (Hereafter,
descriptions will be only for binary operations; it should be understood that, for unary
operations, the descriptions regarding the second argument will be deleted.) The number of
intermediate variables in a computational process is equal to the number of the computational
steps, r .

2.2. Floating-point systems and computations with rounding errors

On a computer, the result of a real operation is usually approximated by a value of the

corresponding floating-point operation. For a specific computer (and a compiler), we call
the set of floating-point numbers representable in it and the manner of rounding for real

2

(i3 $l^{t_{\sim}}$:

$v_{1}arrow\psi_{1}(u_{11}, u_{12})$

:
$v_{j}arrow\psi_{j}(u_{j1}, u_{j2})$

:
$(f=)v_{r}arrow\psi_{r}(u_{r1}, u_{r2})$

$v_{1},$ $\ldots,$
v_{r} : intermediate variables;

$\psi_{1},$
$\ldots,$

ψ_{r} : basic operations;
$u_{j1},$ u_{j2} : formal parameters of ψ_{j} .

(Each of them corresponds to an input variable, a constant
or an intermediate variable $v_{1},$ $\ldots,$

$v_{j-1}(j=1, \ldots, r).)$

Figure 1. Computational process

numbers used in it the floating-point system. The so-called machine epsilon ϵ_{M} expresses
the supremum of the relative rounding errors occurring in the floating-point system.

When we perform computation in finite precision, i.e., with rounding errors, the com-
puted values of intermediate variables as well as the computed value of the function are
somewhat different from those values which we would have when we performed computation
in infinite precision. It may happen that these differences in the computed values lead to
$dii\acute{f}erent$ branches chosen at the conditional branches in the program and to division by a
number with the different sign (which latter would imply the possibility of division by zero),
and hence that the computational process realized by the computation in finite precision
differs in structure from that realized by the computation in infinite precision. However, we
shall assume in the following that the computational process remains the same in spite of the
existence of rounding errors. (The validity of this assumption can be ascertained by means

of interval analysis, as will be stated in section 3.)

We assume that values of input variables $x_{1},$ $\ldots,$ x_{n} are given. After the sequence of
basic operations is executed giving rise to a computational process of f , the value of f at
(x_{1}, \ldots , x_{n}) is obtained. When we compute the value of f with a floating-point system, there
arise rounding errors due to approximation. If the value of f can be computed with interval
arithmetic as we have assumed in the above, a unique structure of the computational process
is determined. We denote the jth computational step actually performed with rounding
errors by $\overline{v}_{j}arrow\overline{\psi}_{j}(\overline{u}_{j1},\overline{u}_{j2})$ instead of $v_{j}arrow\psi_{j}(u_{j1}, u_{j2})$ in Figure 1 which would have
been performed in the ideal case where no rounding error 0ccurred. $\overline{\psi}_{j}$ indicates an basic
operation with finite precision. (Over-lines will indicate “finite precision” in the following.)

3

i^{3}

$\overline{v}_{1}arrow\overline{\psi}_{1}(\overline{u}_{11},\overline{u}_{12})=\psi_{1}(\overline{u}_{11},\overline{u}_{12})+\delta_{1}$

.
$\overline{v}_{j}arrow\overline{\psi}_{j}(\overline{u}_{j1},\overline{u}_{j2})=\psi_{j}(\overline{u}_{j1},\overline{u}_{j2})+\delta_{j}$

.
$(\overline{f}=)\overline{v}_{r}arrow\overline{\psi}_{r}(\overline{u}_{r1},\overline{u}_{r2})=\psi_{r}(\overline{u}_{r1},\overline{u}_{r2})+\delta_{r}$

$\overline{v}_{1},$

\ldots , \overline{v}_{r} : intermediate variables;
$\overline{\psi}_{1},$

\ldots , $\overline{\psi}_{r}$: basic operations;
$\overline{u}_{j1},\overline{u}_{j2}$: formal parameters of $\overline{\psi}_{j}$;

(Each of them corresponds to an input variable, a constant
or an intermediate variable $\overline{v}_{1},$ $\ldots,\overline{v}_{j-1}(j=1, \ldots, r).)$

$\delta_{1},$

$\ldots,$
δ_{r} : generated rounding errors.

Figure 2. Computational process with rounding errors

We define the generated rounding error δ_{j} associated with the jth computational step by

$\overline{\psi}_{j}(\overline{u}_{j1},\overline{u}_{j2})=\psi_{j}(\overline{u}_{j1},\overline{u}_{j2})+\delta_{j}$ (2.2.1)

(see Fig. 2).
Since actual parameters of ψ_{j} on the right-hand side of (2.2.1) are the computational

results in finite precision, the generated rounding error S_{j} is a local error which is “gener-
ated” in the execution of $\overline{\psi}_{j}$. By the assumption of the smoothness of basic operations, the
difference between the jth computed result \overline{v}_{j} and the exact value v_{j} is expressed as follows:

$\overline{v}_{j}-v_{j}=\overline{\psi}_{j}(\overline{u}_{j1},\overline{u}_{j2})-\psi_{j}(u_{j1}, u_{j2})$

$=\psi_{j}(\overline{u}_{j1},\overline{u}_{j2})-\psi_{j}(u_{j1}, u_{j2})+\delta_{j}$

$= \frac{\partial\psi_{j}}{\partial u_{j1}}(u_{j1}+\theta_{j}\cdot(\overline{u}_{j1}-u_{j1}), u_{j2}+\theta_{j}\cdot(\overline{u}_{j2}-u_{j2}))\cdot(\overline{u}_{j1}-u_{j1})$

$+ \frac{\partial\psi_{j}}{\partial u_{j2}}(u_{j1}+\theta_{j}\cdot(\overline{u}_{j1}-u_{j1}), u_{j2}+\theta_{j}\cdot(\overline{u}_{j2}-u_{j2}))\cdot(\overline{u}_{j2}-u_{j2})+\delta_{j}$ (2.2.2)

with some θ_{j} between 0 and 1. $\partial\psi_{j}/\partial u_{j1}$ and $\partial\psi_{j}/\partial u_{j2}$ are the partial derivatives of the
basic operation ψ_{j} , which we call elementary partial derivatives [4,5,6] and whose values at
$(u_{j1}+\theta_{j} , (\overline{u}_{j1}-u_{j1}),$ $u_{j2}+\theta_{j}\cdot(\overline{u}_{j2}-u_{j2}))$ we denote by d_{1}^{j} and d_{2}^{j} , respectively:

$d \oint\equiv\frac{\partial\psi_{j}}{\partial u_{ji}}(u_{j1}+\theta_{j}\cdot(\overline{u}_{j1}-u_{j1}), u_{j2}+\theta_{j}\cdot(\overline{u}_{j2}-u_{j2}))$ $(i=1,2)$. $|(2.2.3)$

Thus, we get
$\overline{v}_{j}-v_{j}=d_{1}^{j}\cdot(\overline{u}_{j1}-u_{j1})+d_{2}^{j}\cdot(\overline{u}_{j2}-u_{j2})+\delta_{j}$. (2.2.4)

4

$?_{l}\dot{c}\backslash$

The accumulated rounding error in the computed value of the function is equal to the
difference between $\overline{v}_{r}(=\overline{f})$ and $v_{r}(=f)$:

$\overline{f}-f=\overline{v}_{r}-v_{r}=d_{1}^{r}\cdot(\overline{u}_{r1}-u_{r1})+d_{2}^{r}\cdot(\overline{u}_{r2}-u_{r2})+\delta_{r}$. (2.2.5)

In terms of computational graph $[5,8]$, $G=(V, E, \partial^{+}, \partial^{-}, \omega, n, d)$, we can consider a set
P_{j} of which elements are paths from the vertex v_{j} corresponding to the jth computational
step to the vertex v_{r} corresponding to the value of the function. Each path, p , of P_{j} is a
sequence of edges $e_{1},$ $\ldots,$

e_{l} such that the initial vertex of e_{1} (denoted by $\partial^{+}e_{1}$) is equal to
$v_{j},$

$\partial^{+}e_{k}$ is equal to the terminal vertex of e_{k-1} (denoted by $\partial^{-}e_{k-1}$) $(k=2, \ldots, l)$, and $\partial^{-}e_{1}$

is equal to v_{r} . Denoting by s_{k} the computational step number of $\partial^{-}e_{k}$, (i.e., $v_{s_{k}}=\partial^{-}e_{k}$)
and by i_{k} the formal parameter number corresponding to e_{k} at $\partial^{-}e_{k}$ (i.e., $i_{k}=n(e_{k})$), we
consider a secuence of pairs $\{(s_{k}, i_{k})\}_{k=1}^{l}$ corresponding to the path $p\in P_{j}$. Then, denoting
by Q_{j} the set of such sequences corresponding to the paths which are the element of P_{j} for
the jth computational step, thus, we can define

$w_{j}= \sum_{\{(s_{k},i_{k})\}_{k=1}^{l}\in Q_{j}}d_{i_{l}}^{s\iota}\cdot d_{i_{l-1}}^{s_{l-1}}\cdot\cdots\cdot d_{1}^{s_{1^{1}}}$
(2.2.6)

$(= \sum_{\{(s_{k},i_{k})\}_{k=1}^{l}\in Q_{j}}\frac{\partial\psi_{r}}{\partial u_{ri_{1}}}\cdot\frac{\partial\psi_{s\iota-1}}{\partial u_{s_{l-1}i_{l-1}}}\cdot$. $\frac{\partial\psi_{s_{1}}}{\partial u_{s_{1}i_{1}}})$

$(j=1, \ldots, r-1)$, and $w_{r}=1$. Replacing $\overline{u}_{r1}-u_{r1}$ and $\overline{u}_{r2}-u_{r2}$ in (2.2.5) with the
corresponding intermediate variables and substituting the expressions (2.2.4) repeatedly, we
finally get

$\overline{f}-f=\overline{v}_{r}-v_{r}=\sum_{j=1}^{r}w_{j}\cdot\delta_{j}$, (2.2.7)

where w_{j} is defined in (2.2.6) $(j=1, \ldots, r)$. We shall discuss an algorithm for evaluating
$|\overline{f}-f|$ rigorously in the following section.

When we set $\theta_{1}=0,$ $\ldots,\theta_{r}=0$, then we have

$w_{j}= \frac{\partial f}{\partial v_{j}}$ (2.2.8)

due to the chain rule of differentiation of a compound function. Thus, we have the linear
approximation L_{f} :

$\overline{v}_{r}-v_{r}\simeq L_{f}\equiv\sum_{j=1}^{r}\frac{\partial f}{\partial v_{j}}\cdot\delta_{j}$, (2.2.9)

which affords a base of absolute estimation and probabilistic estimation in [4, 5, 6]. Here,

we can practically calculate all the $\partial f/\partial v_{j}(j=1, \ldots, r)$ with the method of Fast Automatic

5

ι

Differentiation. Since $|\delta_{j}|\leq|v_{j}|\cdot\epsilon_{M}$ (ϵ_{M} : machine epsilon) holds on almost all computers,
the absolute estimation A_{f} may be defined [4,5,6,8] as

$A_{f} \equiv\sum_{j=1}^{r}|\frac{\partial f}{\partial v_{j}}|\cdot|v_{j}|\cdot\epsilon_{M}$, (2.2.10)

which gives a practical and good approximation to the upper bound of the absolute value
of the rounding error but which is not a rigorous upper bound because eq. (2.2.9) is already
an approximate formula.

3. An algorithm for a rigorous upper bound of the absolute value of the rounding error
We will show an algorithm for calculating an interval $S=[s^{l}, s^{h}]$ such that $\overline{f}-f\in S$. We

can get the rigorous upper bound of the absolute value of the rounding error by $|\overline{f}-f|\leq|S|$

(where, for an interval $X\equiv[x^{l},$ $x^{h}],$ $|X|$ is defined to be $\max\{|x^{l}|,$ $|x^{h}|\}$).

3.1. Interval operations and machine interval operations

By a machine interval we shall mean an interval of real numbers $[a^{l}, a^{h}]$ such that both a^{l}

and a^{h} are floating-point numbers. We sometimes refer to an interval of real numbers simply
as an interval. An interval operation is the operation which takes intervals as arguments
and produces an image (which is also an interval) of the intervals of arguments by the cor-
responding real arithmetic operation. A machine interval operation is the operation which
takes machine intervals as arguments and produces the narrowest possible machine interval
that contains the result of the corresponding interval operation with the same arguments.
Of course, machine intervals and machine interval operations depend on the floating-point
system [1].

Substituting the corresponding interval machine operations for all the basic operations
(and machine intervals as variables for all the variables) in the procedure for calculating
a function f , we can construct a procedure which produces a machine interval \overline{F} starting
from the input intervals $[\overline{x}_{1},\overline{x}_{1}],$

$\ldots,$
$[\overline{x}_{n},\overline{x}_{n}]$ with width 0 , where we set $\overline{x}_{i}=x_{i}$ for all $i.\overline{F}$

obviously contains both f and \overline{f} so that the width of \overline{F} is the rigorous upper bound for the

absolute value of the rounding error. But it is known that the width of \overline{F} may become too

wide when the function f is computed with many computational steps, so that, in the next
section, we will show a method to get a narrower upper bound for the absolute value of the

rounding error than \overline{F} after the computation of \overline{F} .
The history of the operations actually executed in the computation of f is the compu-

tational process in terms of machine interval operations. For a certain floating-point system

and a set of input data, the “computability of \overline{F} by machine interval operations” will mean

6

$\zeta_{1}^{\backslash \kappa_{\aleph}}$

that we can execute all the necessary machine interval operations without division by a ma-
chine interval including zero or comparison between two intersecting machine intervals. (If
division by a machine interval including zero or comparison between intersecting machine
intervals is required, we cannot proceed any further.) Thus, if \overline{F} can be computed, the value
of the function will certainly be computable under the assumption of section 2.2. (If \overline{F} is
not computable, the following arguments will be meaningless.) Evidently, if \overline{F} is computable
by a floating-point system represented by a machine epsilon ϵ_{M} , it is computable by any
floating-point system of which parts for the mantissa and for the exponent are longer and
which is represented by a smaller $\epsilon_{M}’$, the resulting interval \overline{F}‘ by the latter system being
included in the interval \overline{F} by the former.

3.2. Calculation of partial derivatives and estimation of rounding errors
Having computed \overline{F} by machine interval operations, we shall proceed further as follows.

If we denote by \overline{V}_{j} the machine interval corresponding to an intermediate variable v_{j} in
computing the machine interval \overline{F} corresponding to f , we have

$v_{j},\overline{v}_{j}\in\overline{V}_{j}$ $(j=1, \ldots,r)$, (3.2.1)

so that we have

$u_{ji}+\theta_{j}\cdot(\overline{u}_{ji}-u_{ji})\in\overline{U}_{ji}$ $(j=1, \ldots, r;i=1,2)$ (3.2.2)

where we denote by \overline{U}_{ji} the machine interval corresponding to u_{ji} .
Firstly, we substitute the machine interval operations for the operations in computation

of elementary partial derivatives $\partial\psi_{j}/\partial u_{ji}$. Denoting by $\overline{D}_{i}^{j}(j=1, \ldots,r;i=1,2)$ the
machine intervals calculated by those substituted machine interval operations, we have

$\overline{D}_{i}^{j}\ni d_{1}^{j}=\frac{\partial\psi_{j}}{\partial u_{ji}}(u_{j1}+\theta_{j}\cdot(\overline{u}_{j1}-u_{j1}), u_{j2}+\theta_{j}\cdot(\overline{u}_{j2}-u_{j2}))$ (3.2.3)

since $0<\theta_{j}<1(j=1, \ldots, r)$. (See Table 1, $where\oplus,$ $\ominus,$ $\otimes,$ \emptyset , etc. indicate the machine
interval operation corresponding $to+,$ $-,$ $\cross,$ $/$, etc., respectively.)

Secondly, we calculate a machine interval $\triangle_{j}-$ containing the generated error δ_{j} which
depends on the value of the intermediate variable, etc. For example, since it is the case in
almost all computers that the absolute value of the generated error δ_{j} is less than $|\overline{v}_{j}|\cdot\epsilon_{M}$,
when computed value \overline{v}_{j} is obtained, we may set $\triangle_{J}-\equiv[-\overline{\delta}_{j},\overline{\delta}_{j}]$ with $\overline{\delta}_{j}\equiv|\overline{v}_{j}|\cdot\epsilon_{M}.\dagger$ Thus,

from eq. (2.2.5), we have

$\overline{f}-f\in(\overline{D}_{1}^{r}\otimes(\overline{u}_{r1}-u_{r1})\oplus\overline{D}_{2}^{r}\otimes(\overline{u}_{r2}-u_{r2}))\oplus\triangle_{r}-$. (3.2.4)
\dagger Considering possible underflows, we may set $\overline{\delta}_{j}\equiv\max${ $|\overline{v}_{j}|\cdot\epsilon_{M}$, pmin,-nmax} where pmin and nmax

are the minimum positive floating-point number and the maximum negative floating-point number, respectively,

representable by the iioating-point system used.

7

t

?

Table 1. Machine intervals corresponding to elementary partial derivatives

\overline{D}_{i}^{j} corresponds to $\partial\psi_{j}/\partial u_{ji}$ where $v_{j}=\psi_{j}(u_{j1}, u_{j2})|_{u_{j1}}=v_{k},$

$u_{j2}=v_{l}$

$\frac{\psi_{j}\overline{D}_{1}^{j}\overline{D}_{2}^{j}}{\pm_{*\overline{V}_{l}\overline{V}_{k}}[1,1][\pm 1,\pm 1]}$

$\exp/$
[1,

$1 \bigotimes_{j}\overline{V}_{l}\frac{]}{V}$

$[-1, -1] \bigotimes_{-}\overline{V}_{j}$

\copyright
$\overline{V}_{l}-$

\log $[1, 1]$ $\emptyset\overline{V}_{k}$

Expanding $\overline{u}_{r1}-u_{r1},\overline{u}_{r2}-u_{r2}$ in a similar manner repeatedly, we get the interval formula

$\overline{f}-f\in((\cdots(\otimes^{-}\oplus\overline{W}_{2}\triangle_{2})\oplus\overline{W}_{1}\otimes-\triangle_{1}$ (3.2.5)

corresponding to (2.2.7). $\overline{W}_{j}(j=1, \ldots, r)$ are the machine intervals which correspond to
w_{j} in (2.2.6). They are computed by substituting the machine interval operations for the

operations in the algorithm [4, 5, 6, 8] of Fast Automatic Differentiation as follows:
1) $Initialization:-$

$\overline{W}_{1},$ $\ldots,\overline{W}_{r-1}$ $:=[0,0]$;
\overline{W}_{r} $:=[1,1]$.

2) Computation:–
for $j:=r$ downto 1 do

$|$
$a.\cdot.=.\cdot.indexofthinterm_{2^{1}}ediatevariableofthefirstactua1parameterof\psi_{j}b.indexofthinterm_{j}e_{)}diatevariableofthesecondactua1parameterof\psi_{j}^{;};\overline{W}_{b}^{=}.=\overline{W}_{b}\oplus\overline{W}_{j}^{e}\otimes\overline{D}\overline{W}_{a}=\overline{W}_{a}\oplus\overline{W^{e}}_{j}\otimes\overline{D}_{j}$

.
(When ψ_{j} has only one argument or when an actual parameter of ψ_{j} is not an intermediate
variable, a or b is defined. In such a case, we delete the part of computation for W_{b} or
W_{a} from the above algorithm. Note that, if we can execute the machine interval operations
for f to get \overline{F} , we can compute all \overline{W}_{j} without division by a machine interval containing
zero and without comparison of intersecting intervals. Furthermore, we may compute the

machine interval product $W_{a}\otimes\overline{D}_{1}^{j}$, etc. when they become necessary, instead of computing
\overline{D}_{f}^{j} in advance.) It is important to note that all the $\overline{W}_{1},$ \ldots,\overline{W}_{r} here can be computed in

time proportional to r .

8

r^{η}

If we denote by $\overline{\delta}_{j}(|\delta_{j}|\leq\overline{\delta}_{j})$ the estimate which is a floating-point number and the tight
upper bound for the absolute value of δ_{j} , we must anticipate the worst case where R is as
large as

$\overline{R}=\sum_{j=1}^{r}|w_{j}|\cdot\overline{\delta}_{j}$. (3.4.3)

Since A_{F} gives the width of a machine interval which is rigorously not smaller than \overline{R}, we
have $\overline{R}\leq A_{F}$.

Furthermore, under the assumption that

$\partial f/\partial v_{j}\neq 0$ $(j=1, \ldots, r)$, (3.4.4)

we can prove that A_{F} is sharp enough, i.e., it is not too large compared with \overline{R} . More
specifically, we shall prove that, as the machine epsilon approaches zero, the ratio A_{F}/\overline{R}

tends to 1.

Theorem. Let

$A_{F} \equiv|\bigoplus_{j=1}^{r}\overline{W}_{j}\otimes\triangle_{J}-|$, $\overline{R}\equiv\sum_{j=1}^{r}|w_{j}|\cdot\overline{\delta}_{j}$ and $\triangle_{i}-\equiv[-\overline{\delta}_{j},\overline{\delta}_{j}]$. (3.4.5)

Then, for arbitrary $\epsilon>0$, there exists $\eta>0$ such that, if the computation with machine
interval operations is performed with machine epsilon ϵ_{M} less than η , we have

$1 \leq\frac{A_{F}}{\overline{R}}\leq 1+\epsilon$. (3.4.6)

\square

Proof. The following (i) holds due to theorems\dagger [1] for machine interval operations:
(i) For any $\epsilon’>0$ there exists an $\eta_{1}(>0)$ such that, in a floating-point system with any

machine epsilon ϵ_{M} less than $\eta_{1},$ w_{j} and \overline{W}_{j} which we defined in \S 2.2 and \S 3.2 satisfy
the relations:

$0\leq|\overline{W}_{j}|-|w_{j}|\leq|\overline{W}_{j}-w_{j}|\leq\in’$ $(j=1, \ldots, r)$. (3.4.7)

Moreover, due to the assumption (3.4.4), the continuous differentiability of f (in some do-
main) and the computability of \overline{F} , the following (ii) holds:
(ii) For $m \equiv\frac{1}{2}\min_{j}|\frac{\partial}{\partial}vL_{j}|(>0)$, there exists η_{2} such that w_{j} computed in a floating-point

system with any machine epsilon ϵ_{M} less than η_{2} satisfies

$|w_{j}|>m$ $(j=1, \ldots, r)$.

\dagger They are the theorem 4 and the theorem 5 in the chapter 4 of Alefeld and Herzberger’s book [1].

10

r,\cdot .

$\ovalbox{\tt\small REJECT}^{k}P^{\{}\mathscr{B}^{\mathscr{C}}*\infty^{:}$

$(iii)For\eta\equiv_{j}\min\{\eta, \eta_{ar}\}_{e}From(i)and(ii),w_{1}eh_{2}ave_{compaflong- pointsystem}where^{3}wand\overline{W}_{j}utedin^{1\leq\frac{|\overline{W}_{j}|}{|w_{j}|ati}\leq 1+\frac{\epsilon’}{m}}$

’

with nachine epsilon
$\epsilon_{M}less(348)$

$|$

than η_{3} . $j_{\}^{2}J.|$

It is trivial that $A_{F}/\overline{R}\geq 1$ from the definition of A_{F} . Furthermore, it is seen that, γ

even if we take account of the rounding errors generated during the calculation of the inner
product with the machine interval operations at \S 3.3 (5), we have the inequality:

$A_{F} \leq(\sum_{j=1}^{r}|\overline{W}_{j}|\cdot\overline{\delta}_{j})\cdot(1+\epsilon_{M})^{r}$. (3.4.9)
$3|$

In fact, the absolute value of the product $\overline{W}_{i}\otimes\overline{\delta}_{j}$ is bounded by $|\overline{W}_{j}|\cdot\overline{\delta}_{j}\cdot(1+\epsilon_{M})$; for each $\neq|$

addition in the inner product, the upper bound of the intermediate result is multiplied by
$1+\epsilon_{M}$; and there are $r-1$ additions in the inner product.

than $\eta_{4}\equiv\min\{\eta_{3}, \epsilon/4r\}$, we have

$\frac{A_{F}}{\overline{R}}\leq\frac{\Sigma_{j=1}^{r}|\overline{W}_{j}|\cdot\overline{\delta}_{j}\cdot(1+\epsilon_{M})^{r}}{\Sigma_{i=1}^{r}|w_{j}|\cdot\overline{\delta}_{j}}$ $\backslash ^{\tau 1}b$

$\leq(1+\frac{\epsilon’}{m})\cdot(1+e^{r\epsilon_{M}}\cdot r\cdot\epsilon_{M})$ $|$

$\leq\leq 11++\frac{\epsilon’}{\epsilon m}+15\cdot e^{1/4}\cdot\frac{1}{4}\cdot\epsilon$

(3.4.10)
$|$

where we made use of the inequalities $(1+x)^{r}\leq e^{rx}\leq 1+e^{rx}rx$ $(x\geq 0, r>0)$. \square

4. Numerical experiments

r

toward the nearest. The machine epsilon is equal to 2^{-56} . On that machine, we imple-

mented by a program binary floating-point systems which can have the mantissa of any
length less than 56 bits. They are represented in terms of their machine epsilon, ϵ_{M} . The

interval machine operations in a floating-point system represented by ϵ_{M} were performed as

follows:
For each machine interval operation,

(1) we compute a machine interval $C\equiv[c^{l}, c^{h}]$ in the floating-point system represented by
ϵ_{M} according to the definition of the interval operation;

(2) then, we calculate the machine interval $\overline{C}\equiv[\overline{c}^{l}, \overline{c}^{h}]$ that includes the perturbation of C

by ϵ_{M} , i.e., such that

$\overline{c}^{l}=\min\{c^{l}\cdot(1-\epsilon_{M}), c^{l}\cdot(1+\epsilon_{M}), c^{h}\cdot(1-\epsilon_{M}), c^{h}\cdot(1+\epsilon_{M})\}$,
$\overline{c}^{h}=\max\{c^{l}\cdot(1-\epsilon_{M}), c^{l}\cdot(1+\epsilon_{M}), c^{h}\cdot(1-\epsilon_{M}), c^{h}\cdot(1+\epsilon_{M})\}$.

For simplicity, we neglected the effect of underflow.

4.2. Example 1: Ebers-Moll model of a transistor
We regarded the expression of the base current I_{B} in the Ebers-Moll model of a pnp-type

transistor [4] (Fig. 3) as the definition of a function. The widths of the intervals given by
the absolute estimate A_{f} , the estimate A_{F} proposed in this paper, the result with machine
interval operations \overline{F} are 2 $\cdot A_{f},$ $2\cdot A_{F},$ $d(\overline{F})$, respectively. They are compared for four
different machine epsilons (ϵ_{M} in \S 4.1) $2^{-12},2^{-24},2^{-36}$ and 2^{-48} as shown in Figure 4.
There it is seen that 2 $\cdot A_{f},$ $2\cdot A_{F}$ and $d(\overline{F})$ are almost equal to one another for such a
small-scale function and that there is apparently no merit to compute A_{F} after computing
\overline{F} .

4.3. Example 2: Solutions of linear systems by means of LU decomposition
A program for solving a linear system $Ax=b$ for x with the matrix A and the vector b

as input data by means of LU decomposition was regarded as the program for computing x

as the functions with variables A and b . Specifically, we regarded the first component x_{1} of
x as the value of a function with $n*(n+1)$ variables, $f(A, b)$ (n : the dimension of x). We

prepared ten pairs of a $5\cross 5$ matrix and a 5-dimensional vector $((A_{1}, b_{1}),$
$\ldots,$

$(A_{10}, b_{10}))$ the
components of which were independently sampled from the uniform distribution on $[- 1,1]$.
We calculated $A_{f},$ A_{F} and $d(\overline{F})$ for the estimates of the rounding errors incurred in the values
of $x_{1i}=f(A_{i}, b_{i})$ for the four machine epsilons mentioned in \S 4.1 $(i=1, \ldots, 10)$. There were
cases where we could not compute \overline{F} (hence, we could not compute A_{F}), because of large
rounding errors for large machine epsilons. Therefore, we chose the absolute estimate of linear

approximation, A_{f} , as the basis for comparison. Figure 5 shows A_{F}/A_{f} and $d(\overline{F})/(2\cdot A_{f})$. In

12

$r_{\}’}A.\lambda$

.

I_{C}

$I_{B}=-(1-\alpha_{F})\cdot I_{ES}\cdot[\exp(-q\cdot V_{BE}/k\cdot T)-1]$

$-(1-\alpha_{R})\cdot I_{CS}\cdot[\exp(q\cdot(V_{CE}-V_{BE})/k\cdot T)-1]$

$I_{C}=-\alpha_{F}\cdot I_{ES}\cdot[\exp(-q\cdot V_{BE}/k\cdot T)-1]$

$+I_{CS}\cdot[\exp(q\cdot(V_{CE}-V_{BE})/k\cdot T)-1]$

Figure 3. Ebers-Moll model for a pnp-transistor

$I_{B},$ I_{C} : base current and collector current
$I_{ES},$ I_{CS} : saturation currents for the emitter-base junction

and for the collector-base junction
$\alpha_{F},$ α_{R} : current transfer ratios

$V_{BE},$ V_{CE} : voltages with the emitter as the datum node
T : temperature

q : electric charge of an electron
k : Boltzmann constant

that figure, those points of which the ordinates are positioned at symbol ∞ indicate that
the calculations corresponding to these points were interrupted by occurrence of division
by an interval containing zero. Furthermore, we carried out similar experiments for 10-
dimensional matrices and vectors (Fig. 6). In Table 2, part of the results of the latter
experiments (10-dimensional case) is shown numerically, where it is seen that the number of
the significant digits for the intervals guaranteed by A_{F} is remarkably greater than that by
\overline{F} .

It may be observed that, in most cases, the widths of machine intervals obtained by
the naive machine interval operations are $10^{1}\sim 10^{5}$ times larger for 5-dimensional linear
systems, and $10^{4}\sim 10^{8}$ times larger for 10-dimensional linear systems, respectively, than
those obtained by the method proposed in this paper. In summary, it can be said that our
estimate A_{F} not only gives a rigorous upper bound but also a sharp upper bound of the
absolute value of the rounding error. In usual situations (where ϵ_{M} is less than 2^{-24} for

5-dimensional linear systems, and less than 2^{-48} for 10-dimensional linear systems), it is
also observed that A_{f} is a good practical approximation of the upper bound of the absolute $|$

value of the rounding error.
$|$

13
$\ovalbox{\tt\small REJECT}^{+}\lrcorner|^{1}$

$rarrow\vee$

Figure 4. Comparison of the widths of guaranteed intervals containing the exact value
for the function which is the base current in the Ebers-Moll model

14

$r_{1}\{\backslash$

Figure 5. Comparison of the widths of guaranteed intervals
for 5-dimensional linear systems

Points of which ordinates are positioned at symbol “oo”

indicate that the calculations corresponding to those points were

interrupted by occurrence of division by an interval containing zero.

15

f^{\neg}

Figure 6. Comparison of the widths of guaranteed intervals
for 10-dimensional linear systems

Points of which ordinates are positioned at symbol “oo”
indicate that the calculations corresponding to those points were
interrupted by occurrence of division by an interval containing zero.

16

$r_{\zeta\backslash }$

’

Although sometimes hardware and software [2] which compute inner products without
rounding errors are available, we considered here a situation where each of the multiplications
and the additions in computing the inner product of vectors generates a rounding error
individually.

Table 2. Guaranteed intervals with \overline{F} and A_{F} for a 10-dimensional linear system

computed value and
significant digits (underlined) guaranteed interval guaranteed interval

ϵ_{M} estimated by means of A_{f} with \overline{F} with A_{F}

2^{-12} 0.7438964843
2^{-24} 0.7542193532 $[-3344.4582519,3346.1162109]$ [0.4637820125,1.0446566939]
2^{-36} 0.7542197853 [0.0575954438,1.4508441332] [0.7542197555,0.7542198151]
2^{-48} 0.7542197855 [0.7540463030,0.7543932679] $[$0.7542197855.0.7542197855$]^{\uparrow}$

\dagger $[0.754219785475757, 0.7542i97854840781]$

5. Conclusion
We proposed a practicable algorithm for a rigorous and sharp upper bound of the absolute

value of the rounding error incurred in the computed value of a function.
Through the numerical experiments we have done it is observed that the estimate of

rounding error based on linear approximation is usually good enough, but it is important
at least theoretically to establish a technology with which we can get rigorous and sharp
estimate.

References
[1] G. Alefeld and J. Herzberger: Introduction to Interval Computations. Academic Press,

New York, 1983.
[2] G. Bohelender, C. Ullrich, J. W. Gudenberg, and L. B. Rall: Pascal-SC–A Computer

Language for Scientific Computation. Academic Press, Orlando, 1987.
[3] E. R. Hansen: A Generalized Interval Arithmetic. K. Nickel (ed.): Interval Mathematics,

Lecture Notes in Computer Science 29, Springer-Verlag, Berlin, 1975, pp. 7-18.
[4] M. Iri: Simultaneous Computation of Functions, Partial Derivatives and Estimates of

Rounding Errors –Complexity and Practicality. Japan Journal of Applied Mathemat-
ics, Vol. 1, No. 2 (1984), pp. 223-252.

17

rrre
$c^{r\backslash _{\backslash i}}$

[5] M. Iri and K. Kubota: Methods of Fast Automatic Differentiation and Applications.
Research Memorandum RMI87-02, Department of Mathematical Engineering and In-
formation Physics, University of Tokyo, 1987.

[6] M. Iri, T. Tsuchiya, and M. Hoshi: Automatic Computation of Partial Derivatives and
Rounding Error Estimates with Applications to Large-scale Systems of Nonlinear Equa-
tions. To appear in Journal of Computational and Applied Mathematics, 1988.

[7] G. Kedem: Automatic Differentiation of Computer Programs. A CM Transactions on
Mathematical Soflware, Vol. 6, No. 2 (1980), pp. 150-165.

[8] K. Kubota and M. Iri: Formulation and Analysis of Computational Complexity of Fast
Automatic Differentiation (in Japanese). Transactions of Information Processing Soci-
ety of Japan, Vol. 29, No. 6 (1988), pp. 551-560.

[9] Yu. V. Matiyasevich: Veshchestvennye Chisla i \‘EVM. Kibernetika i Vychislitel’naya
Tekhnika, Vypusk 2 (1986), pp. 104-133.

[10] L. B. Rall: Improved Bounds for Ranges of Functions. K. Nickel (ed.): Interval Math-
ematics 1985, Lecture Notes in Computer Science 212, Springer-Verlag, Berlin, 1985,
pp. 143-155.

18

