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§ 1 Introduction

The Duffing equation is a simple nonlinear differential
equation

2
d
X dx 3

—— + E— + bx + cx = P cos ¢t

dat?  dt
where € , b , ¢ are constants and the constant P is the
strength of the external force. However it exhibits a big variety.
of solutions depending on the parameters. If there is no externalf
force, i.e., P =0 and €, ¢ > 0 , bz 0 , then all the :
trajectories (x, dx/dt) converge to (0, 0) as t =+ »© . It has
been proved that if P 1is not zero, then there exists at least
one periodic solution with the same period as the external force.
If P and ¢ are small and b = 0 , then it is proved that a
periodic solution of period 67nm exists. It is known that there
exist more than one periodic solutions with 27 period for some

P and periodic solutions with 4w, 6w, 8m,°°*, period for

another P , and even it has non-periodic solutions for other P .

These interesting classes of solutions are obtained by analogue

computers and by numerical computations of finite difference




schemes by digital computers. Uedal(7], Kawakami[4], Thompson-
stewart[G]; There are somé analysis on it‘by Cartwright-Little-
wood[1], Yamamoto[10] and so on, but in general a rigourous
analysis is not enough poWerful to show the existence of these
solutions or to clarify the structure, bifurcation, etc. of the
solutions because of the nonlinearity.

Here we consider only the’peribdic solutions and prove that
under appropriate conditions périodic solutions with period 2m,
4, 6T, ", etﬁ. obtained by a finite difference scheme using
digital computers are épproximate ones to thevperiodic solutions
of Duffing equation, i.e., there exists a real periodicAsolution
with the same period of Duffing equation in a small neighbourhood
of the numerical periodic solution. The proof is given by the error
estimates for the finite difference schemes and the comutation using
the inferval operation and by Cesari-Urabe method{3][8]. Ouf method
can be applied also to the van der Pol's,equationvwith the external
périodic force. Sinai-Vulkov[5] investigated a similar problem for
the nonlinear differential equations without the external force which
include Lorenz model by a different method uéing Poincare mapping and

computer.

§ 2 Isolated Periodic Solutions

- We remind a nice theory by Cesari[3] and Urabe[8] to guarantee
existence of periodic solutions. We look for periodic solutions
X = ;(t) of a system of nonlinear differential equations
dx

(2.1) i = X(t,X) ’ téR K) XGDCRD ’
dt
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where x is continuous function with respect to (t,x) , is
periodic with respect to ¢t with period 27 and is continuouslyu
differentiable with respect to x in a bounded open set D .
First we consider a linear system of differential equations
dx |
(2.2) — = A(t)x + f(t) s t€R, x€&R? |,
dt
where A(t) 4dis a n X n matrix whose components ére 2m - periodicg
continuous functions with respect to t , and f(t) 1is a n vector
whose components are also 21 periodic continuous functions. Let
us denote the fundamental matrix by &(t) , i.e.,

do(t)
(2-3) = A(t)@(t) ] @(0) = I 9
dt

where T is the identity matrix.

Proposition 1 If all the multipliers of linear system (2.3),

i.e., all the eigenvalues of the matrix ®(2m) are different
from 1 , then the system (2.2) has a unique periodic solution
with the same period. It has the representation
. 2w
(2.4) x(t) = fO H(tfs)f(s) ds

where H is the Green matrix, i.e.,

-1 -1

d(e)( I - ¢(2w) )d. (s) , 0 s < t =271 ,
(2.5) H = 1 1 ‘

d(e)( I - o(2m) )o(2m)d (s) , 0 =t ( s £ 27
Theorem 2 ( Urabe ) Let us suppose that there exists a 2w

periodic continuously differentiable function x = x(t) C D o

(2.1) which is an approximate solution in the following sense.



(i) It satisfies System (2.1) approximately :

dx(t)

(2.6) - X(t,;(t)) | = r for any ¢t

dt

and for a small constant

r 3

(ii) There exists a n X n matrix A = A(t) whose components

are continuous and 27 periodic with respect to ¢t .

multipliers of (2.3) for A4 are different from 1 .

~ All

(iii) The derivative of the vector X is close to the matrix 4 ,

i.e.,
, : K
(2.7) | X (e,x) - ace) | = — for any ¢t
M
and for any x such that
(2.8) S ox - x(e) | s §
where K (0,1) and § are some constants, and M is the

norm of the Green matrix H for 4 , i.e.,
(2.9) By, = 2nmax 3z | B (o) | s W .
k 1
(iv) The constants r, ¥, M and § satisfy the condition

Mr

(2.10)

A
[e]
.

1-K

Then there exists a unique 2w periodic solution x = x(t) of

the nonlinear system (2.1) in the neighbdurhood of x =
A _ M r
(2.11) | x(t) - x(t) | = for any t .
1-K

x(t) .

This is a kind of Newton method to obtain the periodic solution

and it is proved by Urabe[8] following Cesari[3]. It is worth to
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notice that it is powerful fof small sdlutiqns.v Because in the

case x(t) = 0 , A(t) = constant and the analysis and éstimates

for (i)-(iv) are rather easy. As another application Urabe-Reiter[9]
used his theorem to suggest numerically the existence of periodic
solutions for several systems of differential equations using
Galerkin method and domputers; However their error estimates and
bounds are rather crude to guarantee the existence of periodic ;
solutions. 1In the following we use his'theorem to prove existence
of periodic solutions of Duffing equation by a finite difference

scheme, interval operations using computer and precise error estimates,

§ 3 Finite Differnce Scheme

Duffing equation can be written in a system

d x ‘ A %
(3.1) —( ) = ( 9 ) .
dt y -gey -(b+cx“)x + P‘(t)

Let us define a finite difference scheme to solve Duffing equation
with 21 periodic force term ' P(t) .
2w

(3.2) At = ) ’
N

105 later. When the values

A

where we will choose 103 <= N
Xkt Yo Pk at t = kAt for some k are known, we define the

values Zis Wps Vi and up by

Zy = “&yp -~ bxp - cxk3 + Py s
. {
Ve = —Ezk - (b f 3cxk2)yk + Py ’
(3.3) : ’ : ' '
v = -€w, - (b + 3cx 2)z - bcx 2 + ;.
k- k : k "%k | 28% Pk ’




) 2 . B ’ ; 3 L ]

\ uk = —€vk - (b + 3cxk )Wk - 18cxkykzk - 6cyk + Pk ,
where

(3.4) P, = P(kbt) P, = dP(kbt)/dt and so on.

our finite difference scheme is a simple explicit one

Atz? At3 At4
Xep1 = X Bty ot P T A

(3:5) At2 At3 At4
Yer1 = Yk"f Btz + , "k *v p Vi t 4 Up o

Then the formal accuracy of the scheme is O(At4) .

Now we carry out numerical computations using the scheme (3.5)
in double precision from an initial data (;0, ;0) for a period
k=1,2,""*,N , while we ‘store the values for k = 0,1,2,°"",N.

of each period . We examine the period error :

max { ';o - ;N",|;0 - ;NI }

for the‘periodicity. If the period errof is not smali, we change

xp = ;N’ ;O = ;N and make computations for k = 1,2,°°*,N again
and so on. We run the cémpuﬁer until the pefiod errdr'becomes less

than O.QXIO'IB . When the period error becomes less than 0.9X10—13 :

- - = - = -13
(3.6) period error = max f{ JXO - XNl’ |y0 - le/} < 0.9%10 ,

we stop the éomputation and use the computed values

(3.7)  (xps yg)s (x45 ¥1)s » (Xyr yy)

to make continuous periodic functions as follows.
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— _ _ (t—kAt)z_ \ (t—kAt)3_
x(t) = x, + (t-kbt)y, + ——— z, + ——— w, +
-2 6
(t-kAt)*  (t-kAe)?
$f——— v, 4 —— ,
(3.8) 9 3
- _ _ (t-kOAt)“ (t-kbAt)” _
y(t) = Vi * (tekAt)zk P W, + ———— v, +
2 6
, (t—kAt)4_ (t—kAt)5
$———— U, 4 ———— B ,
\ 24 k At5 k+1
in kAt 2t (< (k'f'l)At ’ for k = 0,1y°°°,N-1 .
Here z,, w,, v,, u, are computed values by (3.3) with x, = x, ,
Vi = ;k . Also the last terms uk*l and Bk+1 are defined by the.
relations
_k+1 = x((k+1)8t) , ;k+1 = y((k+1)bt) for k =0,1,°"°,N-2
(3.9)
Xg = x(NAt) , 'y, = y(Nbe) for "k = N-I

and so they are numerical errors because of digital

double precision for (3.2)(3.3)(3.4)(3.5). By this

functions are 2m periodic continuous

x(t) » y(t)

continuously differentiable functions attaining the

X, y, at time t = kAt for k = 0,1, °,N .

We have to estimate the numerical errors Ap

be expected less than the periodic error 0.9x10713

computer using
adjustment the
and piecewise

computed values

B

k! which may

because we have

used computations in double precision which has approximately the

precision of 10716

. In fact we can check this numerical error

for each k by using machine interval operations for the com-

putations (3.2), (3.3) with x, = x,, y, = Ve v (3

4) and (3.5).



Namely let us use the same computer with the software which can
carry out machine interval operations. Let (x) denote the
interval containing a real number x which is the minimum
interval expressed by the double precision floating point number
of the computer. Then a machine interval operation of machine
intervals gives also a machine interval, which contains the exact
value by the real number operations in it and also does the value
obtained by the usual machine computation of double’precision

floating point operations in it. Let us denote

(At) = (27)/N ,
(3.10)
- - - 3
(zk) = -(8)y, - (b)x, -(c)x;~ + (P,) . etc.,
where each operation is interpreted as an machine interval operation.

Thus the computed value by double precision is in the interval
At € (At)

and the numerical error is the length of the interval (At) .
We will see it for each computation example treated later that we
have the interval for the value Xk+1’ Vel following (3.5) whose

length is less than 10714 | Therefore we know

"14 _ e o e
(3.11) Iakl , IBkI ¢ 10 , k= 1,2, JN-1 .

Here we notice that by the definition (Ek, }k) for

k = 1,°°*,N-1 in (3.7) and (x(t), y(t)) in (3.8) the interval
analysis is necessary for only each step k . At the last step from
k = N-1 to k = N Dby the numerical error 10714 and the

period error o.9x10‘13 we have



™

o

-13

(3.12) | o ¢ 10 .

These error‘estimates (3.11)(3.12) are the most eséential part where!
the interval analysis is used in the method of our paper. 1In this -
way we have obtained a continuous and piecewise continuously
differentiable periodiC'functions‘ (x(t), ;(t))», which will be
regarded as our épproximation for periodic solution. Then we have
to notice that Theorem 2 is still valid even if the periodic ap-
proximate solution ;(t) is continuous and piecewise-continuousiy
~differentiable function. We proceed to estimate the equation

error r as an approximate solution of (x(t), ;(t)) . It is

easy to see that on each interval kAt s t ¢ (k+1)At

dx(t)  _ | (t-kht )4 5(t-khe)? (t-kbt)”
' - y(t) = —_—u, 4§ ——— ,, , f —— R
PR | | DY k. IV k+1 aed ktl
t Sla, .1 18,1
IV N kt1l Tkt oy o a3
24 K At Atd 0
(3.13)
dy(t) _ _ — 3
+ ey(t) + bx(t) + cx(t)” - P(t) |
dt '
L
‘ 3 At - At d’P(T) 3
s A7 { —(R, +—S, )+ |———| + T, } = E,\t ,
24 Kk 5k a4 k I
where
(3.14)
- - S =2 T T T T 23 - -
Rk = | €u, + bv, + c(?Skak +24Xkykwk t3x, 7V 4 36ypz;) | '
S = { | 20z, w, + 10y,v, | + gfl 20w, = + 30zkvk [
'Atzl . CAe3 — _
t—| 70w, v, | + | 70v, ° | } |x(t)]| +
67 kK 6°7°8 k |
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P

(3.15)
bl 205,55 + 60y, %% ¢ 40%.z.w. + 907 7.° |
124°38" Ve "k T O*UXRZRYk Y%k ’
. Brrr  Bryr by
PR it 5 * 5 *
, At At At
(3.16)
cQ ’
k+1 , — 2 — 2
+ v (3x(t)° + 3[x(t)|o, ; + ) -

Before obtaining the bound for lEO and E we get the estimate

1 ,
for the maximum of the absolute value of ;(t) and ;(t) on each’
interval kAt s t ¢ (k+1)At , which is obtained in the

following steps.
(1)  We take the absolute value of x,, y,, (z,), (Wk), (vp)s (u) s

where (Zk) denotes the interval computed by (3.3) for X= X

y= ;k’ Pk= (Pk) and so on. Thus we have

(3.17) I;kl’ I_}jk‘! I(Zk)l’ I(Wk)ls ‘(Vk)l’ and- !(Uk)l ’

where the notation ‘[(zk)l means the maximum of the absolute values
of both ends of the interval (zk) .

(ii) Estimate for x(t) and y(t) . If we compute

_ _ (At)? (At )3
(X) = x|+ de)ly, | + |z | + p [ (wp) | +
(ae)*
+‘ Yy (v ol + Jop ., s
(3.18)
_ (At )? (bt )3
(1) =yl + be)lz | + | (we )| + - [ (v) |+
(At
+

Ll + 18l

10



then we have on each interval kAt s t < (k+1)At

(3.19) Ix(e)] = | (x| 5 |y(e)]

A

(v .

Now we compute by interval operations similarly for (3.14)(3.15ﬁ
(3.16), where x(t) is replaced by (X) and E? is by (z,)

and so on, to obtain
(3.20) (Rk), (Sk)s (T,)
which bound |R

Then we have the estimate for the equation error r for (2.6)

from (3.11)(3.12)(3.13)(3.20).

3 b,

(3.21) r = max { EO

3

where E E are defined in (3.13).

0’ "1

§ 4 Linearized Equation

We consider the linearized differential equation about the

21 periodic approximate solution x(t) .

dd
(4.1) — = A(t)d ' $(0) = ~¢0 "

dt
where A(t) is the linearization of Duffing equation (3.1) about
X = ;(t) y i.e.,

0 1 .
(4.2) A(t) = 9 ) ,
-b-3ca(t) -€

where a(t) = x(t) 1is a 27 periodic continuous and piecewise

continuously differentiable function which is obtained by (3.8).

The solution ¢(t) of (4.1) is also continuous and piecewise

11




continuously differentiable, and the fourth derivative satisfies the

equation on each time interval kAt = t < (k+1)At , kK = 0,1,°*°*,N-1,

d4e
(4.3) — = D),
dt
where
D D
(4.4) pee)y = ¢ o1z,
Dy Dy,
and
( Dil . _e2(b+3ca(t)) + (b+3cal(t))2 + 6eca(t)alt) -
- 6c;(t)2 - 6ca(t);zt) ,
D,, = -€7 4 2e(b+3ca®(t)) - 12ca(t)a(t)
(4.5) { .
Dy, = €2(b+3ca’(r)) - 26(b+3ca’(e))? + 24bcal(t)alt) +
¢ 72¢2a3¢t)act) - 6€2cact)a(t) + 6eca(t)? +
+ 6€ca(t);;t) - 18€c;(t);;t) - 6cé(t);;;) o
D . g4 362(b+3‘ 2 e -
29 = - ca“(t)) + 30€ca(t)a(t)

- 18ca(t)? - 18ca(t)a(t) + (b+3caZ(e))?

where a(t) = da(t)/dt , etc.

As the function a(t) = x(t) given by (3.8) is a polynomial on
each time interval kAt £ t < (k+1)At , all Dij are polynomials;
of ¢+ on the interval. However they have rather too many termé
to obtain the explicit form and the best bound for the norm of

matrix D . In order to estimate the matrix norm of D we write

12
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the function a(t) in (3.8) and its derivatives in the following .

forms.
- 2 ° 2
a(t) = x + ty + t AO s a(t) = y + tz + t A1 s
(4.6) ' ,
a(t) = z + tw + tZAz s a(t) = w + tv + t2A3 s

whére Xy Yy Zy Wy V stand for ;k, ;k' zk, Wk, Vk and t does
for t-kAt , and Ai’ i= 0,1,2,3, contains the remaining polynomials,

Thus they have the estimates.

1 t £2 £3
ol = T T et et e |
1 At N 1
s =z, |+ g—lwkl + vl + Z;glak+1| f
(4.7)
' 1 At
a1 = —=fw, | + g—lvkl + Z;giak+1| .
1 20
|4, = ;lvk|'+ Z;ZI“k+1’ ;
60
l4,] = X;gl“k+1' .

Substituting (4.6) in (4.5) we have the expressions

~ 2 2 L
(4.8) Dij = Xij + tYij + t Zij + t Rij v 1 J o= 1, 2,

where Rij contains the terms AO’ AI’ A

2 and A3 . Then we

obtain the bounds for Dij " as foliows.
2 2
(4.9) IDijI =S lXijl + AtIYijl + Ot lzijl + Ot IRijl ,

where we use the bounds (4.7) of Ai for IR..I .

13




&
»

grom this evaluation of ]Dij] we can compute a bound for the
patrix norm

(4.10) (Ip]] = max { mzx |011|+|012i , mix |021|+|0221 b,

Now we turn to a'computation of the fundamental matrix

IA
A
A

21 , for the linear equation (4.1)(4.2).

L(tss) » 0 s t

et us ‘define the finite difference scheme for

2T
(4.11) At = — , 0SSm<k©<n¢%sN,
N
as follows. When @  and a,, a,, ak' are known, we define
the matrix
0 1
Ak = A(kbt) = ( 2 ) ’
-b-3cak -€
(4.12) { B, = A(kbt) + A(kBE)®
| €, = A (kbr) + 2A(KBE)ACKDE) + A(KDE)A(KDE) + Ackhe)S
where we remember a(t) = x(t) » a, = a(kAt), a, = a(kbt) , ék = a(kbt) .

our finite difference scheme is a simple explicit one :

At2 At3
Orpr = O + Dra 0 4 '}'Bka + "%'Ckék ,
(4.13) k = mem+1,"°"sn-1 ’
10
0] = ( ) .
m 0 1

The formal accuracy of the scheme is O(At3)» and the error is
given by (4.3) and (4.4).
Now we carry out numerical computations using the scheme (4.13)

in double precision. Let us denote the computed values by ¢k '

| k = m,m+1,"‘,n', and compare them with the finite difference

14




solution @k and also with the fundamental matrix L(t,s) ,

s = mAt , t = kAt , following the method of Losinsky (cf. [51).°

Proposition 4.1

At

(4.14) | L(nAt,mbt) - O | s 21C. (1 + C,Co—) AtZ
‘ n 1 1 324
where
(4.15) C, = max | L(t,s) | ,
o<
S=t

and the. constant CB is the bound for
Ll ocer |
(4.16) —_— s C dct) ,
deé 3

given by (4.10).

This proposition is crucial to estimate the norm M in (2.9).
The detailed proof and examples by the above method using computer
which prove the existence of periodic solutions of the duffing

equation will be given elsewhere.
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