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Spatial structure and temporal evolution of thermal convection appearing in an

intermediate-aspect-ratio box are studied using a model system of coupled-mode equa-

tions. The model simultaneously contains two kinds of the mode variables each repre-

senting the convection roll state with a definite total number of the rolls. The two are

different from each other in the associated total number of the rolls. The 112-mode

system is used to clarify spatial and temporal behavior of the convection rolls appear-

ing in a rectangular box of proportions $10\cross 4\cross 1$ at the Prandtl number $\sigma=7$ . Actual

computations were performed for several chosen sets of the total number of the rolls.

For the model consisting of the 6- and 10-roll states, the transition from the 10- to
$\eta$

the 6-roll state occurs with an increase of the Rayleigh number $R$ , and an oscillatory

motion with the frequency of the order of 10 $mHz$ appears at higher Rayleigh numbers.

By contrast, for the model consisting of the 6- and the 8-roll states, the 6-roll state

dominates the spatial pattern over a wide range of $R$ , and the system at higher values

of $R$ develops extremely slow oscillations with the frequency of the order of 1 $mHz$ .

Finally, for the model consisting of the 6- and the 12-roll states, although the 6-roll

state likewise dominates the spatial pattern, the frequency of the oscillatory motion at

higher values of $R$ turns out to be of the order of 100 $mHz$ , which is comparable to

that widely observed in convection experiments on small-aspect-ratio systems.

1Unfinished and subject to revision
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\S 1. Introduction

The Rayleigh-Benard convection is one of the typical nonlinear dissipateve systems

which involve instabilities leading to a variety of spatio-temporal flow structure. Ex-

periments are usually performed for a fluid confined in a rectangular or a cylindrical

vessel. For this type of closed flow systems the aspect ratio of the vessel $\Gamma$ has a cru-

cial influence in determining the manner in which instabilities occur and the resulting

convection patterns develop. For small-aspect-ratio rectangular systems $(\Gamma<5)$ , con-

vection usually appears in the form of a small number of rolls and its overall spatial

pattern remains unchanged over a wide range of the vertical thermal gradient or the

Rayleigh number $R$ . For the past ten years, many experimental and theoretical stud-

ies have been performed on this type of systems to clarify the mechanism underlying

the transition from periodic to chaotic oscillations of convection. $1$ )) $2$ ) The results show

that oscillatory convection with increase of $R$ undergoes various types of successive

bifurcations leading to chaos and that these experimental facts are well described us-

ing model dynamical systems consisting of only a small number of variables. On the

other hand, for large aspect-ratio systems $(\Gamma>20)$ , convection does not reach a steady

regular pattern even after lapse of an enormously long time comparable to the lateral

thermal diffusion time. As a result, it never ceases to exhibit irregular temporal be-

havior even only slightly above $R_{c}$ where $R_{c}$ denotes the critical Rayleigh number at

which thermal conduction state becomes unstable.3)

In the face of these experimental results for the small and the large aspect-ratio

systems, several research groups recently made experiments on convection appearing

in intermediate-aspect-ratio systems $(\Gamma\sim 10)$ where the aspect ratio is large enough

to allow transitions between different spatial patterns for some higher values of $R$ , but,

at the same time, small enough to give rise to stable regular patterns over a wide

range of $R$ above $R_{c}^{4)\sim 6)}$ The experimental results show that convection in several
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respects exhibits behavior quite peculiar to the external conditions specffied now as

intermediate. Convection first sets in in the form of the periodic structure consisting

of parallel horizontal $roUs$ where their axes are parallel to the shorter sides of the

rectangular cell. When $R$ is increased, these rolls undergo a spatial transition leading

to the rolls with a larger period. This was particularly clearly shown using a shadow

graph method. For example, the experiment using water $(\sigma=7)$ in a rectangular

cell specified by $\Gamma_{x}=10$ and $\Gamma_{y}=4$ reveaJs that the 10-roll state appearing at

$R=R_{c}=1710$ kom thermal conduction state undergoes at $R=8.6R_{c}$ a transition

to the 6-roll state.5) The experimentally observed value of $R$ at which this transition

occurs agrees quite well with the theoretical value for the onset of the skewed-varicose

(SV) instability obtained by Busse et al. for an infinitely extended roll system.7) With

further increase of $R$ , the convection develops extremely slow oscillatory motion with

the frequency of the order of 1 $mHz$ . We here refer to the fact that the &equencies of

the oscillatory convection typically observed in small-aspect-ratio systems are usually

of the order of 100 $mHz$ . Although the amplitude of this slow oscillations is weak, the

associated field is almost uniformly distributed over the whole range of the $\tau ectangular$

cell. At still higher values of $R$ , convection further develops additional periodic motion

whose frequencies are of the order of 100 $mHz$ . However, some experimental reports

emphasize that these fluid oscillators are situated only over certain localized regions of

the cell. $8$ ),$9$) This partially accouts for the salient experimental results for intermediate-

aspect-ratio systems that nonchaotic oscillatory convection under certain conditions

contains as many as four or five incommensurate frequencies.

The purpose of the present paper is to study thermal convection in an intermediate-

aspect-ratio vessel using a system of Galyorkin equations for the roll mode variables. In

previous papers, $10$) the author used this type of model equations governing temporal

evolution of the roll modes in order to darify bifurcation routes to chaos in small-
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aspect-ratio systems. For the present case, it is necessary to extend the system of

model equations by including additional relevant roll variables in such a way that it

involves structural transitions between the convection states whose wavelengths of the

rolls are different from each other. This extension necessarily influences dynammical

behavior of the roll mode variables. Hence, the extended model system thus obtained

is expected to describe both spatial and temporal behavior of thermal convection in

intermediate-aspect-ratio systems.

\S 2. Basic equations of motion

In this section derivation of the basic equations of motion is briefly presented.

A fluid is contained in a rectangular box heated from below. Let $x,$ $y,$ $z$ denote the

rectangular coordinates with the $z$ axis directed upward. The aspect ratios of the box

are defined as $\Gamma_{x}=L_{x}/d$ and $\Gamma_{y}=L_{y}/d$ where $L_{x},$ $L_{y}$ and $d$ denote the side length

of the box in the $x,$ $y$ and $z$ direction. The physical quantities used in this paper

are denoted as follows: $\rho$ is the density of the fluid, $\nu$ is the kinematic viscosity, $\kappa$

is the thermal diffusivity, $\alpha$ is the thermal expansion coefficient, $g$ is the gravitational

constant and $T_{d}$ is the temperature difference between the two horizontal boundaries.

For the non-dimensional description of the equations of motion, the length scale $d$ , the

time scale $d^{2}/\kappa$ and the temperature scale $\kappa\nu/g\alpha d^{3}$ are used. Within the framework

of the Boussinesq approximations, thermal convection is governed by the disturbance

equations of motion for the velocity $u=(u_{x}, u_{y}, u_{z})$ , the temperature $\theta$ and the pressure

$\delta p$ in the form

$\partial_{t}u;-\sigma\triangle u_{i}-\sigma\delta_{i,z}\theta+\partial_{i}(\delta p/\rho)=-u_{j}\partial_{J}u_{i}$ , $(i=x, y, z)$ (1)

$\partial_{t}\theta-\triangle\theta-Ru_{z}=-u_{j}\partial_{j}\theta$ , (2)

$\partial_{i}u_{t}=0$ (3)

where $\sigma=\nu/\kappa$ is the Prandtl number, $R=g\alpha d^{3}T_{d}/\kappa\nu$ is the Rayleigh number and

$\delta_{i,j}=1(i=j);=0(i\neq j)$ . The boundary c6nditions(b.c.) are assumed to be as follows:
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$u$ obeys the rigid b.c.; $\theta$ obeys the isothermal and adiabatic b.c. on the horizontal and

the lateral walls respectively. When the domain occupied by the fluid is defined by

$(-\Gamma_{x}/2, \Gamma_{x}/2)\cross(-\Gamma_{y}/2, \Gamma_{y}/2)x(-1/2,1/2)$ , these boundary conditions are written

in the form

$u_{x}=\partial_{x}u_{x}=u_{y}=u_{z}=\partial_{x}\theta=0$ on $x=\pm\Gamma_{x}/2$ , (4)

$u_{x}=u_{y}=\partial_{y}u_{y}=u_{z}=\partial_{y}\theta=0$ on $y=\pm\Gamma_{y}/2$ , (5)

$u_{x}=u_{y}=u_{z}=\partial_{z}u_{z}=\theta=0$ on $z=\pm 1/2$ . (6)

Following the procedures given in the preceding $papers1$), the incompressible velocity

field $u$ is assumed to be represented in terms of the two roll variables $\zeta_{1}$ and $\zeta_{2}$

$u_{x}=-\partial_{y}\zeta_{2}-\partial_{z}\zeta_{1}$ , $u_{y}=\partial_{x}\zeta_{2}$ , $u_{z}=\partial_{x}\zeta_{1}$ (7)

where $\zeta_{1}$ describes the horizontal parallel rolls extending periodically in the $x$ direction,

and $\zeta_{2}$ is the vertical roll modes imposing the oscillatory type of perturbations on the

basic horizontal rolls. Substitution of Eq.(7) in Eqs.(1) $\sim(3)$ and elimination of $\delta p/\rho$

yield the equation of motion for the field variables $\zeta_{1},$ $\zeta_{2}$ and $\theta$ :

$(\partial_{t}-\sigma\triangle)\partial_{x}^{2}\triangle\zeta_{1}-\sigma\partial_{x}(\partial_{x}^{2}+\partial_{y}^{2})\theta=\partial_{x}^{2}\partial_{z}F_{x}+\partial_{x}\partial_{y}\partial_{z}F_{y}-\partial_{x}(\partial_{x}^{2}+\partial_{y}^{2})F_{z}$ (8)

$(\partial_{t}-\sigma\triangle)\partial_{x}^{2}\triangle\zeta_{2}+\sigma\partial_{x}\partial_{y}\partial_{z}\theta=\partial_{x}^{2}\partial_{y}F_{x}-\partial_{x}(\partial_{x}^{2}+\partial_{z}^{2})F_{y}+\partial_{x}\partial_{y}\partial_{z}F_{z}$ (9)

$(\partial_{t}-\triangle)\theta-R\partial_{x}\zeta_{1}=-F_{\theta}$ (10)

where $F;=u_{j}\partial_{j}u_{*}$ $(i=x, y, z)$ and $F_{\theta}=u_{j}\partial_{j}\theta$ . The field variables are next expanded

in terms of the basis functions which adequately represent the spatial structure of the

convection rolls:

$\zeta_{1}(x, y, z,t)=\sum_{t,m,n}C_{\ell,m,n}^{(1)}(t)\varphi_{\ell}(x/\Gamma_{x})\chi_{m}(y/\Gamma_{y})\Phi_{n(t,m)}(z)$ (11)
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$\zeta_{2}(x, y, z,t)=\sum_{t,m,n}C_{t,m,n}^{(2)}(t)\varphi_{t}(x/\Gamma_{x})\Psi_{m(\ell,n)}(y/\Gamma_{y})\chi_{n}(z)$ (12)

$\theta(x, y, z, t)=\sum_{l,m,n}H_{\ell,m,n}(t)\psi_{\ell}(x/\Gamma_{x})\psi_{m}(y/\Gamma_{y})\chi_{n}(z)$
(13)

where in accordance with Eqs.(4) $\sim(6)$ the expansion functions satisfy the b.c. at

$x=\pm 1/2$ ;

$\varphi_{t}=\partial_{x}\varphi_{\ell}=\Phi_{l(m,n)}=\partial_{x}\Phi_{P(m,n)}=\Psi_{\ell(m,n)}=\partial_{x}\Psi_{t(m,n)}=\chi_{\ell}=\partial_{x}\psi_{t}=0$ . (14)

With the aid of the Galyorkin procedure, Eqs.(8) $\sim(10)$ reduce to a system of the

ordinary differential equations governing the mode amplitudes $\Xi(t)=\{\Xi_{p}(t);p=$

$(\ell, m, n)\}=\{C_{t,m,n}^{(1)}(t), C_{t,m,n}^{(2)}(t), H_{\ell,m,n}(t)\}$ of the form

$\partial_{t}\Xi=F(\Lambda, \Xi)$ (15)

where the pth component takes the form

$\partial_{t}\Xi_{p}=F_{p}(\Lambda, \Xi)=\sum_{p’}L_{p,p’}\Xi_{p’}+\sum_{p’}\sum_{p’}N_{p,p’,p^{-}p’}^{-}-\Xi_{P^{)}’}$
(16)

with $\Lambda$ denoting the set of the control parameters $\Gamma_{x},$ $\Gamma_{y},$ $\sigma$ and $R$ . The expressions for

the coefficients $L_{p,p’},$ $N_{p;p’,p’}$, are given elsewhere. The expansion functions appearing

in Eqs.(11) $\sim(13)$ are determined using the set of solutions to the following eigenvalue

equations over the domain $-1/2<x<1/2$ :

$(\partial_{x}^{4}-\alpha_{t}^{4})\varphi_{t}=0$ (17)

$(\partial_{x}^{2}+\beta_{p}^{2})\psi_{\ell}=0$ (18)

$(\partial_{x}^{2}+\gamma_{t^{2}})\chi_{\ell}=0$ (19)

$(\partial_{x}^{2}-(\alpha_{m}/\Gamma_{x})^{2}-(\gamma_{n}/\Gamma_{y})^{2})(\partial_{x}^{2}+\lambda_{t(m)n)}^{2}-(\alpha_{m}/\Gamma_{x})^{2}-(\gamma_{n}/\Gamma_{y})^{2})\Phi_{t(m,n)}=0(20)$

$((\partial_{x}/\Gamma_{y})^{2}-(\alpha_{m}/\Gamma_{x})^{2}-\gamma_{n}^{2})((\partial_{x}/\Gamma_{y})^{2}+\mu_{t(m,n)}^{2}-(\alpha_{m}/\Gamma_{x})^{2}-\gamma_{n}^{2})\Psi_{\ell(m,n)}=0(21)$
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where the b.c. are defined by Eq.(14) while the eigenvalues are denoted by $\alpha_{\ell},$
$\beta_{t},$

$\gamma_{t}$ ,

$\lambda_{t(m,n)}$ , and $\mu_{\ell(m,n)}$ . Equation (16) contains an infinite number of mode variables. In

the foltowing, however, Eq.(16) is further reduced to a truncated form which includes

only a finite number of mode variables most relevant to the preblem.

\S 3. Computational results

We consider in this paper the system characterized by the external parameters

$\sigma=7,$ $\Gamma_{x}=10$ and $\Gamma_{y}=4$ . For this case, it was experimentally shown that onset of

thermal convection occurs typically in the form of 10 parallel rolls whose axes are in the

$y$ direction, and that the 10-roll convection state becomes at $R=8.6R_{c}$ structurally

unstable and turns into the 6-roll state.6) For describing this behavior of convection,

we construct a model system consisting of the mode variables for the 10- and the 6-roll

states. This means that the model includes 2 velocity and 3 temperature modes in the

$x$ direction. The number of the modes in the other directions are chosen conveniently:

8 and 2 modes in the $y$ and $z$ directions recpectively. To be more specific, the mode

variables thus retained are given by

$X=\{C_{\ell 0,me}^{(1)},{}_{1q}C_{\ell 0,mo}^{(1)},{}_{1q}C_{to,me}^{(2)},{}_{1q}C_{to,mo}^{(2)},{}_{1q}H_{(k+1)e,me},{}_{1q}H_{(k+1)e,mo,1q}$

$|\ell=3,5;m=1,2,3,4;q=e,$ $0;k=0,3,5$ } (22)

where $e$ and $0$ mean even and odd respectively, and the thermal modes specified by

$k=0$ are spatially uniform in the $x$ direction. This truncation contains 112 variables

in all. Substitution of Eq.(22) in Eq.(16) gives the truncated form

$\partial_{t}X=F(X)=L(X)+N(X, X)$ , (23)

or more precisely,

$\partial_{t}X_{p}=\sum_{p’}L_{p,p’}X_{p’}+\sum_{p’}\sum_{p’}N_{p;p’,p’},X_{p’}X_{p’}$ (24)

for $p=1,2,$ $\ldots,$ $N(=112)$ . The steady state $X^{0}$ of Eq.(23) is determined by a solution

of
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$F(X)=0$ (25)

and its stability is govemed by the associated variational equation

$\partial_{t}\delta X=DF(X^{0})\delta X$ (26)

where $DF(X^{0})$ is the Jacobian matrix of the vector field $F(X)$ evaluated at $X^{0}$ . For

convenience, we use the reduced Rayleigh number $r=R/R_{c0}(R_{c0}=1710)$ for speci-

fying the imposed temperature gradient. The steady state solutions given below were

obtained as follows: First, a steady solution is obtained by direct numerical time inte-

gration of Eq.(23). Once $X^{0}$ is found for some value of $r$ , its slightly varied form for a

neighboring value of $r$ can be easily obtained using the Newton method. It should be

noted here, however, that the convergence rate of its successive approximations turns

out very slow when the relevant steady state becomes unstable. This in turn gives us

information on the instability point of the system.

For our model consisting of the 10- and 6-roll modes, the transition from thermal

conduction to convection occurs at $R_{c}=2190=1.28R_{c0}$ . This is determined as the

point where the largest eigenvalue of $DF(X=0)$ changes its sign from negative to

positive. Actually, there are two eigenmodes which become unstable almost simulta-

neously with increase of $R$ . As is given in Figs.1 by the isopleths of the associated

eigenvectors, these instabilities trigger the emergence of the 10- and the 6-roll states.

The results thus account for the experimental situations in which some kind of flow

induction is necessary to prepare a convection state with a well-defined number of the

rolls. Figure 2 show the isopleths for the 10-roll convection state prevailing at $r=1.55$ .

The motion is found to be predominantly two-dimensional. This 10-roll state domi-

nates the system over a range of $R$ above $R_{c}$ . When $R$ is increased to $r_{c1}=6.66$ ,

however, the system undergoes a structural transition to the 6-roll state with cross-roll

deformations. This can be seen from the isopleths in Fig.3 for the unstable eigenmode

initiating this transition and the isopleths in Fig.4 for the velocity field for the resulting
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convection state at $r=6.71$ slightly above $r_{c1}$ . The unstable mode is charaterized by

the wavenumbers $\alpha_{x}=1.88$ and $\alpha_{y}=2.36$ . This transition is considered to corespond

to the above-mentioned experimentally observed one occurring at $r=8.6$ . Although

the prevailing state is now dominated by the 6-roll state, it still contains some trace

of the 10-roll mode amplitudes. In this sense, the result differs from the experimental

one in which the convection state above $r_{c1}$ consists entirely of the 6-roll state with

weak cross-roll perturbations.

This state stably persists up to $r=13.1$ where it undergoes the transition to the

state shown in Fig.5. The 6-roll state now entirely dominates the convection and the

wavelength of the cross-roll perturbations becomes shorter. With further increase of

$r$ , the Hopf bifurcation occurs at $r=14.9$ and the convection develops slow time

oscillations with the frequency of the order of 10 $mHz$ . In fact, the PSD in Fig.6

shows that the frequency at $r=14.9$ is given by $g_{1}=9.6mHz$ . By contrast, the

experimental observation gives the results that the 6-roll steady state becomes time-

dependent at $r=13.4$ and its frequency is $f_{1}=0.9mHz^{6)}$ Hence, our coupled-

mode system consisting of the 10- and the 6-roll variables gives rise to the periodic

oscillations whose frequency $g_{1}$ is by a factor of 10 larger than that $f_{1}$ obtained from

the experiment. Incidentally, the oscillating convection arising from the oscillatory

instability in a small-aspect-ratio vessel is usually associated with the frequency of the

order of 100 $mHz$ . When $R$ is increased still further, the prevailing oscillatory motion

loses its periodicity and turns into chaotic. This can be seen from the PSD at $r=16.4$

shown in Fig.6(b) where line spectral components completely disappear. However,

we have not clarified what mechanism entails the transition from the periodic to the

chaotic motion. In experiments, in addition to th\’e $sloW$ oscillations given above,. the

convection with further increase of $r$ gives rise to the rapid oscillating modes which are

characterized by the frequencies of the order of 100 $mHz$ and occur over some localized
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regions of the convection cell Our present 10- and 6-roll model cannot describe this

kind of localized rapid oscillations.

Since the convection is found to be dominated by the 6-roll state at higher values of

$r$ , it is worth while to study its spatio-temporal behavior using a model slightly different

from that given above. First, we consider a system consisting of the mode variables

for the 6- and the 8-roll states. The retained mode variables are the same as those

given in Eq.(22) except that the mode suffices denoted by $l=5$ and $k=5$ in Eq.(22) are

now replaced by those $\ell=4$ and $k=4$ respectively. In the model thus obtained, the 6-

roll state predominates over the convection patterns even for lower values of $r$ . In this

sense, it cannot describe the structural transition from the 8-roll to the 6-roll state such

as observed in experiments. Further increase of $r$ to $r=14.7$ touches off a real mode

instability and the steady state persistent thus far becomes unstable. As a result, the

convection develops extremely slow oscillations whose frequency is at $r=15.1$ given by

$g_{2}=2.2mHz$ , which is shown by the PSD in $Fig.7$ . The frequency $g_{2}$ appearing here is of

the same order as that $f_{1}$ observed in experiments.6) This shows the possibility that the

extremely low frequency oscillations peculiar to intermediate-aspect-ratio experiments

are involved by the nonlinear couplings between the modes whose roll wavelengths are

slightly different from one another.

We next consider a model consisting of the 6- and the 12-roll mode states. This is

obtained by replacing in Eq.(22) the mode suffices $\ell=5$ and $k=5$ by those $\ell=6$ and $k=6$ .

Here, the fundamental 6-roll modes couples with the secondary higher harmonic modes

specified by the 12-roll modes. A combination of this type of the mode variables is very

common to nonlinear dynamical models. The predominantly 6-roll state undergoes at

$r=9.8$ the Hopf bifurcation leading to periodic oscillations. The PSD in Fig.8(a) shows

that the motion at $r=10.5$ is singly periodic and oscillates with the frequency $g_{3}=117$

$mHz$ . With further increase of $r$ , the motion becomes quasi-periodic. This is shown
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in Fig.8(b) in that the motion at $r=12.3$ contains the two fundamental frequencies:

$g_{3}=113mHz$ and $g_{4}=15mHz$ . In the experiments, in addition to the extremely slow

oscillations $f_{1}$ , the convection with increase of $r$ comes to develop fast periodic oscilla-

tions whose frequencies take such values as $f_{2}=145mHz$ and $f_{3}=160mHz$ at $r=1\mathcal{T}.6^{6)}$

If the oscillatory modes denoted by $f_{2}$ and $f_{3}$ in the experiments correspond to those

denoted by $g_{3}$ and $g_{3}+g_{4}$ in our results, the origin of the fast oscillatory motion ap-

pearing at higher values of $r$ is considered to be attributable to the nonlinear couplings

between the fundamental 6-roll modes and its secondary higher harmonic modes.
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Figure Captions

Fig.l The isopleth of the velocity field $u_{x}(x, y, z=1/4)$ for the eigenmode initiating

the onset of thermal convection. (a) the 6-roll state; (b) the 10-roll state.

$Fig.2$ The isopleth of the velocity field $u_{x}(x, y, z=1/4)$ at $r=1.55$ .

Fig.3 The isopleth of the velocity field $u_{x}(x, y, z=1/4)$ for the eigenmode initiating

the structural transition at $r=6.66$ .

Fig.4 The isopleth of the velocity field $u_{x}(x, y, z=1/4)$ for the resultant convection

state at $r=6.71$ .

Fig.5 The isopleth of the velocity field $u_{x}(x, y, z=1/4)$ at $r=13.1$ for the convection

state arising as a result of the secondary structural transition.

Fig.6 The PSD for the mode amplitude $C_{50,10,1e}^{(1)}(t)$ at (a) $r=14.9$ and (b) $r=16.4$ . The

abscissa measures the frequency in unit of 19.74 $\kappa/d^{2}=115mHz$ for $d=0.5$ cm and

$\kappa=1.454x10^{-3}cm^{2}/s$ .

Fig.7 The PSD for the mode amplitude $C_{40}^{(1)_{10,1e}}(t)$ at $r=15.1$ . The abscissa measures

the frequency in unit of $16.19\kappa/d^{2}=94.2mHz$ .

Fig.8 The PSD for the mode amplitude $C_{30,1e,1e}^{(1)}(t)$ at (a) $r=10.5$ and (b) $r=12.3$ . The

abscissa measures the frequency in unit of $13.42\kappa/d^{2}=78.1mHz$ .
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