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1. Introduction

Neural Networks now seem to be undergoing a renaissance since the works of Hopfield,
his associates, and others (Hopfield, 1982, 1984; Hopfield and Tank, 1985; Rumelhart,
McClelland and the PDP reseérch group, 1986). Although the modeling nervous systems is as
old as the era of McCulloch and Pitts (McCulloch a;ld Pitts, 1943) and not much new things’
seem to be added to the old framework as far as the system definitions are concerned, what |
makes the new trend interesting is as follows. Hopfield was the first to show that there is a
Lyapunov function for a given neural network which operates asynchronously where each
'component model neuron is basically that of McCulloch and Pitts and the connecting weights
are symmetric. This made us possible at least partially to associate the equilibrium states of the
neural network with our desired target states depending on the actual encode system of our
application. Ohe such example is the cerebrated travelling salesman problem (Hopfield anci

Tank, 1985) albeit some controversy has arisen recently (Wilson and Pawley, 1988).

The characteristic features of the Hopfield networks, i.e., symmetric weights and
asynchronous operation, are at the same time somewhat unsatisfactory; The alleged
propoSition that the neural networks should have symmetric weights in order to have Lyapunov
functions is rather restrictive especially when we have biological applications in mind. It is true
that we can have a Lyapunov function for an asymmetric network regarding the average of two
wcights connecting a pair of elements as an equivalent symmetric weight, this means that we are

changing the behavior of the component McCulloch-Pitts neurons. (See, for example, Feldman,
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1987; Uesaka, 1987) As to the asynchronous mode of operation, the advantage of having
distributed processors is largely wasted when we are concerned with the total operation time for
arriving at stable states, if any. Then we need to find some way to escape from the symmetry
restriction and also to pay more attention to the synchronous operation of neural networks.

(See, for example, Little, 1974)

For that purpose, we analyse, in Section 2, some basic properties of the energy functions
which are concomitant with the behavior of each component McCulloch-Pitts neuron. The
main result there is that we can have Lyapunov functions for a slightly extended class of

asymmetric neural networks (which we call quasi-symmetric).

In Section 3, we then introduce a special class of asymmetric neural networks in which
each McCulloch-Pitts type neuron i has an effector parameter aj and areceptor parameter bi
(which we call e-r neural networks). The effector parameter signifies the signal strength when
the neuron fires and the receptor parameter denotes the sensitivity of the neuron when it receives
a signal from other neurons. Thus the Weight connecting from neuron j to neuron i is
represented as wij = bjajcij which is asymmetric in general where cjj = 1 if there is a connection

from neuron j to i and Cij = 0, otherwise.

Some analyses on the properties of such asymmetric networks follow under separate
subsections. First, we analyse the global state transitions when the receptor parameters are
positive. (Section 3.1.) Then the class of neural networks with effector and receptor parameters
is shown to be a rich class in the sense that an arbitrary finite state transition can be embedded in
the state transition of a certain neural network in the class. (Section 3.2.) In Section 3.3, we
consider the case where the receptor parameters take any real values to obtain similar results as

before.

Finally, we move to observe that.a certain class of e-r neural networks can be viewed as

quasi-symmetric networks. By extending Goles' result (Goles, 1987) for symmetric case, we



show in Section 4 that Lyapunov functions exist for the above mentioned class of asymmetric

neural networks under synchronous as. well as asynchronous modes of operation.

2. Network Definitions and Searching for Energy Functions

Consider a systém of n McCulloch-Pitts neurons i (i=1,2, ..., n) where the state of the
neuron i at time t, denoted as sj(t), takes the value 1 (firing) or O (resting). If we write the

weight connecting i to j as wji, the next state of the neuron i can be defined as follows.

sit+1) = HQY, wis;(®) - 6) (2.1-a)
, =1 : . _

where 0j is the threshold value for i, and H(x) is the Heaviside function defined as

(1 ifx>0, | (2.1-b)
HE =10 ifx<o.
. .t . :
Note that H(0) is undefined and we assume that Y wy;s; - 8; = 0 for any sje {0,1} j =
| | B .. S

1,2,...,n.Then we call this system a neural network (NN, for short) and denote as‘N(n, W, 0)
where W = [wjjl, and 8 = (81,02,...,65). To define actual behaviors of an NN, we have to
specify the mode of operation. If we pick a neuron and apply the above defined transition rule
for it with all the other neurons in the same states, the NN is said to be operating
asynchronously. On the other hand, if all the neurons in the system are applied the above rule
simultaneously, it is operating synchronously. In both cases, the global transition functions can
be defined as mappings from S to S where S is the set of state configurations s = (51,82,
...»Sp), i.e., S = {0,1}1. The global transition function for an NN N(n, W, 6) under
synch;onous operation is dcnotcd‘as Fn. A state configuration s is said to be cyclic if FNi(s) =

s for some positive integer i; the minimum such i is called the cycle length. A stable state is the

one which belongs to a cycle of length one.
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An NN N(n, W, 6) is called symmetric if the weight matrix W is symmetric, i.e., if wjj =
Wii for i, j = 1,2,..., n. As is now well known, global state transitions of symmetric NNs
have simple cycle structures : Under synchronous operation, they can have cycles each of

whose length is at most two. (Goles, 1987) If systems operate asynchronously with additional

| condition that wijj = 0 for i = 1,2,...,n, then every state transition path ends up with a stable
state. (Hopfield, 1982) These results have been shown by devising the following Lyapunov

functions respectively.

E®=- Y, wisit)si(t-1) + 2 (sit) + si(t-1))6i  (synchronous case)  (2.2)

ij=1 i=1
n n

Edt)=- ), wisit)sj(t) +2, s(t)9; (asynchronous case) (2.3)
ij=1 i=1

First, we examine whether symmetric weights are necessary to have such energy functions
as shown above. For that purpose, let us not give an energy function a priori at the outset but
begin with considering the behavior of each constituent neuron . We assume, however, that
there is some energy function E (which is a mapping from the set of state configurations into the
set of real numbers) such that any proper state change at a neuron decreases its value. (Thus,
we have asynchronous operation in mind here.)

Consider an NN N(n, W, 0) and a state configuration s = (sy, S3, ..., S,) where s;e {0,1}

fori=1,2,...,n. If we focus our attention on the k-th neuron, the state transition is determined

n .
by evaluating 2 wiisi(t) - O = di : sp(t+1) becomes 1 if d is positive and 0, if it is negative
=1

~(by definition). This means that s, should change to Sk if (sg - 5x)dx <0 where §x =1 - si.

Let sx denote a state configuration which is the same as s except at neuron k, i.e., sk = (s1, $2,
..,Sk-..» Sp). Then the above observation motivates us to define

AEx(s ) =E(s) - E(sg) = - Skfi(di) ’ Q24

‘where § = Sk - 5% and fi is a sign preserving monotone function. This AEx(s ) may be

considered as a driving force to change the state of k-th neuron from s to §k. -

We first note that AE( s ) = -AE( sx ) by definition, which yields the following.

-4 -




Sifi(di) = -Sicfi(dic + WSk
If fy is strictly increasing, then we have to have wigSk = 0, which means wy = 0.

For k # |, we similarly define AEy (s ) as the difference between E( s ) and E( sx;)
where Sy = (51, 52,...,5k;--,51,-.85). Our convention is that s ; is obtained from s by changing
the states of k-th and /-th neurons in this order. Then we have

AExy(s) =E(s)-E(sg)

=E(s) - E(s© +E(s¢) - E(skz ) 7
=AE (s )+ AE/(s¢) (2.5)
By simple calculations, we get
AE(sx ) = - Sifi(d; - wacS).
Thlis,
AEy (s ) = - Sifi(di) - Sifi(d; - wiSp) . (2.6)

If we change the order of calculation, we have

AEx(8) = - 8ifi(d)) - Sifi(dy - wiiSh). (2.7)
Since si; = s;x by definition, wé should have AEy i( s ) = AE;x( s ), which means
Sk(fr(di) - fi(di - wiiSD) = §i(fi(dy) - £i(ds - WiSk)),
In order to continue the calculation, we résort to a simplifying assumption that each fy is a linear
function, i.e., fx(x) = cxx for a positive constant c,. Then we have cywy; = c;jwg. Thus,
under the above mentioned assumption, the relations cywiy = ¢wy (k, [ = 1,2,...,n) must ﬁold
for some positive constants cx's (k = 1,2,...,n) in order for the network to have some
noncontradictory cnergy function. We call these relations as quasi-symmetric because of the
following lemma. |
Lemma 2.1.

Let‘ck' (k = 1,2,..., n) and w;; (i, j = 1,2,..., n) be real numbers. Then the following
conditions are equivalent.

(1) ciwy; = ¢jwj; fori, j=1,2,..,n

(2) wj; = vijc; where vyj's are real numbers such that vj; = v;; for i,j = 1,2,...,n.
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Assuming the above mentioned quasi-symmetric condition and zero-diagonal condition, we
can proceed to calculate, for example,
AExim(s) =E(s)-E(sgim)
= AE(S) + AE/(s) + AE,(s) + CkWr + CiWim + CmWimk (2.8)
where Wy = §;Sjwy for k,/ = 1,2,...,n

In general, let I be a subset of {1,2,...,n}, then we have

AE((s) = ), AE(s) +%2 CiWij
iel ijel : (2.9)

For a given s = (51,5),...,Sp), let I(s) be the set of index i such that s;=1:1(s) = {i | 5;=
1}. Thcn AEys)(s) = E(8) - E(sys)).
By definition, sy) =0 = (0,0,...,0) and let E(0) be the reference value in evaluating E(s).
More simply put, assume that E(0) = 0 and define E(s) = AEyg)( s ).

E(s) =AEys(s)

Y AEs) +% Yy Wy
ie I(s) l,JE I(s)
n

Z AE(S) s; + = 2 CiWSiS;

=n n -
=- z cid; s; + % 2 CiW jjSiSj (2.10)
n
Substituting d; = z w;s; - 0; we have

]:
E(s) = %2 c,w,,s,s,+2c,s9 @1
ij=1

Multiplying by two, for notational convenience, we have a desired Lyapunov function as
below. |
Theorem 2.2.

Let N(n, W, 6) be a quasi-symmetric and zero-diagonal NN where w;; = vj;c;j such that v;;
=vj and ¢; >‘O fori,j = 1,2,...,n. Then under asynchronous operation mode, the following'

function is monotone non- increasin g.

Fa(t) = Z c,w,,s,(t)s,(t) + 22 cisi(t)9; . 2.12)

=1 i=1

VAR



3; Neural Networks with Effector and Receptor Parameters

Now we intfoduce the concept of effector and receptor parameters, by which asymmetric
weights are defined in a very simple way. We assume that when a neuron i fires, the signal is
assumed’ to be transmitted to each synapse with strength a; which is called the effector parameter
of the neuron. Our convention is that a; is positive if the neuron is excitatory and is negative if
it is inhibitory. Since we have only one effector parameter for each neuron, we are assuming
that every synapse of a fixed neuron has the same signal transmission capability to every
corresponding postsynaptic neuron. This is actually a gross simplification because the effect of
a firing méy vary depending on the shape and amount of each synaptic association. When a
signal arrives, on the other hénd, at a certain neuron through a synapse, we assume that the
neuron has the sensitivity index in receiving the signal. That is, each neuron i has the receptor
parameter b; which denotes the effectiveness of transmitting a signal through each of its
synaptic junctions. Again we assign a unique receptor value to each neuron, which disregards
the actual differences of sensitivity among the types and locations of synaptic connections.
Connections among neurons are specified by a connection matrix C = [cy] :"cij =1 if neuron j
has synaptic connection with neuron i and c;;= 0 if otherwise. We call a system composed of
the above mentioned model neurons as a neural network with effector and receptor parameters

as defined formally below.

Definition.

Let N(n, W, 0) be a neural network. It is called a neural network with effector and receptor
parameters (e-r NN, for short) if there are real numbers a;'s (called effector parameters) and
b;'s (called receptor parameters) fori =1, 2, ..., n Such that w;; = b;a;c;; where c;; takes the
value 1 or 0. We denote such an e-r NN by N(n, baeC, 0) where a = (a;,as,...,ap) , b =

(bl,bz,...,bn)t‘ and C = [c;].
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In this section, we consider the global behavior of such e-r NN under synchronous

operation mode.Then by substituting w;; = bja;c;; into equation (2.1-a) for every i, we have

n

sit+1) = HObi( Y ajeysi(t) - %}) (i=1,2,...,n) 3.1)

J=1

This relation suggests that it would be convenient to rename the neurons so that they sort in
order of 0;/b;, That is, we assume the following order relation throughout this paper and refer

to it as the normal ordering of 0/b.

0182 ... <O (3.2)

In the balance of this paper, we also assume that the connection matrix C is symmetric. In
fact, we mostly treat the full case where c; = 1 for all i and j as in the following subsections.

Thus in the full case, the connections are complete and we need not write C or c;j explicitly.

3.1. Analysis of Global State Transitions for Simple Full e-r NN

Consider a full e-r NN N(n, ba, 6), and assume that b;> 0 fori =1, 2, ..., n. This
corresponds to the case where an excitatory neuron always yields positive connection weights
and an inhibitory one, negative weights. Since it seems both quite natural and simple, we call

such an e-r NN as simple. For a simple full e-r NN, we have

sit+1) = HCY, ajsi() - %) (i=1,2,...,n) (3.3)
j=1 i

By virtue of the normal ordering, we have the following property.

Lemma 3.1.

Let N(n, ba, 0) be a simple e-r NN with normal ordering. Then we have the following

relations.
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If si(t+1) = 0, then s;41(t+1) = 0;
If si41(t+1) = 1, then si(t+1) = 1 fori=1,2,.., (n-1).

Let s(t) = (s1(1),82(t),...,8,(1)) dendte a state configuration of the system at time t. We
sometimes omit the symbol (t) when there is no confusion and let sx be a vector
' (1,1,...,1,0,0,...0) where there are k consecutive 1's on the left side of the vector. We call
these special configuration sy's for a simple full e-r NN as standard for k = 0,1,2,...,n where
so is the 0 vector (0,0,...,0). Then what Lemma 3.1 says is that any configuration that is

derivable from other state is standard.

‘Now, we are in a position to analyse the global state transition of a given simple e-r NN

N(n, ba, 0) defined in the previous section. Since the network has n ‘neurons each having the
state 0 or 1, there are 21 states whose set is denoted as S={(sl,52,...,sn)| s; is 0 or 1 for
i=1,2,..n}. We divide S into the set of standard states Sgt and the rest Spg. Let [n] denote the
set {0,1,2,...,n}. Then [n] and Sgt are isomorphic by the obvious correspondence k in [n]
with sy in Sgt. In this sense, we use k and sy interchangeably when there is no confusion.

Using the global state transition function Fy: S—S such that Fy(s(t)) = s(t+1) as defined in

(3.1), we can restate Lemma 3.1’ as follows.

Thcorem 3.2.

Let N(n, ba, 6) be a simple e-r NN with normal ordering where the global state transition

is denoted by Fn. Let S and Sgt be the sets of all states and standard states, respectively. Then

we have
Sst D Fn(S).

In particular, Sgt D Fn(Sst).



Thus any state in Spg changes to a state in Sg¢ in one step and the states in Sg are closed
under the state transition. Then we first look into the transitions in Sgt.
_ k
Consider a state k in Sgt, and define Ay = z aj . (Note that Ag = 0 by definition.) Ay
=1 ’
falls somewhere in the ordering relation of (3.2). That is, there is a unique integer u in [n] such

that the following relation holds.

% A <Bunt

bu bu+1 .

In the above relation, disregard the left-hand side inequality when u = 0, and the right-hand side
when u =n. This means that the next state is u, i.e., we have Fn(k) = u in this case. In more
general cases, we only have to consider various subsums of {a1, ag, ..., ag} instead of Ay's

and find the corresponding place in the ordering relation (3.2).

By the above characterization of the global state transition of simple full e-r NN's, we are

able to deduce the followings.
Lemma 3.3.
For the global state transitions of a simple full e-r NN with n neurons:

(1) Cyclic states and in particular, stable states, if any, are composed of the standard states.

Thus the number of states which belong to one of the cycles is at most n+1.
(2) The maximum cycle length is at most n+1.
(3) The number of stable states is at most n+1.

(4) The length of the longest path (which is composed of one non-standard state and some of

the standard states) to a cyclic state is at most n+1.



3.2. Synthesis of Simple Full e-r NN

Let £:S — S be a function where S is a finite alphabet. N(n ,W, 0) with global transition

function Fy is said to realize f if there exists an injective function g:S N {0,1}1 such that Fg =

gf.

Consider, then, the following synthesis problem : For a given function f : [n]—[n] where n
is an arbitrary integer, construct a simple e-r NN N(n, ba, 6) whose state transition function

Fn realizes f.

First, éssume that the following holds for a positive numbser €.

60 _61_862 On _ Ons1 0is1 95 s
bl D TP - A < B <0+ gych that -1 >2¢ foriin[n 3.4
bo “b; " by b~ bas1 bint b [l G4
; . B0 01 , On+1 < On
where we put, for notational convention, — < —--2¢ and >0 1€,
b0 bl bn+1 bn

If we assign a standard state sy = (1,1,...,1,0,0,...,0) to an integer k in [n], it is enough to

have

K
B¢(k) <A< O5()+1 where Ay = ) aj for every kin [n]. (3.5)
brk) brky+1 =1

)
This is possible, for example, if we let Ay = ‘6@ +€ , that is, if
£

O Oraen)

ax=Ag-Ax1= for every k in [n]-{0}. 3.6)
brx)  brk-1)
Since Ag = 0 by definition, we should have
Ot0) |
——+&=0, 7
bs) 7 G.7)

Since we can determine the parameters a, b, and 0 for a simple e-r NN N(n, ba, 0) that satisfy

the conditions (3.4), (3.6), and (3.7) then we havé the global function Fy which realizes f

/i -
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through the correspondence g : [n] — Sg¢ such that g(k) = sy for k in [n]. Now the synthesis

problem posed here is solved and we have

Theorem 3.4.

Given an arbitrary function f : [n]—[n], we have a simple full e-r NN with n neurons |

whose global function F realizes f.

3.3. Analysis of Full e-r NN

In this subsection, we generalize the analyses for simple full e-r NN in Section 3.1. a little

bit as follows. That is, we consider the behavior of a full e-r NN N(n, ba, 0) without the

simpleness restriction. Then there is a simple e-r NN N,(n, ba,, 6;) which accompanies with

N(n, ba, 0) such that a; = a and 64/bs = 6/b where the equality means that of each

corresponding component. That is, bs; = -b; and O, = -0; if b; <0 , and bs; = b; and O, = 6;if

b; > 0.

Now, we define a function which changes a state at neuron i where b; <0 :

Leth;: {0,1} — {0,1} be defined by

() — x ifb>0
i(x) {i ifb <0

n
Then we can define the product h =[] h;: {0,1)* 5{0,1}™ such that
i=1
h(sl, SZr--aSn) = (hl(sl), hZ(S2)7°"ahn(Sn))'
For a full e-r NN N(n, ba, 0), we have

si(t+1) = H(b,{i ajs(t) - %’—}) (i=1,2,...,n)
oo j=l - 13 .

-)2 -

(3.8)
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If Fng(s) = §' then Fn(s) = h(s'). That is, we have

Lemma 3.5.
Fn(s) = h(Fn,(s)) for any s in S.

Note that since h is bijective such that h-1 = h, we also have Fy(s) = h(Fn(s)). Although

these relations do not necessarily imply an isomorphism between Fy and Fy, the global state

transition structures are similarly characterized as shown below.

We define standard states for an e-r NN N(n, ba, 0) through those for the accompanying
simple e-r NN Ni(n, bsag, 65) : §jis a Standard state for N(n, ba, 0) if it is equal to h(s;) for a
standard state s; of N(n, bsa‘s‘, 05). Let S/; denote the set of standard states for N(n, ba, 0)

ie., Su={8 | § =h(s fori=0,1.2,..n)

Theorem 3.6.

Let N(n, ba, 0) be an e-r NN with normal ordering where the global state transition is
denoted by Fn. Let S and §\st be the sets of all states and standard states, respectively. Then
we have

——

Sst 2 Fn(S) .
In particular, §s\t ) FN(§S\0.
The theorem can be proved by noting the relation §\st = h(Sst) © h(Fn,(S)) = Fn(S). A

similar consideration as for Theorem 3.2. leads us to the same conclusion for the full e-r NN as

in Lemma 3.3.
Lemma 3.7.

For the global state transitions of a full e-r NN with n neurons:

=13 -
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(1) Cyclic states and in partiéular, stable states, if any, are composed of the standard states.

Thus the number of states which belong to one of the cycles is at most n+1.
(2) The maximum cycle length is at most n+1.
(3) The number of stable states is at most n+1.

(4) The length of the longest path (which is composed of one non-standard state and some of

the standard states) to a cyclic state is at most n+1.

4. Quasi-Symmetri’c e-r NN

In this section, we continue the discussion for the quasi-symmetric NN and show that a
certain class of e-r NN is a special case of quasi-symmetric NNs and hence has Lyapunov
functions both for the asynchronous and synchronous operation.

We have shown in Section 2 that a quasi-symmetric NN N(n, W, 8) where w;; = vj;c; such
that vj; = vj;, ¢; > 0, and w;; = 0 for i j = 1,2,...,n has the follbwing Lyapunov function under

asynchronous operation mode.

Fa(t) =- i ciwSi(t)si(t) + Zi cisi(t)6; :
o vy 4.1)

A similar generalization of Goles' result is possible for any quasi-symmetric NN where w;; =
vjicj such that vy = v;;, ¢; > 0 for i,j = 1,2,...,n under synchronous operation mode. Consider

the following function Fq(t).
n n
Fo®) =- ), ciwisisi(t-1) + 3, cifsi(t) + si(t-1))8;
i=1

ij=1 42)

By simple calculations, we have

n

Fs(t) - Fs(t-1) = - Z Cidi(t-1)(si(t) - si(t-2))
i=1
n

where di(t-1) = ) wi;si(t-1) - 6;
’ j=1 4.3)

- -




If di(t-.lj > 0 then s;(t) = 1 which ineans si(t) - si(t-2) 2 0. If di(t-1) < O then s;(t) = 0 which

means si(:t)‘; si(t-2) SFO. In both casés, we havé cid;(t-1)(si(t) - 8;(t-2)) =2 0 beéause c; is

positive. Thﬁs Fs(f) is a monotone ﬁon-increasin g function of t and we havek

Theore@ 4.1. | '
Let N(n, W, 0) be a quasi-symmetric NN where w;; = vj;c; such that vj; = vj; and ¢; >0

fori,j = 1,2,...,n. Then the cycle lengths of the global state transition Fy are at most two.

The weight pérameter of an e-r NN N(n, baeC, 0) is given by wj; = bjac;; as defined in
Section 3. If we assume symmetric connection (i.e., cij‘= Cji), then wé have quasi-symmetric
systems by putting vj; = bibjcj;and ¢= aj/bj for i,j = 1,2,...,n. Then by Theorems 2.2. and
4.1, we have the following results for the global behaviors of quasi-symmetric e-r NNs.
Theorem 4.2. ’

Let N(n, baeC, 6) be an e-r NN such that C is a symmetric matrix. If ajb; > 0 for j =
1,2,...,n, then the cycle lengths of the global state transition for synchronous operation mode
are at most two. If in additién, c11 =0fori=1,2,..,n, ‘t»hlen aiiy staté configuration approaches

to some stable state under asynchronous operation mode.

5. Concluding Remarks

We defined a class of asymmetric neural networks characterized by effector and receptor
parameters and revealed basic structures of global state transitions for synchronous and
asynchronous modes of operation. Although the class seems io be rather restrictive especially
when we assume complete connection, it has been shown that any state transition can be
realized by a network in this class under synchronous operation. Furthér, any McCulloch-Pitts
type neural network may be regarded as the one with genefalized effector and receptor

parameters, and investigation in this direction is now under progress.

- /5~
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The analyses of possible forms of energy functions for asynchronously operating neural
networks done in this paper are also relevant when we want to speed up the network operation.
That is, the formulas for the energy difference given here enable one to decide easily when it is

possible to carry out (partially) parallel state transition keeping an energy function decreasing.
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