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1. Introduction

Neural Networks now seem to be undergoing a renaissance since the works of Hopfield,

his associates, and others (Hopfield, 1982, 1984; Hopfield and Tank, 1985; Rumelhart,

McClelland and the PDP research group, 1986). Although the modeling nervous systems is as

old as the era of McCulloch and Pitts (McCulloch and Pitts, 1943) and not much new things

seem to be added to the old framework as far as the system definitions are concerned, what

makes the new trend interesting is as follows. Hopfield was the first to show that there is a

Lyapunov function for a given neural network which operates asynchronously where each

component model neuron is basically that of McCulloch and Pitts and the connecting weights

are symmetric. This made us possible at least partially to associate the equilibrium states of the

neural network with our desired target states depending on the actual encode system of our

application. One such example is the cerebrated travelling salesman problem (Hopfield and

Tank, 1985) albeit some controversy has arisen recently (Wilson and Pawley, 1988).

The characteristic features of the Hopfield networks, i.e., symmetric weights and

asynchronous operation, are at the same time somewhat unsatisfactory. The alleged

proposition that the neural networks should have symmetric weights in order to have Lyapunov

functions is rather restrictive especially when we have biological applications in mind. It is true

that we can have a Lyapunov function for an asymmetric network regarding the average of two

weights connecting a pair of elements as an equivalent symmetric weight, this means that we are

changing the behavior of the component McCulloch-Pitts neurons. (See, for example, Feldman,
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1987; Uesaka, 1987) As to the asynchronous mode of operation, the advantage of having

distributed processors is largely wasted when we are concemed with the total operation time for

amving at stable states, if any. Then we need to find some way to escape from the symmetry

restriction and also to pay more attention to the synchronous operation of neural networks.

(See, for example, Little, 1974)

For that purpose, we analyse, in Section 2, some basic properties of the energy functions

which are concomitant with the behavior of each component McCulloch-Pitts neuron. The

main result there is that we can have Lyapunov functions for a slighdy extended class of

asymmetric neural networks (which we call quasi-symmetric).

In Section 3, we then introduce a special class of asymmetric neural networks in which

each McCulloch-Pitts type neuron $i$ has an effector parameter $ai$ and a receptor parameter $b_{i}$

(which we $caU$ e-r neural networks). The effector parameter signifies the signal strength when

the neuron fires and the receptor parmeter denotes the sensitivity of the neuron when it receives

a signal from other neurons. Thus the weight connecting from neuron $j$ to neuron $i$ is

represented as $wij=b_{i}a_{j^{Cij}}$ which is asymmetric in general where $cij=1$ if there is a connection

ffom neuron $j$ to $i$ and $cij=0$, otherwise.

Some analyses on the properties of such asymmetric networks follow under separate

subsections. First, we analyse the global state transitions when the receptor parameters are

positive. (Section 3.1.) Then the class of neural networks with effector and receptor parameters

is shown to be a rich class in the sense that an arbitrary fmite state transition can be embedded in

the state transition of a certain neural network in the class. (Section 3.2.) In Section 3.3, we

consider the case where the receptor parameters take any real values to obtain sin$\dot{u}lar$ results as

before.

Finally, we move to observe that a certain class of e-r neural networks can be viewed as

quasi-symmetric networks. By extending Goles’ result (Goles, 1987) for symmetric case, we
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show in Section 4 that Lyapunov functions exist for the above mentioned class of asymmetric

neural networks under synchronous as well as asynchronous modes of operation.

2. Network Definitions and $S$earching for Energy Functions

Consider a system of $n$ McCulloch-Pitts neurons $i(i=1,2, \ldots., n)$ where the state of the

neuron $i$ at time $t$, denoted as si$(t)$ , takes the value 1 (fring) or $0$ (resting). If we write the

weight connecting $i$ toj as $w_{ji}$ , the next state of the neuron $i$ can be deflned as follows.

$s_{i}(t+1)=H(\sum_{\dot{\Gamma}-1}^{n}w_{ij}s_{j}(t)- 6_{i})$ (2.1-a)

where $e_{i}$ is the threshold value for $i$ , and $H(x)$ is the Heaviside function defined as

$H(x)=\{\begin{array}{l}1ifx>0,(2.1- b)0ifx<0\end{array}$

Note that $H(O)$ is undefined and we assume that $\sum_{j=1}^{n}w_{ij}s_{j}-\Theta_{i}\neq 0$ for any $s_{j}\in\{0,1\}j=$

$1,2,\ldots,n.Then$ we call this system a neural network (NN, for short) and denote as $N(n, W, e)$

whereW $=[wij]_{n}$ and $\Theta=(8_{1},6_{2},\ldots,\Theta_{n})$ . To define actual behaviors of an NN, we have to

specify the mode of operation. If we pick a neuron and apply the above defined $transi_{ti}on$ rule

for it with all the other neurons in the same states, the NN is said to be operating

asynchronously. On the other hand, if $aU$ the neurons in the system are applied the above rule

simultaneously, it is operating synchronously. In both cases, the global ffansition functions can

be defined as mappings from $S$ to $S$ where $S$ is the set of state configurations $s=(s_{1},s_{2}$ ,

$s_{n})$ , i.e., $S=\{0,1\}^{n}$ . The global transition function for an NN $N(n, W, e)$ under

synchronous operation is denoted as $F_{N}$. A state configuration $s$ is said to be cyclic if $F_{N^{i}}(s)=$

$s$ for some positive integer $i$; the minimum such $i$ is called the cycle length. A stable state is the
$L$

one which belongs to a cycle of length one.
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An NN $N(n, W, e)$ is called symnetric if the weight matrix $W$ is symmetric, i.e., if $wij=$

$w_{ji}$ for $i,$ $j=1,2,\ldots,$ $n$ . As is now well known, global state transitions of symmetric NNs

have simple cycle structures : Under synchronous operation, they can have cycles each of

whose length is at most two. (Goles, 1987) If systems operate asynchronously with additional

condition that $wii=0$ for $i=1,2,\ldots,n$ , then every state transition path ends up with a stable

state. (Hopfield, 1982) These results have been shown by devising the following Lyapunov

functions respectively.

$E_{s}(t)=-\sum_{ij=1}^{n}w_{ij}s_{i}(t)s_{i}(t- 1)+\sum_{i=1}^{n}(s_{i}(t)+s_{i}(t- 1))9_{i}$ (synchronous case) (2.2)

$E_{a}(t)=-\sum_{\iota_{r=1}}^{n}w_{ij}s_{i}(t)s_{i}(t)+2\sum_{i=1}^{n}s_{i}(t)6_{j}$ (asynchronous case) (2.3)

First, we examne whether symmetric weights are necessary to have such energy functions

as shown above. For that purpose, let us not give an energy function a priori at the outset but

begin with considering the behavior of each constituent neuron. We assume, however, that

there is some energy function $E$ (which is a mapping ffom the set of state configurations into the

set of real numbers) such that any proper state change at a neuron decreases its value. (Thus,

we have asynchronous operation in mind here.)

Consider an NN $N(n, W, e)$ and a state configuration $s=(s_{1}, s_{2}, \ldots, s_{n})$ where $s_{i}\in\{0,1\}$

for $i=1,2,\ldots,n$ . If we focus our attention on the k-th neuron, the state transition is determined

by evaluating $\sum_{j=1}^{n}w_{kj}s_{j}(t)- 6_{k}=d_{k}$ : $s_{k}(t+1)$ becomes 1 if $d_{k}$ is positive and $0$, if it is negative

(by definition). This means that $s_{k}$ should change to $\overline{s_{k}}$ if $(s_{k}-\overline{s_{k}})d_{k}<0$ where $\overline{s_{k}}=1- s_{k}$ .

Let $s_{k}$ denote a state configuration which is the same as $s$ except at neuron $k$, i.e., $s_{k}=(s_{1},$ $s_{2}$,

$\overline{s_{k}}\ldots,$ $\Omega$ . Then the above observation motivates us to define

$\Delta E_{k}(s)=E(s)- E(s_{k})=-\overline{s_{k}}f_{k}(d_{k})$ (2.4)

where $\overline{s_{k}}=s_{k}-\overline{s_{k}}$ and $f_{k}$ is a sign preserving monotone function. This $\Delta E_{k}(s)$ may be

considered as a driving force to change the state of k-th neuron ffom $s_{k}$ to $\overline{s_{k}}$ .

We frrst note that $\Delta E_{k}(s)=-\Delta E_{k}(s_{k})$ by definition, which yields the following.
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$\overline{s_{k}}f_{k}(d_{k})=-\overline{\overline{s_{k}}}f_{k}(d_{k}+W_{kk^{\overline{S_{k}})}}^{-}$

If $f_{k}$ is strictly increasing, then we have to have $W_{kk^{\overline{S}}k}^{-}=0$ , which means $w_{kk}=0$ .
For $k\neq l$ , we similarly define $\Delta E_{k,l}(s)$ as the difference between $E(s)$ and $E(s_{k,l})$

where $s_{k,l}=(s_{1}, s_{2},\ldots,\overline{s_{k}},..,\overline{s_{l}},..s_{n})$ . Our convention is that $s_{k,l}$ is obtained ffom $s$ by changing

the states of k-th and l-th neurons in this order. Then we have

$\Delta E_{k,l}(s)$ $=E(s)- E(s_{k,l})$

$=E(s)- E(s_{k})+E(s_{k})- E(s_{k,l})$

$=\Delta E_{k}(s)+\Delta E_{l}(s_{k})$ (2.5)

By simple calculations, we get

$\Delta E_{l}(s_{k})^{\sim_{l}}=- sf_{l}(d_{l}- w_{lk}\overline{s_{k}})$ .

Thus,

$\Delta E_{k,l}(s)=-\overline{s_{k}}f_{k}(d_{k})^{\sim_{l}}- sf_{l}(d_{l}- w_{lk}\overline{s_{k}})$ (2.6)

If we change the order of calculation, we have

$\Delta E_{l,k}(s)^{\sim_{l}}=- sf_{l}(d_{l})-\overline{s_{k}}f_{k}(d_{k}- wu^{\sim_{l}}s)$ . (2.7)

Since $s_{k,l}=s_{l,k}$ by definition, we should have $\Delta E_{k,l}(s)=\Delta E_{l,k}(s)$ , which means
$\overline{s_{k}}(f_{k}(d_{k})- f_{k}(d_{k}- wu^{\sim_{l}}s))=\overline{s_{l}}(f_{l}(d_{l})- f_{l}(d_{l}- w_{lk}\overline{s_{k}}))$ .

In order to continue the calculation, we resort to a simplifying assumption that each $f_{k}$ is a linear

function, i.e., $f_{k}(x)=c_{k}x$ for a positive constant $c_{k}$ . Then we have $c_{k}w_{kl}=c_{l}w_{lk}$ . Thus,

under the above mentioned assumption, the relations $c_{k}w_{kl}=c_{l}w_{lk}(k, l=1,2,\ldots,n)$ must hold

for some positive constants $c_{k’}s(k=1,2,\ldots,n)$ in order for the network to have some

noncontradictory energy function. We call these relations as quasi-symmetric because of the

following lemma.

Lemma 2.1.

Let $c_{k}(k=1,2,\ldots, n)$ and $w_{ij}(i, j=1,2,\ldots, n)$ be real numbers. Then the following

conditions are equivalent.

(1) $c_{i}w_{ij}=c_{j}w_{ji}$ for $i,$ $j=1,2,\ldots,$ $n$ .
(2) $w_{ij}=v_{ij}c_{j}$ where $v_{ij’}s$ are real numbers such that $v_{ij}=v_{ji}$ for ij $=1,2,\ldots,$ $n$ .
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Assumin$g$ the above mentioned quasi-symmetric condition and zero-diagonal condition, we

can proceed to calculate, for example,

$\Delta E_{k,l,m}(s)$ $=E(s)- E(s_{k,l,m})$

$=\Delta E_{k}(s)+\Delta E_{l}(s)+\Delta E_{m}(s)+c_{k}\overline{w_{kl}}+c_{l}\overline{w_{lm}}+c_{m}\overline{w_{mk}}$ (2.8)

where $\overline{wu}=\overline{s_{k}}\overline{s_{l}}w_{kl}$ for $k,l=1,2,\ldots,n$ .
In general, let I be a subset of $\{1,2,\ldots,n\}$ , then we have

$\Delta E_{I}(s)=\sum_{i\in I}\Delta E_{i}(s)+\frac{1}{2}\sum_{i,i\in I}c_{i}\overline{w_{ij}}$

(2.9)

For a given $s=(s_{1},s_{2},\ldots,s_{n})$ , let $I(s)$ be the set of index $i$ such that $s_{i}=1$ : $I(s)=\{i|s_{i}=$

$1\}$ . Then $\Delta E_{I(s)}(s)=E(s)- E(s_{I(s)})$ .
By definition, $S_{I(S)}=0=(0,0,\ldots,0)$ and let $E(O)$ be the reference value in evaluating $E(s)$ .
More simply put, assume that $E(O)=0$ and define $E(s)=\Delta E_{I(s)}(s)$ .

$E(s)$ $=\Delta E_{I(s)}(s)$

$= \sum_{i\in I(s)}\Delta E_{i}(s)+\frac{1}{2}\sum_{i_{d}\in I(s)}c_{i}\overline{w_{ij}}$

$= \sum_{i=1}^{n}\Delta E_{j}(s)s_{i}+\frac{1}{2}\sum_{ij=1}^{n}c_{i}\overline{w_{ij}}s_{i}s_{j}$

$=- \sum_{i=1}^{n}c_{i}d;s;+\frac{1}{2}\sum_{i_{d}=1}^{n}c_{i}w_{ij}s_{i}s_{i}$ (2.10)

Substituting $d_{i}=\sum_{j=1}^{n}w_{ij}s_{j}-\Theta_{i}$ we have

$E(s)=-\frac{1}{2}\sum_{ij=1}^{n}c_{i}w_{ij}s_{i}s_{j}+\sum_{i=1}^{n}c;s;\Theta_{i}$ (2.11)

Multiplying by two, for notational convenience, we have a desired Lyapunov function as

below.

Theorem 2.2.

Let $N(n, W, e)$ be a quasi-symmetric and zero-diagonal NN where $w_{ij}=v_{ij}c_{j}$ such that $v_{ij}$

$=v_{ji}$ and $c_{j}>0$ for i,j $=1,2,\ldots,n$ . Then under asynchronous operation mode, the following

function is monotone non-increasing.

$F_{a}(t)=-\sum_{ij=1}^{n}c_{i}w_{ij}s_{i}(t)s_{j}(t)+2\sum_{i=1}^{n}c_{i}s_{i}(t)8_{i}$ . (2.12)
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3. Neural Networks with Effector and Receptor Parameters

Now we introduce the concept of effector and receptor parameters, by which asymmetric

weights are defined in a very simple way. We assume that when a neuron $i$ fres, the signal is

assumed to be $\alpha ansmitted$ to each synapse with strength $a_{i}$ which is called the effector parameter

of the neuron. Our convention is that $a_{i}$ is positive if the neuron is excitatory and is negative if

it is inhibitory. Since we have only one effector parameter for each neuron, we are assuming

that every synapse of a fixed neuron has the same signal transmission capability to every

corresponding postsynaptic neuron. This is actually a gross simplification because the effect of

a firing may vary depending on the shape and amount of each synaptic association. When a

signal arrives, on the other hand, at a certain neuron through a synapse, we assume that the

neuron has the sensitivity index in receiving the signal. That is, each neuron $i$ has the receptor

parameter $b_{i}$ which denotes the effectiveness of transmitting a signal through each of its

synaptic junctions. Again we assign a unique receptor value to each neuron, which disregards

the actual differences of sensitivity among the types and locations of synaptic connections.

Connections among neurons are specified by a connection matrix $C=[c_{ij}]$ : $c_{ij}=1$ if neuron $j$

has synaptic connection with neuron $i$ and $c_{ij}=0$ if otherwise. We $caU$ a system composed of

the above mentioned model neurons as a neural network with effector and receptor parameters

as defined formally below.

Defmition.

Let $N(n, W, e)$ be a neural network. It is called a neural network with ffector and receptor

parameters (e-r NN, for short) if there are real numbers $a_{i}’s$ (called effector parameters) and

$b_{i}’ s$ (called receptor parameters) for $i=1,$ 2, $n$ such that $w_{ij}=b_{i}a_{j}c_{ij}$ where $c_{ij}$ takes the

value 1 or $0$ . We denote such an e-r NN by $N(n, ba\bullet c, e)$ where $a=(a_{1},a_{2},\ldots,a_{n})$ , $b=$

$(b_{1},b_{2},\ldots,b_{n})^{t}$ and $C=[c_{ij}]$ .
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In this section, we consider the global behavior of such e-r NN under synchronous

operation mode.Then by substituting $w_{ij}=b_{i}a_{j}c_{ij}$ into equation (2.1-a) for every $i$ , we have

$s_{i}(t+1)=H(b_{i}\{\sum_{j=1}^{n}a_{J}c_{ij}s_{j}(t)-\frac{6_{i}}{b_{i}}\})$ $(i=1,2,\ldots,n)$ (3.1)

This relation suggests that it would be convenient to rename the neurons so that they sort in

order of 6$Jb_{i}$. That is, we assume the following order relation throughout this paper and refer

to it as the normal or&ring of elb.

$\frac{8_{1}}{b_{1}}\leq\frac{e_{2}}{b_{2}}\leq\cdots\cdots\leq\frac{\Theta_{n}}{b_{n}}$

(3.2)

In the balance of this paper, we also assume that the connection matrix $C$ is symmetric. In

fact, we mostly treat the full case where $c_{ij}=1$ for all $i$ and $j$ as in the following subsections.

Thus in the full case, the comections are complete and we need not write $C$ or $c_{ij}$ explicidy.

3.1. Analysis of Global State Transitions for Simple Full e-r NN

Consider a full e-r NN $N$($n$ , ba, 6), and assume that $b_{i}>0$ for $i=1,$ 2, $n$ . This

corresponds to the case where an excitatory neuron always yields positive connection weights

and an inhibitory one, negative weights. Since it seems both quite natural and simple, we call

such an e-r NN as simple. For a simple full e-r NN, we have

$s_{i}(t+1)=H(\sum_{j=1}^{n}a_{j}s_{j}(t)-\frac{6_{i}}{b_{i}})$ $(i=1,2,\ldots,n)$ (3.3)

By virtue of the normal ordering, we have the following property.

Lemma 3.1.

Let $N$($n$, ba, $\Theta$) be a simple e-r NN with normal ordering. Then we have the following $4d\phi V\{$

relations.

$-8-$
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If $s_{i}(t+1)=0$ , then $s_{i+1}(t+1)=0$ ;

If $s_{i+1}(t+1)=1$ , then $s_{i}(t+1)=1$ for $i=1,2,\ldots$ , (n-1).

Let $s(t)=(s_{1}(t),s_{2}(t),\ldots,s_{n}(t))$ denote a state configuration of the system at time $t$ . We

sometimes omit the symbol (t) when there is no confusion and let $s_{k}$ be a vector

(1,1,...,1,0,0,...0) where there are $k$ consecutive l’s on the left side of the vector. We call

these special configuration $s_{k’}s$ for a simple full e-r NN as standard for $k=0,1,2,\ldots,n$ where

$s_{0}$ is the $0$ vector $(0,0,\ldots,0)$ . Then what Lemma 3.1 says is that any configuration that is

derivable from other state is standard.

Now, we are in a position to analyse the global state transition of a given simple e-r NN

$N$($n$ , ba, $\Theta$) defined in the previous section. Since the network has $n$ neurons each having the

state $0$ or 1, there are $2^{n}$ states whose set is denoted as $S=\{(s_{1},s_{2},\ldots,s_{n})|s_{i}$ is $0$ or 1 for

$i=1,2,\ldots n\}$ . We divide $S$ into the set of standard states $s_{st}$ and the rest $s_{ns}$ . Let $[n]$ denote the

set $\{0,1,2,\ldots,n\}$ . Then $[n]$ and $S_{St}$ are isomorphic by the obvious correspondence $k$ in $[n]$

with $s_{k}$ in $S_{St}$ . In this sense, we use $k$ and $s_{k}$ interchangeably when there is no confusion.

Using the global state transition function $F_{N}:Sarrow S$ such that $F_{N}(s(t))=s(t+1)$ as defined in

(3.1), we can restate Lemma 3.1 as follows.

Theorem 3.2.

Let $N$($n$ , ba, $\Theta$) be a simple e-r NN with normal ordering where the global state transition

is denoted by $F_{N}$. Let $S$ and $S_{St}$ be the sets of all states and standard states, respectively. Then

we have

$s_{st}\supset F_{N}(S)$ .

In particular, $S_{St}\supset F_{N}(S_{St})$ .

$-\gamma-$
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Thus any state in $s_{ns}$ changes to a state in $s_{st}$ in one step and the states in $s_{st}$ are closed

under the state transition. Then we frst look into the transitions in $s_{st}$.

Consider a state $k$ in $s_{st}$, and define $A_{k}=\sum_{j=1}^{k}a_{j}$ . (Note that $A_{0}=0$ by definition.) $A_{k}$

falls somewhere in the ordering relation of (3.2). That is, there is a unique integer $u$ in $[n]$ such

that the following relation holds.

$\frac{6_{u}}{b_{u}}<A_{k}<\frac{\Theta_{u+1}}{b_{u+1}}$

In the above relation, disregard the left-hand side inequality when $u=0$, and the right-hand side

when $u=n$. This means that the next state is $u$ , i.e., we have $F_{N}(k)=u$ in this case. In more

general cases, we only have to consider various subsums of $\{a_{1}, a_{2}, \ldots, a_{n}\}$ instead of $A_{k’}s$

and find the corresponding place in the ordering relation (3.2).

By the above characterization of the global state transition of simple full e-r NN’s, we are

able to deduce the followings.

Lemma 3.3.

For the global state transitions of a simple full e-r NN with $n$ neurons:

(1) Cyclic states and in particular, stable states, if any, are composed of the standard states.

Thus the number of states which belong to one of the cycles is at most $n+1$ .

(2) The maximum cycle length is at most $n+1$ .

(3) The number of stable states is at most $n+1$ .

(4) The length of the longest path (which is composed of one non-standard state and some of

the standard states) to a cyclic state is at most $n+1$ .
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3.2. Synthesis of Simple Full e-r NN

Let $f:Sarrow S$ be a function where $S$ is a finite alphabet. $N(n,W, e)$ with global transition

function $F_{N}$ is said to realize-f if there exists an injective function $g:Sarrow\{0,1\}^{n}$ such that Fg $=$

gf.

Consider, then, the following synthesis problem: For a given function $f:[n]arrow[n]$ where $n$

is an arbitrary integer, consffuct a simple e-r NN $N$($n$, ba, $\Theta$) whose state transition function

$F_{N}$ realizes $f$.

First, assume that the following holds for a positive number $\epsilon$.

$\frac{\Theta_{0}}{b_{0}}<\frac{\Theta_{1}}{b_{1}}<\frac{e_{2}}{b_{2}}<\cdots\cdots<\frac{\Theta_{n}}{b_{n}}<\frac{\Theta_{n+1}}{b_{n+1}}$ such that $\frac{6_{i+1}}{b_{i+1}}-\frac{\Theta_{i}}{b_{i}}\geq 2\epsilon$ for $i$ in $[n]$ (3.4)

where we put, for notational convention, $\frac{6_{0}}{b_{0}}\leq\frac{6_{1}}{b_{1}}- 2\epsilon$ and $\frac{\Theta_{n+1}}{b_{n+1}}\geq\frac{8_{n}}{b_{n}}+2\epsilon$ .

If we assign a standard state $s_{k}=(1,1,\ldots,1,0,0,\ldots,0)$ to an integer $k$ in $[n]$ , it is enough to

have

$\frac{\Theta_{f(k)}}{b_{f(k)}}<A_{k}<\frac{e_{f(k)+1}}{b_{f(k)+1}}$
where $A_{k}=\sum_{j=1}^{k}a_{j}$ for every $k$ in $[n]$ . (3.5)

This is possible, for example, if we let $A_{k}=\frac{6_{f(k)}}{b_{f(k)}}+\epsilon$ , that is, if

$a_{k}=A_{k}- A_{k,1}=\frac{\Theta_{f(k)}}{b_{f(k)}}-\frac{\Theta_{f(k- 1)}}{b_{f(k- 1)}}$ for every $k$ in $[n]-\{0\}$ . (3.6)

Since $A_{0}=0$ by definition, we should have

$\frac{\Theta_{f(0)}}{b_{f(0)}}+\epsilon=0$ . (3.7)

Since we can determine the parameters $a,$ $b_{7}$ and $\Theta$ for a simple e-r NN $N$($n$ , ba, 6) that satisfy

the conditions (3.4), (3.6), and (3.7) then we have the global function $F_{N}$ which realizes $f$

$arrow//-$
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through the correspondence $g:[n]arrow s_{st}$ such that $g(k)=s_{k}$ for $k$ in $[n]$ . Now the synthesis

problem posed here is solved and we have

Theorem 3.4.

Given an arbitrary function $f:[n]arrow[n]$ , we have a simple full e-r NN with $n$ neurons
whose global function $F$ realizes $f$.

3.3. Analysis of Full e-r NN $|$

In this subsection, we generalize the analyses for simple full e-r NN in Section 3.1. a little
$|$

bit as follows. That is, we consider the behavior of a full e-r NN $N$($n$ , ba, e) without the
$||$

’

simpleness restriction. Then there is a simple e-r NN $N_{s}(n, b_{s}a_{s}, \Theta_{s})$ which accompanies with $|$

$N$($n$ , ba, $\Theta$ ) such that $a_{s}=a$ and $9_{s}/b_{s}=\Theta/b$ where the equality means that of each $|$

corresponding component. That is, $b_{s_{i}}=- b_{i}$ and $\Theta_{s_{i}}=-\Theta_{i}$ if $b_{i}<0$ , and $b_{s_{i}}=b_{i}$ and $8_{s_{i}}=e_{i}$ if $|$

$b_{i}>0$ . $|$

Now, we defne a function which changes a state at neuron $i$ where $b_{i}<0$ : $|$

$\dot{i}$

Let $h_{i}$ : $\{0,1\}arrow\{0,1\}$ be defined by
$|$

$h_{i}(x)=\{\frac{x}{x}$ $ifb_{i}^{i}<0ifb>0$

.
$!^{1}$

Then we can define the product $h=\prod_{i=1}^{n}h_{i}$ : $\{0,1\}^{n}arrow\{0,1\}^{n}$ such that

$h(s_{1}, s_{2},\ldots,s_{n})=(h_{1}(s_{1}), h_{2}(s_{2}),\ldots,h_{n}(s_{n}))$.

For a full e-r NN $N$($n$ , ba, $\Theta$), we have
$|$

$s_{i}(t+1)=H(b_{i}\{\sum_{j=1}^{n}a_{j}s_{j}(t)-\frac{6_{i}}{b_{i}}\})$ $(i=1,2,\ldots,n)$ (3.8)

$-)2-$
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$IfF_{N_{s}}(s)=s’ thenF_{N}(s)=h(s’)$ . That is, we have

Lemma 3.5.

$F_{N}(s)=h(F_{N_{S}}(s))$ for any $s$ in S.

Note that since $h$ is bijective such that $h^{-1}=h$ , we also have $F_{N_{S}}(s)=h(F_{N}(s))$ . Although

these relations do not necessarily imply an isomorphism between $F_{N}$ and $F_{N_{s}}$ , the global state

transition $smlCtures$ are similarly characterized as shown below.

We define standard states for an e-r NN $N$($n$ , ba, $\Theta$) through those for the accompanying

simple e-r NN $N_{s}(n, b_{s}a_{s}, \Theta_{s}):s_{i}\wedge$ is a standard state for $N$($n$ , ba, $\Theta$) if it is equal to $h(s_{i})$ for a

standard state $s_{i}$ of $N_{s}(n, b_{s}a_{s}, 6_{s})$ . Let $\overline{S_{st}}$ denote the set of standard states for $N$($n$ , ba, $\Theta$)

i.e., $\overline{S_{st}}=$ { $s_{i}\wedge|s\sim_{i}=h(s_{i})$ for $i=0,1,2,\ldots,n$ }

Theorem 3.6.

Let $N$($n$ , ba, e) be an e-r NN with normal ordering where the global state transition is

denoted by $F_{N}$. Let $S$ and $\overline{S_{st}}$ be the sets of all states and standard states, respectively. Then

we have

$\overline{S_{st}}\supset F_{N}(S)$ .

In particular, $\overline{S_{st}}\supset F_{N}(\overline{S_{st}})$.

The theorem can be proved by noting the relation $\overline{S_{st}}=h(S_{st})\supset h(F_{N_{s}}(S))=F_{N}(S)$. A

similar consideration as for Theorem 3.2. leads us to the same conclusion for the full e-r NN as

in Lemma 3.3.

Lemma 3.7.

For the global state transitions of a full e-r NN with $n$ neurons:

$-[3-$
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(1) Cyclic states and in particular, stable states, if any, are composed of the standard states.

Thus the number of states which belong to one of the cycles is at most $n+1$ .

(2) The maximum cycle length is at most $n+1$ .

(3) The number of stable states is at most $n+1$ .

(4) The length of the longest path (which is composed of one non-standard state and some of

the standard states) to a cyclic state is at most $n+1$ .

4. Quasi-Symmetric e-r NN

In this section, we continue the discussion for the quasi-symmetric NN and show that a

certain class of e-r NNs is a special case of quasi-symmetnic NNs and hence has Lyapunov

functions both for the asynchronous and synchronous operation.

We have shown in Section 2 that a quasi-symmetric NN $N(n, W, e)$ where $w_{ij}=v_{ij}c_{j}$ such

that $v_{ij}=v_{ji},$ $c_{j}>0$, and $w_{ii}=0$ for ij $=1,2,\ldots,n$ has the following Lyapunov function under

asynchronous operation mode.

$F_{a}(t)=-\sum_{i_{\dot{\Gamma}-}1}^{n}c_{i}w_{ij}s_{i}(t)s_{j}(t)+2\sum_{i=1}^{n}c_{i}s_{i}(t)\Theta_{i}$

(4.1)

A similar generalization of Goles’ result is possible for any quasi-symmetric NN where $w_{ij}=$

$v_{ij}c_{j}$ such that $v_{ij}=v_{ji},$ $c_{j}>0$ for i,j $=1,2,\ldots,n$ under synchronous operation mode. Consider

the following function $F_{s}(t)$ .
$F_{s}(t)=-\sum_{t_{\sqrt{}}=1}^{n}c_{i}w_{ij}s_{i}(t)s_{j}(t- 1)+\sum_{i=1}^{n}c_{i}(s_{i}(t)+s_{i}(t- 1))\Theta_{i}$

(4.2)

By simple calculations, we have

$F_{s}(t)- F_{s}(t- 1)=-\sum_{i=1}^{n}c_{i}d_{i}(t- 1)(s_{i}(t)- s_{i}(t- 2))$

where di(t-l) $= \sum_{j=1}^{n}w_{ij}s_{j}(t- 1)-\Theta_{i}$ $(4.3)|- d$

$\^{\dot{\mathfrak{J}}}3$

$\overline{s}$

$s*$
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If $d_{i}(t- 1)>0$ then $s_{i}(t)=1$ which means $s_{i}(t)- s_{i}(t- 2)\geq 0$ . If $d_{i}(t- 1)<0$ then $s_{i}(t)=0$ which

means $s_{i}(t)- s_{i}(t- 2)\leq 0$ . In both cases, we have $c_{i}d_{i}(t- 1)(s_{i}(t)- s_{i}(t- 2))\geq 0$ because $c_{i}$ is

positive. Thus $F_{s}(t)$ is a monotone non-increasing function of $t$ and we have

Theorem 4.1.

Let $N(n, W, e)$ be a quasi-symmetric NN where $w_{ij}=v_{ij}c_{j}$ such that $v_{ij}=v_{ji}$ and $c_{j}>0$

for i,j $=1,2,\ldots,n$ . Then the cycle lengths of the global state transition $F_{N}$ are at most two.

The weight parameter of an e-r NN $N(n, ba\bullet C, 6)$ is given by $w_{ij}=b_{i}a_{j}c_{ij}$ as defined in

Section 3. If we assume symmetric connection (i.e., $c_{ij}=c_{ji}$), then we have quasi-symmetric

systems by puming $v_{ij}=b_{i}b_{j}c_{ij}$ and $c_{j}=a\sqrt bj$ for i,j $=1,2,\ldots,n$. Then by Theorems 2.2. and

4.1, we have the following results for the global behaviors of quasi-symmetric e-r NNs.

Theorem 4.2.

$LetN(n, ba\bullet C, \Theta)beane$-rNN such thatC isasymmetric matrix. $Ifa_{j}b_{j}>0forj=$

$1,2,\ldots,n$ , then the cycle lengths of the global state transition for synchronous operation mode

are at most two. If in addition, $c_{ii}=0$ for $i=1,2,\ldots,n$ , then any state configuration approaches

to some stable state under asynchronous operation mode.

5. Concluding Remarks

We defined a class of asymmetric neural networks characterized by effector and receptor

parameters and revealed basic structures of global state transitions for synchronous and

asynchronous modes of operation. Although the class seems to be rather restrictive especiaUy

when we assume complete connection, it has been shown that any state transition can be

realized by a network in this class under synchronous operation. Further, any McCulloch-Pitts

type neural network may be regarded as the one with generalized effector and receptor

parameters, and investigation in this direction is now under progress.

$-/\sigma-$
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The analyses of possible forms of energy functions for asynchronously operating neural

networks done in this paper are also relevant when we want to speed up the network operation.

That is, the fornulas for the energy difference given here enable one to decide easily when it is

possible to carry out (partially) parallel state transition keeping an energy function decreasing.
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