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Abstract $=$ Infanticide has recently been observed in several

primate species. A question of why mothers do not resist infanticide

intensely is investigated by the haploid two-locus model. A

hypothesis that mothers can recover loss of offspring by more gain of

grandchildren is rejected in most cases, and it is shown that costs and

benefits both for males and females have the strongest influence on

the evolution of infanticide and obedience to it. The model may give

rise to coexistence of infanticidal and non-infanticidal males and

obedient and resistant females. Actual observations and data of

primate infanticide are discussed in the light of results of the model.

INTORDUCIION

Since infanticide was first reported in a wild primate population

of hanuman langurs (Presbytis entellus) by Sugiyama (1965), it has

been so far observed in as many as 14 species of natural populations

(Hiraiwa-Hasegawa, 1988). In most cases among them, the basic social
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units are single-male groups, each group containing only one

reproductive male, several females, and their offsprings. When an

adult male, not belonging to any group, replaced a harem leader, it was

observ’ed that the male killed unweaned infants in that group and then

mated with the infants’ mothers. This resulted in that the infanticidal

male had his first offspring earlier than if he did not kill infants.

While interpretation of such infanticide has been one of the most

controversial topics in recent primatology, accumulating evidence

strongly suggests that it is a reproductive strategy for infanticidal

males to promote their own fitnesses (Hausfater and Hrdy, 1984;

Struhsaker and Leland, 1987).

Although infanticide may be advantageous to males, obviously it

is not to females. Therefore, the fact that intense females’ resistance

to infanticidal males was not observed is an evolutionary question to

be investigated (Sugiyama, 1965). To solve this problem, we will be

required to analyze quantitatively costs and benefits of infanticide

both for males and females. In such analysis of coevolution in male

and female traits, consideration of the budget in only one generation is

insufficient. For example, a female receiving infanticide suffers from

some decrease in the number of her offspring, but she may have more

sons sired by the infanticidal male compared than females resisting

infanticide. The sons will inherit the infanticidal trait and may have

more offsprings owing to that trait (Hrdy, 1981, p. 94). Thus the

obedient female may recover the loss of offspring by the more gain of

grandchildren (It\^o, 1987, p. 138).

Recently, coevolution of apparent maladaptive traits of males

and female preference to those traits has been intensively investigated

(Lande, 1981; Kirkpatric, 1982, 1986; Segar and Trivers, 1986;
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Pomiankowsky, 1987). The similar coevolution problem, called the

$\dagger sexy$ son”, has been also $st\cdot udied$ (Kirkpatric 1985). In those analysis,

two kinds of genetic models, the quantitative genetics and the haploid

two-locus model, were applied and the both models gave the similar

results. Here we use the latter simpler model to investigate

theoretically under what conditions the male infanticide and the

female obedience could evolve. Actual observations and data of

primate infanticide are discussed in the light of results of the model.

THE MODEL

The model supposes the following structure of a population with

non-overlapping generations. In the population, there are two types

of males, infanticidal and non-infanticidal, and two types of females,

obedient and resistant. Mature females form a group of a certain size.

The group size does not affect results of the current analysis. Each

group includes one reproductive male at a time. Males other than

reproductive males constitute a reservoir of bachelors. All females in

a group produce their broods simultaneously and the number of

broods in their life is $n$ . Every time after the females produce their

broods, the reproductive male in the group is always replaced by

another male. The replacing males as well as the first reproductive

male appear randomly from the reservoir of bachelor males. If the

replacing male is an infanticidal male, a part of the brood of each

female is killed by the male, and the size of the following brood is

increased. When a female is obedient, the relative decrease and

increase of the broods are designated by $c$ and $b$ , respectively. The
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“relative” means that the sizes are measured so that the brood size of a

pair of an non-infanticidal male and an obedient female is took as the

unit. When a female is resistant, they are designated by $c’$ and $b’$ ,

respectively. The resistant females may pay additional costs of

decreasing the current brood $(c”)$ to wam against infanticide. We will

consider both cases of $c”>0$ and $c”=0$ . In the pair of an obedient female

and an infanticidal male, the balance of the female is minus $(b<c)$ and

the gain of the male is plus $(b>0)$ . Resistant females can reduce the

number of killed offspring $(c’<c)$ , and therefore, the gain of infanticidal

males is reduced $(b’<b)$ . Assuming cases in which resistance results in

reducing the next brood, the value of $b$
’ may be negative.

The organism has a haploid genetic system with two loci, $T$ and

$P$ . The recombination rate between the two loci is designated by $r$

$(0<r\leq 1/2)$ . The value of 1/2 corresponds to free recombination and the

value near to $0$ corresponds to tight linkage of the two loci. The $T$

locus has two alleles, $I$ and $N$ , which code for the infanticidal and non-

infanticidal traits of males, respectively. The $P$ locus has also two

alleles, $O$ and $R$ , which code for the obedient and resistant traits of

females, respectively. Frequencies of genotypes, $IO,$ $IR,$ NO, and $NR$ ,

are identical in the two sexes because the loci are autosomal. They are
designated by $x_{1},$ $x_{2},$ $x_{3}$ , and $x_{4}$ , respectively. Thus, the allele

frequencies of the infanticidal trait and the obedient trait are

$t=x_{1}+x_{2}$ and $p=x_{1}+x_{3}$ , (1)

respectively. Under the above assumptions, we will deduce a system

of equations which represent temporal changes in $t$ and $p$ .

$arrow\triangleleft--$
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The average number of the first brood of an obedient female,

whose genotype is $IO$ or $NO$ , is l-ct because the probability that the

mate of the second brood is an infanticidal male is $t$ . The average

number of the second brood is $1+b- ct$ when the second mate is

infanticidal ($IO$ or $IR$ ) and l-ct when the mate is non-infanticidal $(NO$

or $NR$ ). The average brood sizes from the third to the (n-l)-th brood

are the same as that of the second brood. The last n-th brood size is

$1+b$ when the mate is infanticidal, and 1 when non-infanticidal. The

average number of each brood of a resistant female ($IR$ or $NR$ ) is given

by replacing $c$ and $b$ by $c’$ and $b’$ , respectively, and subtracting the

warning costs $c”$ . Resistant females are assumed to be unable to

discriminate in advance between infanticidal males and non-

infanticidal males, and therefore, they pay the same warning costs for

either type of males. The average brood sizes described above are

summarized in Table 1.

According to the Mendelian segregation law, the probability that

offspring of each combination of parental genotypes becomes each one

of genotypes $IO,$ $IR,$ NO, and $NR$ can be calculated, and they are shown

in Table 2. Using Tables 1 and 2, we can write down the relative

average numbers of individuals with the four genotypes in next

generation, $W_{1},$ $W_{2},$ $W_{3}$ , and $W_{4}$ , as shown in Table 3.

The sum of $W_{i}’s$ in the table can be reduced to a simple form, which

is represented only by allele frequencies $t$ and $p$ in equations (1),

without using $x_{i’}s$ directly:

$W= \sum_{j=1}^{4}W_{j}$
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$=n-(n- 1)\{(c- b)p+(c’- b’)(1- p)\}t-(n- 1)c’’$ (1-p). (2)

Genotype frequencies in next generation are thus given as

$x_{i’}= \frac{W_{i}}{W}$ $(i=1,2,3,4)$ . (3)

These equations are a set of recursion equations which determine

temporal changes in genotype frequencies.

Allele frequencies in next g\’eneration are $\triangleright’=x_{1’}+x_{2’}$ and $p’=x_{1’}+x_{3’}$ .

Using equations (1), (2), and (3), and Table 3, the following formulation

representing changes in $p’$ and $t’$ can be deduced:

$\Delta p=p’- p=_{2}(1_{W^{-}}\infty)+^{\frac{D}{2W}(n- 1)A}$ (4a)

$\Delta t=t’- t=$ $\frac{t(1- t)}{2W}(n- 1)A-\frac{D}{2W}(n- 1)B$ (4b)

where

$A=bp+b’(1- p)$ (4c)

$B=(c- b- c’+b’)t- c”$ (4d)

$D=x_{1}x_{4^{-}}x_{2}x_{3}$ . (4e)

Here, $A$ represents the relative average benefit per brood of an

infanticidal male against a non-infanticidal male, and $B$ represents the

relative average overall costs per brood of an obedient female against

a resistant female. And $D$ is so called the linkage disequilibrium,
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which is a measure of nonrandom association between alleles at the $T$

and $P$ loci. We can see that the equations (4) are constituted of direct

fitness differences in the first terms and indirect effects through the

linkage of the loci in the second terms. It should be remarked that

equation (4) are not closed as a recursion equation of $t$ and $p$ because

$D$ changes temporarily and it cannot be represented only by $t$ and $p$ .
By these equations, however, the temporal changes in $t$ and $p$ can be

analyzed to a certain degree as follows.

A case of no costs for resistance

As stated briefly in introduction, obedient females for infanticide

may recover the loss of offspring by gaining the more grandchildren

because their sons inherit the infanticidal trait more than sons of

resistant females. In the scheme of the population genetics, this

“grandchildren effect“ is represented as the linkage disequilibrium

between alleles at the $T$ and $P$ loci, $D$ , in equation (4e). According to

numerical calculations of equations (3), $D$ becomes positive soon in

most cases even if it starts from zero or negative values. Positive

values of $D$ mean that the allele combinations $IO$ and $NR$ is more

frequent than those of $IR$ and $NO$ , compared with random association

of the alleles. In other words, obedient females do come to carry

infanticidal genes more frequently than resistant females.

In order to examine how influential this grandchildren effect is in

the dynamics of allele frequencies, we consider a special case in which

resistant females can perfectly defend their offspring against

infanticide without any cost, $i.e.,$ $b’=c’=c”=0$ . Under this condition,

resistant females are obviously more advantageous than obedient
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females in respect of the number of offspring. Nevertheless, there are
cases in which the allele frequency of the obedient trait, $p=x_{1}+x_{3}$ , is

increasing if the loss of obedient females, c-b, is rather small. An

numerical example is shown in Fig.la (a broken line), where $n=2$ ,

$b=0.8,$ $c=0.9$, and $r=0.5$ with initial genotype frequencies

$(x_{1},x_{2},x_{3},x_{4})=(0.5,0,0,0.5)$ . These $x_{i’}s$ gives the maximum linkage

disequilibrium $D=0.25$ . As $b>0$ , the allele frequency of the infanticidal

trait, $t=x_{1}+x_{2}$ , increases. Although $p$ also increases for a while, it

reverses the direction to decrease after $t$ attains a certain value. And

finally, the trajectory approaches $(p, t)=(O,1)$ . When more tight

recombination is assumed instead of the above free recombination of

$r=0.5,$ $p$ increases up to a more high level. A dotted line in Fig.la

represents a case of $r=0.1$ . When initial genotype frequencies are 0.25

all together, where $(p, t)=(0.5,0.5)$ and $D=0,$ $D$ increases but the degree

is so small that $p$ does not increase at all. A solid line in Fig.la

represents the trajectory in case of $r=0.5$ . In this case, the maximum

attained value of $D$ is 0.012. Other values of the recombination rate

give almost the same trajectory, and $D$ does not increase above 0.012.

This may be because two operations of building and breaking the

linkage disequilibrium have comparative effects whether the

recombination rate is large or small.

So far as $c$ is larger than $b$ , any pair of $c$ and $b$ led to similar

results. The obedient trait may substantially increase only when

initial values of $D$ are considerably large. As such initial large values

are unnatural, we conclude that the grandchildren effect does not

work influentially in usual cases. Even if the obedient trait increases

temporarily, the final goal is always the fixation of the resistant trait.
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Thus, in order to answer why mothers do not resist infanticide,

consideration of resistant costs is inevitable.

Large $D$ values produce another seemingly curious phenomenon.

When c-b is large with a small $b,$ $p$ decreases rapidly. If the initial

value of $D$ is large, $t$ decreases although infanticidal males are more

advantageous than non-infanticidal males. An example is shown in

Fig.lb where $n=2,$ $b=0.1$ , and $c=0.9$ with initial genotype frequencies
$(x_{1},x_{2},x_{3},x_{4})=(0.5,0,0,0.5)$ : a broken line for $r=0.5$ and a dotted line for

$r=0.1$ . However, the infanticidal trait increases monotonically when

the initial value of $D$ is $0$ (a solid line). Once the resistant trait is fixed

$(p=0),$ $t$ remains unchangeable because infanticidal and non-

infanticidal males are equivalent against resistant females in this case.

Cases of finite costs for resistance

We will analyze mainly the case of positive warning costs $(c”>0)$ ,

and add briefly the case of no warning costs $(c”=0)$ later. First, we

examine the changes on the boundary of the $(p, t)$ space (see Fig.2).

The value of $D$ on the boundary is $0$ because either $x_{1}$ or $x_{4}$ is $0$ and

either $x_{2}$ or $x_{3}$ is $0$ . When $t=0,$ $\Delta t=0$ and $\Delta p=p(1- p)(n- 1)c’’/(2W)>0$ in

equations (4). Therefore, $p$ increases along the $t=0$ axis. When $p=1$ ,

$\Delta p=0$ and $\Delta t=t(1- t)(n- 1)b/(2W)>0$ , which means $t$ increases along the

$p=1$ axis. When $t=1,$ $\Delta t=0$ and $\Delta p$ is proportional to $(c’- b’+c”)-(c- b)\sim$ ’

which is the overall cost difference per brood between a resistant

female and an obedient female when the new mate is an infanticidal

male. We consider two cases, (1) $(c’- b’+\acute{c}’’)>(c- b)$ and (2) $(c’- b’+c”)<(c- b)$ .

The value of $p$ increases in case (1) and decreases in case (2) along the

$t=1$ axis. When $p=0,$ $\Delta p=0$ and $\Delta t$ is proportional to $b’$ . The value of $b’$
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represents benefits of an infanticidal male when the mate is a

resistant female. We also consider two cases,$\sim(3)b’>0$ and (4) $b’<0$ .
Corresponding to each case, the value of $t$ increases or decreases along

the $p=0$ axis. Combination of the above cases gives four different

cases: I.(l) and (3), II.(1) and (4), III. (2) and (3), and IV. (2) and (4).

We illustrated the above four cases in Fig.2, in which changes on

the boundaries are shown by arrows. The directions of arrows in cases
I and II suggest that $(p, t)=(1,1)$ is a stable equilibrium point $(SEP)$ of

equation (3), which means that starting from any point near to this

point, the trajectory approaches the point. We can also presume that

$(p, t)=(O,1)$ is a $SEP$ in case III, and that there is no $SEP$ on the

boundary in case IV. Corners other than the $SEP’s$ are unstable

equilibrium points $(UEP)$ , which means that starting from a point

(actually almost all points) near an $UEP$ , the trajectory departs the

point. Through linearization of equations (4) with respect to the

equilibrium points, it can be easily proved that the above statements

are true.

We can also prove that only in case IV, there is an equilibrium

point $(EP)$ inside the boundary. Because there is only one $SEP$ on the

boundary and no $EP$ inside the boundary in cases I, II, and III, we can

expect that any trajectory finally approaches the $SEP$ , i.e., those points

are globally stable. Putting $A=B=0$ in equations (4), we have the

inside equilibrium point in case IV:

$(p, t)=( \frac{- b’}{b- b’}, \frac{c’’}{c- b- c’+b’})$ (5)

Trajectories are expected to run around this inside $EP$ because the

trajectory on the boundary does go around.
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To get more detailed information, we have conducted numerical

calculations of equations (3). As in the case of no costs, trajectories

were barely dependent on values of the recombination rate and initial

values of $D$ unless the initial $D$ values are unnaturally large. Therefore,

all of examples given in the following are those in which $r=0.5$ and

$D=0$ initially.

Case I: $c’- b’+c”>c- b$ and $b’>0$ —-In this case, resistant females are

less advantageous than obedient females for infanticide, and

infanticidal males are more advantageous than non-infanticidal males

for resistance. Numerical calculations for possible combination of

parameters satisfying the above conditions always give monotonic

increase of both $p$ and $t$ , with reaching finally to $(p, t)=(1,1)$ . Thus

$(1,1)$ was confirmed to be a globally stable equilibrium point which

has been suggested through the boundary analysis. An example is

shown in Fig.la, where $n=2,$ $b=0.2,$ $c=0.5,$ $b’=0.1,$ $c’=0.45$ , and $c”=0.05$ ,

with different initial points.

Case II: c’ $- b’+c”>c- b$ and $b’<0--$ Resistance is less advantageous

but it simultaneously brings costs for infanticidal males. In this case, $t$

decreases when resistant females are common, but increases when

rare. On the other hand, $p$ always increases. The final result is that

$(p, t)$ approaches $(1,1)$ as the same in case I (see Fig. $2b$).

Case III: c’ $- b’+c”<c- b$ and $b’>0--$ Resistant females are more

advantageous than obedient females for infanticide, and infanticidal

males can obtain benefits even when their mates are resistant females.

When $t$ is small, $p$ increases due to the waming costs of resistant

$fema\}es$ . As $t$ increases, $p$ comes to decrease, and $(p, t)$ approaches

$(0,1)$ , contrary to cases I and II (see Fig. $2c$).
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Case IV: $c’- b’+c”<c- b$ and $b’<0---$ Resistance is more advantageous

only when infanticidal males common, and Infanticide is more

advantageous only when obedient females are common. In this case,

trajectories go around an equilibrium point represented by equation

(5), as suggested by the boundary analysis. Numerical calculations

have shown that the $EP$ is always weakly unstable, i.e., starting near

an $EP$ , the trajectory makes circles with its radius increasing gradually.

An example is shown in Fig. $2d$ . Finally, the trajectory come to pass

close to the boundary, and its period to complete one circle becomes

enormously long.

In addition, we examined cases where a small number of males and

females with equal genotype frequencies immigrate into the

population in each generation. When the immigration rate is very

small, trajectories approach a closed circle near the boundary, i.e., a

limit cycle. An example is shown in Fig. $3a$ where the immigration rate

is 0.0001 per population size, and $b=0.2,$ $c=0.5,$ $b’=- 0.2,$ $c’=0,$ $c”=0.05$ ,

and $r=0.5$ . In this case, the linkage disequilibrium $D$ also fluctuated

between 0.001 and 0.004. When the immigration rate is larger, the

$EP$ becomes stable and the final state is coexistence of the four

genotypes. An example is shown in Fig. $3b$ , where the immigration rate

is 0.001, ten times as large as in Fig.$3a$ . In this case, $D$ approached a

constant value of 0.007. Low magnitude of immigration rates (such as

less than 0.001) did not change remarkably the results in cases I, II,

and III, except that the $SEP$ on the boundary move inside slightly.

In the case of no warning costs $(c”=0)$ , the effect of linkage

disequilibrium was nearly analogous to those in the case of positive

warning costs $(c”>0)$ . For cases I and III, the trajectories inside the

boundaries are almost the same, except that all points on the $t=0$ axis
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are equilibrium points (see Fig.$4a,$ $c$ ). For case II, the final goals are

different, depending on initial points, that is, there is a separatrix

(Fig. $4b$). Starting from one side of the separatrix, trajectories approach

a stable equilibrium point $(p,t)=(1,1)$ , and starting from the other side,

trajectories approach the $t=0$ axis. This case is somewhat interesting

because either of two populations, infanticidal males with obedient

females and non-infanticidal males with a mixture of resistant and

obedient females, can occur in the same environmemal condition. For

case IV, trajectories starting from points inside the boundary always

approach the $t=0$ axis finally, although the infanticidal trait may

increase temporarily when the resistant trait is rare.

Above mathematical and numerical analysis shows that the

evolutionary process is determined mainly by parameter values of

costs and benefits. The number of broods per female $n$ has influence

only on the rate of evolution when measured by per generation. The

recombination rate $r$ has influence on the transient pass substantially

only when initial values of the linkage disequilibrium are large. In

conclusion, when we observe that the obedient trait is common among

females in a population, the fact must be attributed to the lower costs

of obedience than costs of resistance (case I or II), or to a transient

state in a long cycle of male and female traits (case IV when $c”>0$ ).

DISCUSSION

In the model, we have assumed, for simplicity of explanation, that

the reproductive male in a group is always replaced by another male

after the females reproduce. This assumption can be relaxed so that
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the male is replaced with a probability $k$ . In this case, the model holds

in the original formulation if all of $b,$ $c,$ $b’,$ $c’$ , and $c”$ are multiplied by
$k$ . Thus, inequalities classifying Cases I, II, III, and IV in the previous

section holds for arbitrary values of $k$ .
Actually, the frequency of male replacement will have correlation

to the number of females in a group, because the reproductive male

can hardly sustain a big group for a long time and the number of

bachelors aiming replacement must be large when one male

monopolizes many females. The group size may thus have indirect

influence. Another more influential effect of the group size may be to

reduce the resistant costs $c’$ and $c”$ if females in a group resist

infanticide cooperatively. Such cooperative resistance has been

observed in some primate populations (Hrdy, 1977; Sommer, 1987).

Infanticide itself have been frequently observed in recent years

(Hiraiwa-Hasegawa, 1988), but none of the observations are

unfortunately sufficient for the costs and benefits to be analyzed

under full quantitative data. We will, however, apply our model for

data on hanuman langurs (Presbytis entellus) at Dharwar, India

(Sugiyama, 1965), and try to estimate parameters in the model. The

main purpose of this attempt is not only to show that the data and

observations are explainable by our model, but also to demonstrate

the method of how the model can be applied for future better data.

The hanuman langurs at Dwarwar constitute typical single-male

groups (Sugiyama, 1965). The reproductive schedule of mature

females is represented in Fig.5 where conception, birth, and weaning

are represented by $C_{i},$ $B_{i}$ , and $W_{i}$ , respectively. The conception period,

the suckling period and the time from weaning to next conception are $\rfloor$

estimated as 6.5, 13, and 4.5
$months\sim llresp_{-}ectively\vdash$

’ and thus inter-birth
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interval is 24 months. Although the population consists of overlapping

generations and the birth time of females is not synchronous as the

assumptions in the model, we try to estimate parameter values of

costs and benefits rather forcingly as follows. When the replacing

male is non-infanticidal, the offspring of the female grows

uneventfully. When the male is infanticidal, unweaned infants of

obedient females are killed but weaned infants are not. Even if the

replacement occurs during conception, the infants assumed to be killed

at their birth. Assuming that the male replacement occurs randomly

during 24 months of one reproductive period, the probability that an

infant is killed by the infanticidal male is $(6.5+13)/24=0.81$ . We put

this value as the. costs of an obedient female, $c$ . Obedient females mate

with the infanticidal male and conceive new infants immediately after

the infanticide. Females carrying weaned infants also mate

immediately with the infanticidal males. Thus, the time of next birth

is advanced, when the number of advanced months are dependent on

the timing of the male replacement. In Fig. 5, those are shown and the

average advanced months are calculated as 17.$5x(6.5/24)+$

$(17.5+0)/2\cross(17.5/24)=11.12$ . This advance of the birth time can

increase the opportunity that the female, as well as the infanticidal

male, produce more offspring in future. We put the ratio of this value

to one reproductive period, $11.12/24=0.46$ , as the benefits of an

obedient female, $b$ . Because $b=0.46>0$ and $c- b=0.81- 0.46=0.35>0$ ,

infanticide in this case is advantageous to males and not to females as

assumed in the model.

Estimation of costs and benefits of resistant females is more

difficult because most females seem to be obedient for infanticide.

Actually, unweaned infants of most females are killed within half a
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month. But, a female could escape from infanticide over one month.

Regarding this female as a resistant female, we assume tentatively

that resistant females can resist infanticide for 1.2 months. Then

unweaned infants who will wean in less than 1.2 months are not

killed, and $c’$ is took as $(6.5+13- 1.2)/24=0.76$ . The next conception of

resistant females is delayed, compared with that of obedient females,

due to the resistance for infanticide. The delay after infanticide is took

as about 2.4 months, and then the total delay is $1.2+2.4=3.6$ months.

The advance of the next conception of a resistant female corresponds

to $b’$ in the model. Thus $b’=b- 3.6/24=0.46- 0.15=0.31$ . We put also

$c”=0$ because the warning costs in this case is assumed to be not so

severe.

The estimated parameter values correspond to case I in the model

because $c’- b’+c”=0.45>c- b=0.35$ and $b’=0.31>0$ . Although the real

situation does not fit exactly for assumptions of the model and the

estimated parameter values are also inaccurate, we still consider the

estimation is not so unreasonable to say that in the hanuman langurs

at Dharwar, obedient females are more advantageous than resistant

females and infanticidal males than non-infanticidal males. Of course,

more extensive observational researches are required to make the

suggestion conclusive.

Although infanticide has been often observed in many species

(Hiraiwa-Hasegawa, 1988), the phenomenon is not common among

general primates. When sexual activity is constrained by seasonality,

and females do not resume receptivity until the following mating

season such as rhesus macaques, there would be little reproductive

gain $(b\approx 0)$ for a male who killed an infant (Hrdy, 1979). Even if

infanticide is advantageous for males $(b>0)$ , resistant females will
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suffer from less costs than obedient females $(c’- b’+c”<c- b)$ unless the

sexual dimorphism of body size is extremely large. If cooperative

resistance of females are made as observed in several primates (Hrdy,

1977; Sommer, 1987), this condition is easier to be satisfied. When

infanticide still benefits for males $(b’>0)$ instead of the female’s

successful resistance, the result is conflict between males and females.

This situation corresponding to case III seems to be most prevailing

situation in primates and other animals living in single-male or multi-

male groups. If infanticide brings the loss for the infanticidal males by

female’s resistance $(b’<0)$ , the result may be a periodic fluctuation of

different traits of males and females (case IV when $c”>0$). The period

becomes enormously long if the population is perfectly isolated from

other populations or migration rates between populations are very

low. In the example in Fig.$3a$, the period of one cycle is about 600

generations. The phenomenon that frequencies of infanticide are

different between populations in the same species (Hrdy, 1979) might

be reasoned by an explanation that we observe different phases of

analogously fluctuating cycles.

Hausfater (1984) discussed the condition of evolution of infanticide

with a special reference to data of langurs at Jodhpur, India (Vogel and

Loch, 1984). The analysis is based upon a model (Chapman and

Hausfater, 1979) where fitnesses of males are frequency-dependent:

non-infanticidal males may be more advantageous than infanticidal

males in the population with most males being infanticidal. This

depends on the key assumptions that the tenure period of

reproductive males has a rigid constant value, that females do not

abort, and that infanticidal males never kill new-born infants who

were fetuses at the time of take-over. The model can thus explain
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coexistence of infanticidal and non-infanticidal males in Jodhpur’s

population, but the assumptions are doubtful at least for us. Actually,

several cases of abortion after male replacement have been reported

in the more recent paper about the Jodhpur population (Sommer,

1987). Although counterstrategies of females are took into

consideration in the model, coevolution of male and female traits is

not. In our view, other various explanations are possible for the

existence of the male dimorphism. For example, males may conduct

infanticide conditionally, depending on ages of infants $and/or$ their

own expected tenure period. Our model also gives stable coexistence

of infanticidal and non-infanticidal males in case IV with warning

costs and migration. We regard that more investigations are necessary

before giving any conclusion to the coexistence.

In our model, we take direct resistance for infanticide as a strategy

of females. Another counterstrategy of females for male infanticide

will be abortion of fetuses in advance when the new-born infants have

a high probability of suffering infanticide after their birth. Our model

can apply also for this case if traits $O$ and $R$ are took as the aborting

and non-aborting traits. Then $c$ is the loss of offspring due to the

abortion and $b$ the increase in future reproduction, and $c’$ is the loss

from infanticide and $b’$ the future reproductive gain when a female

does not abort. Coevolution of the male infanticidal trait and the

female aborting trait can be thus treated in the framework of the

present model.

Theoretical researches on problems about coevolution of male and

female traits has been intensively made recently. The haploid two-

locus model as used here was powerful in every case for its simplicity.

In the problem of evolution of a male trait which reduces own
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survivorship but appeals more to females, the model suggested that

the final result is dependent on initial states (Kirkpatric, 1982). In

other words, a one-dimensional set in the space of male and female

traits is the stable equilibrium of coevolution, with every point on the

set being equivalent. Application of another model of quantitative

genetics for the same problem gives almost the same but slightly

different result: there is a one-dimensional equilibrium set but it may

be either stable or unstable (Lande, 1981). On the evolution of

infanticide, our model gives a result that there is no inside

equilibrium, or if any, it is only one point and the point is unstable.

The analysis by the quantitative genetics model will be useful to test

the robustness of the present haploid two-locus model.
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