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On the rate of convergence in singular perturbations

of obstacle problems

Mt KB (BEMRBEKXKEEIEES)
Shigeaki Koike

8§80 Introduction

In this paper we present some results on singular perturbation
of obstacle problems of variational inequalities. We investigate

the following singular perturbation problems;

max {LEu® - f, ut - »}

"
(=)

in {2,
(e

ut )} on I',

where € > 0 is a small parameter, 2 C R"™ is a bounded domain
with smooth boundary I' and L® is a second order elliptic

operator of the form
Lfu = - £2aijuiy + €biui + cu.

Here and later we use the usual summation convention and the
notation: ui = 2u/9xi, Ui; = 33u/3xi IX;.

We note that the above problem is derived from a variational
inequality. For the details of its derivation and motivation we

refer [1] and [12].
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The work of J.L.Lions [10] is important to the considerations in
singular perturbations of obstacle problems. However, his results
were obtained in a Hilbert space setting. Therefore, we have not
known any results on the rate of pointwise convergence estimates
for solutions of obstacle problems. The purpose here is to get
the optimal rate of pointwise convergence in singular
perturbations of obstacle problems. Our method is due to
comparison prihciple for viscosity solutions.

It is convenient to formulate the notion of viscosity solutions

of (1)¢ in the following manner,

Definition We call a function u € C(Q2) a viscosity solution of
(1) if the following three conditions hold;

(D.1) u ¢ on T andu = ®» in Q.

(D.2) If whenever & € (C2(Q2) and u - & attains its local

maximum at x € (2, then
max{ - €2a;;&ij + ebi&i +cu-f,u-p}r = 0 at x.

(D.3) If whenever & € C2(Q)) and u - ¢ attains its local

minimum at x € {2, then

max{ - €2a;;&i; + ebi&i +cu-f,u-p}ezo at x.



165

In section | we shall deal with the problem (1)¢ under some
assumptions,»which make a boundary layer phenomenon disappear.
In section 2 we shall investigate the problem (1)¢ under another
assumption, which makes a boundary layer of large deviation type

arise.

81 Singular perturbation without boundary layer

In this section we study the following singulaf perturbations of
the obstacle problem:
max{-€2a;;uf; + £biuf + cut - f, ut - P} =0 a.e. in O

(2)¢

where ai;, bi, ¢, f and » are given functions for i,j = 1,...,n.

For simplicity we assume

(A1) aiy, bi, ¢, f, ®» € C3(Q) for i, j = 1,2,...,n
and that there is a positive number & such that

(A.2) aij(xD&:&;, 2 61 &£12

for x € 011, &€ =(&1,...,&0) € R".
The boundary condition in (2)¢ yields the compatibility

condition,
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(A.3) % 2 0 on .

In order to use comparison principle we also assume that there

is a positive number 1 such that
(A.0) c2 1 in 02.
Now we shall state our first result:

Theorem 1 Assume hypotheses (A.1)-(A.4). For each € > 0 let ut
be the unique solution of (2)e¢. If we assume min{f/c,®} = 0 on
', then we find that there exists a positive constant C such

that
(3)e uf(x) - min{f/c,p }(x)1 = Ce
for all x € 02 and small & > 0.

Remark(1) It is known that for each € > 0 (2)¢ has the unique
solution in W2-*= (Q2); see e.g. [7].

(2) J.L.Lions proved that ||u® - min{f/c,®}ll 2y & Ce under

the same assumptions; see p.124 in [11]. Moreover, remarking
Proposition 2.3 in [6], we obtain that u® - min{f/c,®}
uniformly on 02 as ¢ ¢\ 0.

(3) Recently N.Yamada [13] has proved that u® is the unique

viscosity solution of (2)¢; see also [3] and [5].
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Proof of Theorem 1 Without loss of generality we may suppose

that ¢ = 1 in 2. Put u® = min{f,® }.

At first we shall obtain the one-sided inequality: u®(x) - u®(x)
S Ce. Define ¢: 02 X 2 - R by & (x,y) = ut(x) - u®(y) -
Ix -yl2%e - ue for x, y‘é 0, where 2 > max{| Df || = ,

| D Il  } is & positive number to be fixed later on. Assume that
¢ attains its positive maximum over 13 X {3 at a point (Xa;yﬂ)‘.

Using & (xe,ye) = & (xe,xe), we have
(4) |l xe - ya!l = Ceg.

Here and in the sequel C stands for a various positive constant
independent of ¢ .

It we suppose that xo € I', then we obtain that & (xa,ye)

S 0 for sufficiently large u . Indeed, (A.1), (4) and the
assumption that u®(xe) = 0 imply ® (xe,ye) = (Co - u)e, vwhe‘re
Co = max{ | Dfll o, I D® || & }.

Hence, since uf is a viscosity solution of (2)¢, we get
0 2 max{-€2ai;&i; + ebi & + u¢t - £, ut - 3}

at xe. Here we ta’ke Z(x) = uaye) + I x - yal 23/ + pe in
(D.2). Using & i(xe) = 2(xe - yo)i/e and & i;(xe) = 28 i;/ ¢, we

have
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0 2 ut + max{- 2ga:i: + 2bi(x-yo)i - f, - ¥} at xo.
Remembering & (xe,ye) > 0 and (A.1), we get
0 > ua(xe) + ue - Ce - uaye).

This implies contradiction for sufficiently large u .
Therefore, ® can not attain its positive maximum over 2 X Q2.

Hence we obtain that for all x € {02
ut(x) - uﬁ(x) S sup & + ue = ue.

If we proceed as above with & (x,y) = u®(x) - ut(y) - u ¢
- Ix - yl2/g, then we obtain the converse inequality. Indeed,
remarking that & can not take its positive maximum over Cj x 0

at (xe.ye) € {3 X I', we have
0 = max{-€2a:i;j&i; + €bi& i + ut - f, ut - 1} at ye.

This implies contradiction for some large u by the same

calculation as in the above. ' Q.E.D.

Remark(4) VWe can use the above tequenique to more general
singular perturbation problems of obstacle type. More general

results will be discussed in the forthcoming paper [9].
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8§ 2 Singular perturbation with a boundary layer

In this section we study the following special singular

perturbations of the obstacle problem:
max{-c 2a;;u$; + ut, ut - ) =0 a.e. in Q
(5)¢
We must assume another compatibility condition instead of(A.3):
(A.5) Y 2 1 on I'.

Theorem 2 Assume hypotheses (A.1), (A.2) and (A.5). For each ¢
> 0 let ut be the unique solution of (5)¢. Then, we find that
there is a positive‘constant C and a Lipschitz function w(x) such

that for all x € 02
(6) -Ce S uf(x) - u?(x) & exp{-w(x)+to(1)}/e .

Remark(4) Roughly speaking, w(x) is a distance from the boundary,

w=0o0onT and w >0 in Q.
Before the proof of Theorem 2 we state the following lemma:

Lemma (L.C.Evans and H.Ishii [4]) Assume hypotheses (A.1) and
(A.2). For each € > 0 let v¢ be the unique solution of the

linear equation:
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0 in 02,

-e2a;;vE; + vE
()¢
v =1 on T
Then, we find
"v‘(x) = exp{-w(x)+o(1)}/e in 0,

where w 'is the same function in Remark(4).

Remark(5) We also refer [6] and [8] for the details.
(8) In case that min{pp (x)I x € {2} > 0 we note that ut = v¢

on O for small €.

Proof of Theorem 2 In order to obtain - Ce. = uf® - u?, we can

apply the same technique as in the proof of Theorem 1. So we
leave the proof to the reader.

Now let us show the upper estimates.

At first we shall prove u® - u® = exp{-wto(1)}/ €. Let v® be

the unique solution of (7)¢. Assume that u® - y® - v&® attains its
positive maximum over {J at xe. We can assume that xe does not
belong to the set Qo = {x € QI }zb(x) = 0}. Indeed, remarking
that u® - u® = u® - » = 0 on Qe and v¢ 2 0 on {2, we have

ut - u? - vt 5 0 oana.

Hence, for each € > 0 there is a neighborhood N¢ C {2 of xe



such that % > 0 in N¢. Since u® = 0 in N¢g, u® - v&® attains its
positive maximum over N¢ at xe. Bony’s maximum principle ([2])

implies that

0 = IE? ess supl-e2a;; (x){uf;(x) - vi;(x)}]
X &€ Ng,X—> Xo

Remembering that -g£2a;;uf; + u* & 0 a.e. in QQ, we get
contradiction.
Hence, we have u® - u® = v& in Q2. Combining this with Lemma, we

obtain the estimates (6). Q.E.D.
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