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An envelope appearing in semi-infinite programming
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We gave in [7] second-order necessary optimality conditions
for an abstract optimization problem with a generalized
inequality constraint. Our condition involves an extra term
besides the second derivative of the ordinary Lagrange function.
Moreover, we showed that an envelope may be formed by the
generalized inequality constraint and that the extra term is
closely related the second-order directional derivative of the
envelope. The aim of this talk is to give a necessary optimality
condition for a semi—infinite progrémming problem by applying the
result of [7] to this problem. ’We will, moreover, show that the
strengthened condition of theAnecessary condition becomes a

sufficient condition under some additional assumptions.

1. Introduction. We deal with the following semi-infinite

programming problem:
(SIP) minimize f(x) subject to g(x,t)£0 VvVte T,

where T 1is a compact set in a metric space, f and g are
functions defined on R® and R?*X ‘T, respectively. Throughout
this paper, we assume that f is of C2-class and that g,
9g/3x and 32g/3x? are continuous on R™X T.

- When one is concerned with second-order optimality
conditions for (SIP), one must take account of two important

facts., One is that an envelope may be formed by the infinitely

many inequality constraints g{(x,t)£ 0 Vt. The other is that

there is a gap between the second derivatives of the envelope and
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g{x,t). For example, though the second derivativesvofistrait
lines are zero, they may form an envelope with positive second
derivative. Though some investigators were aware of this gap,

see e.g. Ben-Tal and et al [1, p.23], they could not bridge the
gap. When an envelope is formed by the constraints, usual
second-order necessary optimality conditions for (SIP) have given -
no information, see e.g. Ben-Tal and et al [1], Ben-Tal and Zowe
[2], Fiacco and Kortanek [3], Hettich [4], Hettich and Jongen

[51, Toffe [6], Lempio and Zowe [11], Linnemann [12] and Shapiro
[16]. )

The purpose of this talk is to give second-order necessary

and sufficient optimality conditions for (SIP) which agree with

the above-mentioned facts.

In this talk, we treat (SIP) as a minimization problem in
the space of continuous functions C(T). Indeed, (SIP) is

equivalent to
minimize f(x) subject to — G(x)&e C:+(T), (1.1)

where G 1is a mapping from R® to C(T) defined by G(x)(t):
= g(x,t) and C+(T):={ue C(T); u(t)2 0 Yt}. Then the mapping
G 1is of C2-class and its first and second derivatives are given
by (G’ (x)y)(t)= (3 G(x,t)/ax)y, (G"(x)(y,y))(t)=
yI(32G(x,t)/dx2)y, respectively.

We gave in [7] second-order necessary optimality conditions
for an abstract optimization problem including (1.1). Our
necessary condition for (SIP) is obtained by applying the results
of [7] to (1.1). We express the conditions in a familiar form
with finite number of Lagrange multipliers.

The canonical pairing between V and its topological dual

V¥ is denoted by <-,+>. The first and second Fréchet

derivative of g at x are denoted by g’(x) and g"(x),

respectively. Moreover, g"(x)(y,z) denotes the corresponding
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bilinear mapping from X2 +to V. The adjoint operator of g’(x)

is denoted by g’(x)*, that is, <Kg’(x)*v*,y>= <v*,g’(x)y>. Let

A  be a subset of X. Then the conical hull and convex hull of

A are denoted by coneA and coA, respectively. The closure of

coneA 1is denoted by cl(coneA). The support function of A 1is

defined by & *(x* | A):=sup{<x*,x>; x€ A}. The polar cone of K
is defined by Ko:={v*e V*; <«v*,v>2 0 Vve K}.

2. Preliminary results. Let us consider the following abstract

optimization problem with a generalized inequality constraint:
(P) minimize f(x) subject to g(x)e K,

where X and V are Banach spaces, f:X—= R and g:X—=V are of
C2-class and K 1is a closed convex cone with non-empty interior

in V. This problem waé studied in [7].
Definition 2.1. ([7}) For any u, ve V,
K(u,v):= {we V; T o(l)eV s.t. s?2w+ sv+ u+ o(l)e K ¥V s> 0},

where o{(l1l) 1is an arbitrary element of V satisfying o(1)—=0

as s> +0. In particular, we denote K(g(x*),g’(x*)y) by K(y).

Definition 2.2. ([13,14,17]) The system g(x)e K 'is said to be
regular at x* if there exists z& X such that g(x*)+ g’(x*)z

< intK.

Definition 2.3. ([7]) A vector v& X 1is called a critical
direction at x* "if both f’(x*)y= 0 and g’'(x*)ye
cl(cone(K— g(x*))) hold.
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Theorem 2.1. ([7,Theorem 5.1]) Let x* be a local minimum
solution of (P). Suppose that the constraint system is regular
at x*. Then, for each critical direction y satisfying K(y)#

% , there exists v*& K° such that

P (x*)+ g’ (x*)*v¥= 0, '(2.1)‘
£ (x* ) (y,y)+ <v*,g"(x*)(y,y)>— 26 *(v* | K(y))2 0, (2.2)
v, g(x*)>= 0, <V*,g’(x*)y>= 0. (2.3)

The following theorem characterizes K(u,v) when K= C:(K), see .
[8,9].

Theorem 2.2. Let ue C:+(T) and v satisfy that v(t)= 0
whenever u(t)= 0. Let To denote the set of all te T for
which there exists a sequence {tn}C T satisfying (2.4) below

u{(tn)> 0, th—=t and -v(tn)/u(tan)— + as n— +oo , (2.4)

Then we K{u,v) 1if and only if w{t)Zz E(t) for all t&= T, where
E(t) 1is defined by

sup{limsup v(tn)2/4u(tn);{tn} satisfies (2.4)}, if te To,

(2.5a)
0, if u(t)= v(t)=0 and t& To, (2.5b)
- , otherwise. (2.5c)

‘Definition 2.4, Let S:R*"~ R be an arbitrary function. Then
the directional derivative of S(x) at x in the direction vy
is denoted by 8’(x;y). The second-order directional derivative

of S(x) at x 1in the direction <y . is defined by

S"(x3;y):= liTo{S(X+ sy)— S(x)— sS8’(x;y)}/s?, (2.6)
S—> :




65

if the limit exists (we admit the value + oo ). When the limit
does not exist, the upper and lower limits are denoted by

§ (x3;y) and S"(x;y), respectively.

Theorem 2.3. ([8,Theorem 2.2]) Let x* be any point of RO

and let <y be any non-zero direction of JR". Then we have

258" (x"5y)= max{yT (8 2f(x*,t)/ a3 x?)y+ 2E(t;y); te T}, (2.7)
where E(t;y) is defined via (2.5) by taking

u(t)= — g(x*,t), v(t)= 8’ (x*;y)- (@ g(x*,t)/3x)y. (2-9)

3. Second-order necessary conditions for (SIP). Throughout this

section, we use the following notations:

S(x):= sup{g(x,t); te T}, (3.1)
T(x*):= {te T; g(x*,t)= 0}, (3.2)
T(x*3;y):= {te T(x"); (ag(X*,t)/éX)y= 0}, | (3.3)
u(t):= -g(x*,t), v(t):=-(3sg(x",t)/d8x)y, (3.4)
E(t;y) is defined via (2.5) by using the above wu, v. (3.5)

We use v(t;y) instead of v(t), when we emphasize that v(t)
depends on y. We may assume that T(x*)# ¢ without loss of
generality, because {SIP) results in a minimization problem with
no constraint if T(x*)= ¢ . Moreover, we note that T(x*;y)# ¢
for all vy whenevér T(x*)# ¢ . We shall firsf characterize the

critical directions for (SIP).
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Lemma 3.1 (Critical direction). Let x* be a feasible.point fbr
(SIP). Then ye R®™ 1is critical at x* if and only if both
f’(x*)y=0 and S’(x*;y)2< 0 hold.

Lemma 3.2 (Regularity Condition). The system g(x,t)S0 VteT

is regular at x* if and only if there exists =z R" such that

(3 g(x*,t)/ax)z <0 for all te T(x*). (3.6)
Lemma 3.3. Let x* be a feasible solution for (SIP) and let vy
be an arbitrary critical direction. Then K(y)# & is

equivalent to that either 8S’(x*;y)< 0 or 8§ (x*;y)< + holds.

Theorem.3.1. (Necessary condition) Let x* be a local minimum

solution for (SIP). Assume that (3.6) holds for some ze R?™M.

Then, for each critical direction y satisfying either
S’ (x*;y)< 0 or S (x*;y)< 400, there exist at most n+ 1 points
t1, ,tke T(x*;y) and A 12 0, ,A k2 0, k€ n+ 1, such that

k : .
3 f(x*)/ax;+ .leiag(x*,ti)/axa'=0 Vj= 1, ,n,
i= -

k
yTE" (x* )y+ ,211 i{yT(022%2g(x*,ti)/ox2)y+ 2E(ti;y)}2 O.
1=

4. Second-order sufficient condition for (SIP). First we note
that we will also use the notations (3.1)— (3.5) as well as in
the previous section. In this section, we shall show that the
strengthened condition of the necessary condition in the preVious'
section becomes sufficient for optimality under some additional
assumptions. Roughly spéaking, Assumption 4.2 below requires

that g(x*,t) and (3 g{(x*,t)/9x)y do not vibrate with respect

to t on neighborhoods of their common zero points.
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Assumption 4.1. T 1is a compact convex subset of RT.
Assumption 4.2. Let y be an arbitrary critical direction.
Then, for each 7 € T(x*;y) and de RT*, there exist «a , B8 # 0
and natural numbers p, q such that the functions u, v are

expanded into Taylor series as follows:

u(7 + € d+ o(e ))=a € P+ o(e P),
vitT + £ d+ o(e ))= B8 & a4+ o(& a),

whenever 7 4+ & d+ o{e )€ T and & > 0.

Theorem 4.1. (Sufficient condition) Under Assumptions 4.1 and

4.2, a feasible point x*e R"™ 1is an isolated local minimum for

(SIP) if the following conditions are satisfied: (i) there exist

az 0, p 1, ,pac T(x*;y) and w 1> 0,cc ,ua>0 such that
df(x*)/0xj+ T imiadag(x*,pi)/d3xj = 0, j=1,= ,n, (4.1)
(ii) max{E(t;y); te T}< +o Vye R", (4.2)

(iii) for each critical direction vy# 0, there exist b2 0,

T 1, ,TbeE T{x*;y) and A 1> 0, ,A b>0 such that
Af(x*)/3axj+ 2 iAdiog(x*,7i)/3xj=0, Jj= 1, ,n, (4.3)

yIF"(x*)y+ 2 i A i{yT(a2f(x*,7 1)/3x2)y+ 2E(7 i;y)}> 0. (4.4)

5. Concluding remark. ‘Lét x* be a local minimum solution of

(SIP). Then, it seems to the author that it has long been

believed that, for each direction y satisfying

(a3 f(x*)/ax)y=0, max{(3g(x*,t)/2x)y; te T(x*)}= 0, (5.1)
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the second-order directional derivative of the ordinary lLagrange
function would be nonnegative for suitable multipliers. Strictly

speaking, there would exist finite number of multipliers A 12 0,

v A g2 0 and T 1,0, T g€ T(x*;y) such that
af(x*)/ax;;-f-k%llkag(x*,‘[ k)/9x;=0 Jj= 1.’."’n’ (5.2a)
YT (B2£(x*)/ 3 x2)y+ k%fl kyT (3 2g(x*, 1 k)/axz.)y; 0. (5.2b)

But this expectatien ie not necessarily true. When an envelope

is formed from the infinitely many inequality constraints, the
second-order directional derivative of the ordinary Lagrange
function may be negative for some critical direction ¥y, no
matter how the multipliers are chosen. Furthermore, it is easily
verified by the separation theorem that the existence of {A i}
and {7 i} satisfying (5.2) is equivalent to the inconsistency

of the following inequality system:
(9 f(x*)/ax)z+ yT(a2f(x*)/ax2)y< 0, | {(5.3a)
(3g(x*,t)/dax)z+ yT(d2g(x*,t)/ax?)ys0,vYte T(x*;y). (5.3b)

Hence the inequality system (5.3) may has a solution z, when-an
envelope is formed.

Ben-Tal and Zowe [2,Theorem 11.1], Hettich and Jongen
[5,Theorem 4.2], Ioffe [6,Theorem 4}, Lempio and Zowe [11,Theorem
3.2) and Shapiro [16,Theorem 5.2] gave sufficient optimality
conditions for semi-infinite programming problems. But they‘
missed the envelope-like effect, so that their conditions seem'to

be too strong to be satisfied.
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