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A Nonlinear Lattice and Volterra’s System

M.Toda

5-29-8-108 Yoyogi, Shibuya-ku, Tokyo

A new kind of nonlinear lattice is presented. This is not the
usual dynamical system. It is asymmetric with respect to momen-
tum, and consequently the motion is a.éymmetric in space. The
equations of motion can be interpreted as a special case of Lotka-
Volterra’s equation of competing species forming a chain of preys

and predators.

§1. Hamiltonian

The Hamiltonian of the exponential lattice is written as

H(z,p)= ) ”2—: +y {e’(“""‘“”‘“) — 1+ (2a — z,,_l)} .

The potential ¢(r) =e™" —1+7 reduces to qua.dra,tic 72 /2 when 7 is small.
Similarly for small p, the kinetic term can be approximated by e™? — 1+ p.
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We may rather consider a system with the Hamiltonian

H(z,p) = azz {e P —1+p.} + Z {e_("‘—”"‘l) -1+ (2, — zn_l)} ,

" " (1)

where z,, and p, are canonical conjugate variables, coordinate and momen-
tum, and « is a constant. We may introduce some constants to change the
potential term e™" —1+4r to (e~"" —1+br) and to modify similarly the kinetic
term e™? — 1 + p. However by rescaling of coordinate, momentum and energy
we can reduce the Hamiltonian to the above form, with a single parameter a.
Let us suppose (1) to hold for the infinite range of p, and z, (=00 <

Pn < 00,—00 < 2, < 00). Then the canonical equa’;ions of motion are given

as
H
i, = g;): —o? (1—e?), 2)
b aH —_ “(31."31&—1)‘ —'(wn+l—’n) 4
- If we introduce
Pn = 8p — Tp-1, (3)

we obtain the equations of motion in the form
n = a? (e7Pn-1 — 7P, | (4)

i’n — e_"n — e“’n+l, (41)

which are nearly symmetric with respect to », and p,.

If we further write

ale? —1)=1,, - (5)

al(eT™ -1) =V,, ’ (5")
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or .
I,
Pn——log (1+;) 3 (6)
rn = —log (1 +aV,) (6")
and
at =T, (7)
we obtain
d
——logla™ + Vo) =Ly — I, (8)
d 7
—Elog(a + 1) =V, — Vaqr. (8"

The set of equations (8) was already studied by Hirota and Satsuma.l)?)
Soliton solutions and periopdic solutions revealed interesting properties, es-
pecially its non-reciprocal property in the sense that forward propagation and
backward propagé.tion are different.

When a >> 1, p, values are limited small, and the system reduces to

the usual exponential lattice. When a = 1, solitons can propagate only to the

left.

§2. Lagrangean

The time rate of change of z,, or the ”velocity” v, is given from (2) as
Vp = 2, = o’ (1 — e_p") . (9)

Therefore we see that upper bound of v, is limited (—oo < v, < a?). We

have from (9)

a2

Car—z,
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The Lagrangean of the system is given as

L(2,8) = ¥ éupalin) — H(z,0(3)), (11)

n

which 1s

L(z,2) =) {_(az — &,)log azci + :e,,} |
-3 {e-(%-“»—l) —1+ (20 — z,,_l)} . (12)

From this Lagrangean we have the momentum

0L -az
Pr = 5 = log ———, (13)

25 a‘ —z,

which is the same to (10). The Lagrange equations of motion

d 8L 8L |
&0z, Bz, (14)
gives
d
— —("'&"37&—1)_ _("n 1= ‘Bn) —
% log —y { e ¥t } 0. (15)

In view of (13), we see that (15) is the same to (2') as it should be.

$3. Lotka-Volterra’s System
The system under consideration has intimate connection to the Lotka-
Volterra system of competing species,

dN;

— =&l +ﬂ Za,,NN (16)

where N; is the population of the i-th species, and ¢;, 3; and «j; are para.ineters
specifying the system. ¢; and a;; are plus or negative, or zero. It is assumed

that N; has certain equilibrium value g¢;, so that

+—1-Za,~,-q,-=0. | ' (17)
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Further, we assume that (a;;) is skew seymmetric,

aj; = —aj,
then it is known that the system has a conserved quantity '—lf— = 0)
G=afi(e™-1+w), | (18)
where v; is defined by ’ |
Ni=ge™. - (19)

It is to be noted that (18) consists of the familiar functions of the form
e™¥ — 1+ v, used in (2) for momentum and interaction terms.

Lotka-Volterra’s equation (16) can be written as

dv,- 1
== a;q(l—e %) 20
We may put
V2n = Pn-1
o0 (21)
V2n41 = Pn.
If aj; = 0 except that '
1 2
= %2m,2n n = —Q&
Banit 2n,2n+192
1 2
T %2m+22n+192n+2 = QX
Ban+1 (22)
1 v , :
ﬂ:azn—mn'hn—l ="‘1
1

——02a41,20n92n+1 = 1,
‘ ,B2n .
then Lotka-Volterra’s equation (20) reduces to our equations (4) and (4'), and
therefore to (8) and (8').
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