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A Nonlinear Lattice and Volterra’s System

M.Toda

5-29-0-108 Yoyogi, Shibuya-ku, Tokyo

A new kind of nonlinear lattice is presented. This is not the

usual dynamical system. It is asymmetric with respect to momen-

tum, and consequently the motion is asymmetric in space. The

equations of motion can be interpreted as a special case of Lotka-

Volterra’s equation of competing species forming a chain of preys

and predators.

\S 1. Hamiltonian

The Hamiltonian of the exponential lattice is written as

$H(x,p)= \sum_{n}\frac{p_{n}^{2}}{2}+\sum_{n}\{e^{-(x_{\pi}-x_{n-1})}-1+(x_{n}-x_{n-1})\}$ .

The potential $\phi(r)=e^{-}’-1+r$ reduces to quadratic $r^{2}/2$ when $r$ is small.

Similarly for small $p$ , the kinetic term can be approximated by $e^{-p}-1+p$ .
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We may rather consider a system with the Hamiltonian

$H(x,p)= \alpha^{2}\sum_{n}\{e^{-p_{n}}-1+p_{n}\}+\sum_{n}\{e^{-(x_{\pi}-x_{n-1})}-1+(x_{n}-x_{n-1})\}$ ,

(1)

where $x_{\tau\iota}$ and $p_{n}$ are canonical conjugate variables, coordinate and momen-

tum, and $\alpha$ is a constant. We may introduce some constant $s$ to change the

potential term $e^{-}’-1+r$ to $\frac{a}{b}(e^{-br}-1+br)$ and to modify similarly the kinetic

term $e^{-p}-1+p$ . However by rescaling of coordinate, momentum and energy

we can reduce the Hamiltonian to the above form, with a single parameter $\alpha$ .
Let us suppose (1) to hold for the infinite range of $p_{n}$ and $x_{n}(-\infty<$

$p_{\iota}<\infty,$ $-\infty<x_{\tau\iota}<\infty$ ). Then the canonical equations of motion are given

as

$i_{n}= \frac{\partial H}{\partial p_{n}}=\alpha^{2}(1-e^{-p_{n}})$ , (2)

$\dot{p}_{n}=-\frac{\partial H}{\partial x_{n}}=e^{-(x_{n}-x_{n-1})}-e^{-(x_{n+1}-x.)}$ . (2)

If we introduce

$r_{n}=x_{n}-x_{n-1}$ , (3)

we obtain the equations of motion in the form

$\dot{r}_{n}=\alpha^{2}(e^{-p_{n-1}}-e^{-p})$ , (4)

$\dot{p}_{n}=e^{-n}-e^{-}’ n+1$ (4)

which are nearly symmetric with respect to $r_{n}$ and $p_{n}$ .
If we further write

$\alpha(e^{-p}-1)=I_{n}$ , (5)

$\alpha^{-1}(e^{-}’\cdot-1)=V_{n}$ , $(5^{l})$
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or

$p_{n}=- \log(1+\frac{I_{n}}{\alpha})$ , (6)

$r_{n}=-\log(1+\alpha V_{n})$ (6)

and

$\alpha t=\tau$, (7)

we obtain

$-\log(\alpha^{-1}+V_{n})\underline{d}=I_{n-1}-I_{n}$ (8)
$d\tau$

$-\log(\alpha+I_{n})=V_{n}-V_{n+1}\underline{d}$ . (8’)
$d\tau$

The set of equations (8) was already studied by Hirota and Satsuma. $1$ ) $2$ )

Soliton solutions and periopdic solutions revealed interesting properties, es-

pecially it $s$ non-reciprocal property in the sense that forward propagation and

backward propagation are different.

When $\alpha>>1,$ $p_{n}$ values are limited $smaU$ , and the system reduces to

the usual exponential lattice. When $\alpha=1,$ $s$olitons can propagate only to the

left.

\S 2. Lagrangean

The time rate of change of $x_{n}$ , or the ”velocity” $v_{n}$ is given from (2) as

$v_{n}=\dot{x}_{n}=\alpha^{2}(1-e^{-p_{n}})$ . (9)

Therefore we see that upper bound of $v_{n}$ is limited $(-\infty<v_{n}<\alpha^{2})$ . We

have from (9)

$p_{n}= \log\frac{\alpha^{2}}{\alpha^{2}-\dot{x}_{\iota}}$ . (10)
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The Lagrangean of the system is given as

$L(x, i)= \sum_{n}\dot{x}_{n}p_{n}(\dot{x}_{n})-H(x,p(\dot{x}))$
, (11)

which is

$L(x, i)= \sum_{n}\{-(\alpha^{2}-\dot{x}_{n})\log\frac{\alpha^{2}}{\alpha^{2}-i_{n}}+i_{7b}\}$

$- \sum_{n}\{e^{-(x_{n}-x_{n-1})}-1+(x_{n}-x_{n-1})\}$ . (12)

From this Lagrangean we have the momentum

$p_{\tau\iota}= \frac{\partial L}{\partial i_{n}}=\log\frac{\alpha^{2}}{\alpha^{2}-\dot{x}_{n}}$ , (13)

which is the same to (10). The Lagrange equations of motion

$\frac{d}{dt}\frac{\partial L}{\partial i_{n}}-\frac{\partial L}{\partial ae_{n}}=0$ (14)

gives

$\frac{d}{dt}\log\frac{\alpha^{2}}{\alpha^{2}-i_{n}}-\{-1=0$ (15)

In view of (13), we see that (15) is the same to (2’) as it should be.

\S 3. Lotka-Volterra’s System

The system under consideration has intimate connection to the Lotka-

Volterra system of competing species,

$\frac{dN_{i}}{dt}=\epsilon_{i}N_{i}+\frac{1}{\beta_{:}}\sum_{j}\alpha_{ji}N_{j}N_{i}$ (16)

where $N_{i}$ is the population ofthe i-th species, and $\epsilon_{i},$
$\beta_{i}$ and $\alpha_{ji}$ are parameters

specifying the system. $\epsilon$: and $\alpha_{j:}$ are plus or negative, or zero. It is assumed

that $N_{i}$ has certain equilibrium value $q_{i}$ , so that

$\epsilon_{*}\cdot+\frac{1}{\beta_{i}}\sum_{i}\alpha_{ji}q_{j}=0$ .
$\mathfrak{i}$

.

(17)
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Further, we assume that $(\alpha_{ji})$ is skew seymmetric,

$\alpha_{ji}=-\alpha:j$ ,

then it is known that the system has a conserved quantity $( \frac{dG}{dt}=0)$

$G= \sum_{i}q_{i}\beta_{i}(e^{-v:}-1+v_{i})$ , (18)

where $v_{i}$ is defined by

$N_{i}=q:e^{-v:}$ . (19)

It is to be noted that (18) consists of the faniliar functions of the form

$e^{-v}-1+v$ , used in (2) for momentum and interaction terms.

Lotka-Volterra’s equation (16) can be written as

$\frac{dv:}{dt}=\frac{1}{\beta_{:}}\sum_{j}\alpha_{j:\%}(1-e^{-v_{j}})$ . (20)

We may put
$v_{2n}=p_{n-1}$

. (21)
$v_{2n+1}=r_{n}$ .

If $\alpha_{ji}=0$ except that

$\frac{1}{\beta_{2n+1}}\alpha_{2n,2n+1}q_{2n}=-\alpha^{2}$

$\frac{1}{\beta_{2n+1}}\alpha_{2n+2,2n+1}q_{2n\mp 2}=\alpha^{2}$

(22)
$\frac{1}{\beta_{2n}}\alpha_{2n-1,2n}q_{2n-1}=-1$

$\frac{1}{\beta_{2n}}\alpha_{2n+1,2n}q_{2n+1}=1$ ,

then Lotka-Volterra’s equation (20) reduces to our equations (4) and (4’), and

therefore to (8) and (8‘).
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