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Notations and definitions

Let X,Y,{x,ydcV(G), feE(G) and X“Y=fﬁ. Ue often denote {(x)
by x. V(f) denotes the set of end vertices of f. We denote by
d(X,Y;G) the set of edges with one end in X and the other in Y,
and set 3(Xi6)1=a(X,V(6)-X36), e(X,Y16)1=13(X,Y;6)| and
e(X36):=13(X,V(6)-X;6) . 1(x,y;G) denotes the maximal number
of edge—disjoint patHs between x andvy. Ué.set 22=V(G)~X,
N(x3G)1=CaeV(G)=x | ela,x)>0), N(X3;6)1= U N(x;6), and |
MG,k):={ZcV(G) | for each a,beZ, l(a.b;G?Eé). In all notations,
we often omit -G. G/X: denotes the graph obtained from G by
contracting X, and for aeX, we denotes the corresponding vertex
in G/X by . A path P=PIx,y] denotes a path between x and vy,
and for a;bGV(P), P(a,b) denotes a subpath of P betuéén‘a and
b. We call XeV(G) a k-set if IXI>2, IX|>2 and e(X)=k, and a
k-set X is called minimum if for each YgX with 1Y1>2, e(Y))k+1.,
For a,beN(x) with a#b, fed(x,a) and ged(x,b), 62'P denotes the
graph (V(G).kE(G)Uh)~(F,g)), where h is a new edge between a
and b and is called a lifting of G at x arising from the
lifting of f and g at x. : We call Gi’b admissible if for each

b

v, z€V(G)-x with y#z, l(y,szi’ )=A(y,z16).

2. Preliminaries

In this section we assume that k>1 is an integer and G is a

graph.

Lemma 2.1 ( Mader [3] and [51). If k22, 1(G)>k, seV(G),
and (Fl.Fz}Ca(s). then there exists a cycle C such that

(Fl,F2)CE(C) and A(G-E(C))2k-2.

f

3
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Lemma 2.2 (Mader [21). If xeV(G), e(x)>4, |N(x)|22,and X
is not a cut-vertex, then there exists an admissible 1ifting of

G at x.

Lemma 2.3 ([8,Lemma 31). If k23, V(G)=W, U\, W, W =g,
W, el(G,k) and each xeW, has even degree, then we can obtain a
k—-edge—-connected graph G(Ul,k) from G such that U1C V(G(W, ,k))

by sequences of vertex-deletions and edge-liftings.

Lemma 2.4 ([81). If k24 is even , l(G)zkjand s,t,aeV(G)
(3=t or. s#t), then there exists a path PCs,t] such that a€V(P)

- and A(G-E(P)) k-2,

Lemma 2.5. If X<V(G), e(X)=k,and A(G/X)=A(G/X)=k, then
A(G)=k.

Lemma 2.6. If 2(G))k, X,YeV(G), X-Y, Y-X, XNY, and XUY are
not empty, and e(X)=e(Y)=k, then k is even and
e(X*Y)=e(Y-X)=e(X"Y)=k.‘

Proof. By simple counting we have

e (X-Y)+e(Y-X)=e(X)+e(Y)=2e (XNY,XUV),
e(XNY)+e(XVUY)=e(X)+e(Y)-2e(X-Y,Y-X).

Thus e(X-Y)=e(Y-X)=e(XN"Y)=k, and k=e(X)=e(X-Y)+e(XNY)=0 (mod 2).
Lemma 2.7. Suppose that 2(6)=k>3 and IV(G)I>4. Then
(1) If k is odd, G is k—regu\ar,and xeV(G), then |N(x)|23{

(2) if k is even, (x,yXcV(G), e(x)=k,and e(y){k+l, then

e(x,y)<{k/2.

Proof. (1) If IN(x)|<2, then for some yeN(x),



e(x,y)>2(k+1)/2 and e({x,y})<k-1.

(2) If e(x,y)>k/2+1, then e((x,y))=e(x)+el(y)-2(k/2+1)<¢k-1.

3. Proof of Theorem 2

1f V(F)=(s.t}, then by Lemma 2.1, for a gea(s)ff, G has a
cycle C such that (f,g)><E(C) and A(G-E(C))>k-2, and the result
holds. If V(f)=(a,s) and a#t, then by Theorem 1(1) in
L51 G has a path PLa,t] such that F€E(P) and 2(G-E(P))>k-2.

Thus let V(F)”(s.t)=ﬁﬁ, and set T:=V(f)VU(s,t}. We may assume

(see the proof of Theorem 2 and Figures 2,3 in [81)
(3.2) For each xeT, e(x)=k, and for each xeV(G), e(x)=k or k+l1.

We proceed by induction on |E(G)|. We assume that the result

does not hold in G. Then
(3.3) e(s,t)=0.
(3.4) V(G)—T#}ﬁ.

Proof. Assume V(G)=T. Let V(f)=(a,b). Then

2e(s,t)=e(s)te(t)-e({s,t))=e(a)te(b)-e({a,b))=2e(a,b)>0.
(3.5) If XeV(G)-T and [IX1>2, then e(X)>k+1.

Proof. Assume e(X5=k and x€X. By induction G/X has a
required path PCs,t]. If %X¢V(P), then P is a required path for
G, thus let %Xe€V(P) and E(P)"BV%;G/X)=(91.92)- By Lemma 2.1 G/X
has a cycle C such that (g,,9,)<E(C) and A(G/R-E(C))=k-2. By

combining P and C in G, we get a required path for G (see Lemma

2.3).
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(3.6) If xeV(G)-T, then e(x)=k+1l.

Proof, Assume e(x)=k ay Lemma 2.2 there is an admissible

lifting Gx of G at x. Set Gl?=Gx(V(Gx)_x’k) (see Lemma 2.3),

Then l(Gl)=k, and by induction 61 has a required path Pls,t].

Let Pl be the corresponding path in G, and let P2 be a simple

subpath °F>P1 between s and t. Them P2 is a required path for G

(3.7) If (x,y)eV(G)-T and ged(x,y), then A (G ~4)< *.

(3.8) If XcV(G) is a minimum k-set and (x,y)<X-T, then

e(x,y)=0.

Proof. Assume e(x,y)>0. By (3.7) there is a k—-set Y such

that |YN{x,y)|=1. Then Y*X#¢‘#X—Y. since X is minimum. Then

by Lemma 2.6 e(XNY)=k. Thus XNY={(x) ot {y} » contrary to (3,6),

(3.9) If XeV(G) is a k-set, then IX"T|=2.

Proof. Let X1CX be a minimum k-set (X1 might equal X). By

(3.3) |X1"T|21. Assume X1“T={a). By (3.1),(3.2),and (3.6)

|X1—a|22. Let xexi—a, yeil, and set Glz=8/i1. Then |V(Gl)|2&

and by (3.8) N(x;Gl)c(a,?ﬁ. By Lemma 2.7(2) e(x,a)<{k/2 and
e(xfngl)gk/Z, contrary to (3.6). Thus |X1”T'22. and similarly

IXnT122. Hence IXNTI=2.

(3.10) G has no k—saet.

Proof. Assume that G has a k-set X. Let X <X and X,cX be
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minimum k—sets. By (3.9)'|Xi"T|=2 (i=1,2).

(3.10.1) If Y is a k-set and X;"V# @ , then X,cYcX..

1 2

For , if Xl—Y#¢, then Y—X1#¢ and Wi1#¢’, since )(1 is

minimum. By Lemma 2.6 e(Xl—Y)=e(XlnY)=e(Y-X1)=k.

Thus IX,1=2 and by (3.6) xlcT. Let X,=Ca,,a,) and a,eY. If
|Y—X1|22, then by (3.9) |(Y~X1)"T|=2. and so |YNT|=3, contrary

to (3.9). Thus lY—X1|=1, and by (3.6) Y~X1CT. Let Y-X ).

17%a3
Y“X2=(aa), and so x2—a3eT as above, let X2—33=(aa). Now
e(ai,32)=e(a1,a3)=e(a3,aa)=k/2. e(T)<k and by (3.4) T#Sﬁ,
contrary to'(3.6) or (3.9). Hence X1CY; If Y"Xz#ﬂ5, then

similarly XZCY, contrary to (3.9). Therefore YCRZ.

(3.10.2) V(G)=X10X2.

For, assume V(G)#X,UX,. Then there is a YeX, such that X,gY

and e(Y)=k. We choose Y such that |Y| is minimal (Y might equal
X5). Let xeY-X;. If N(x)eX
e(x,Y)>(k+1)/2, and so e(X

107, then e(x,X,)2(k+1)/2 or
1Ux)<k or e(Y-x)<{k. Thus for some
er—Xl, e(x,y)>0. By (3.7) there is a k—-set Z such that
1ZnCx,y) =1, Ue may let xlnz¢y5 (if not, then we take Z as Z).
Then by (3.10.1) XngC.)EZ. By choice of Y, Z-—Y#¢. By Lemma
2.6 e(Z-Y)=k, contrary to (3.6) or (3.9).

Let X1“T=(a1,a2) and XZ“T=(b1.b2). By (3.8) for each

xeXy =T, N(x)C(ai.az)UXZ. and for each yeX,-T, NCy)elby 4by3UX, .
By (3.6), for i=1,2, |Xi| is even and (k+1)|Xi—T|g3k. thus
|Xi—T|=0 or 2. By (3.4) we may let Xl—T=(x1,x2). For i=1,2, if

e(ai,Xz)zk/Z. then e(X Uai)gk, thus e(ai,X )<k/72-1,., Similarly

2 2
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elx, ,X;)¢k/2 (i=1,2). If V(£)=(b,,b,), then e(a1,82)=0. By
Lemma 2.7(2) ela;,x;)<k/2 (i=1,2), and so ela,,x,)>0 (i=1,2).
Similarly e(az.xi)>0 (i=1,2) and the result follows. If
V(F)=(ai,az), then we may let |X2—T|=O, contrary to (3.3). Thus
we may let V(f)=C(a,,b,). Now ela,,b,)=0. If elb,,{x;,%x53)>0,
let giea(bz,xl), then e(x1.52)=0, and so there are g2ea(x1,x2)
and gaea(az.xz). e((al,xl.az);G/X2)=e(al)+e(x1)+e(az)—
2e(al,(x1,32))23k+1-2(k—1)=k+3. Thus A(G/XZ—CF,gi,gz,ga})2k—2.
Therefore e(bz.(xi.xz})=0, and so |X2~T|=2 (note that
e(byya,)=0). Let X,~T=(y,;,y,). Similarly ela,,(y,,y,))=0.
Since (81’b1) is not a separating set, e((xl,xz).(yl.yz))>0.
Let 9,€9(x,sy,). Then elx,,a,)=ely,,b,)=0, and for g,ed(x ,x,),
gaea(xz,az), gaea(yl,yz) and gsea(yz,bz).

A(G-CF P)=k-2.

oglogzvga’gavgs
By (3.7) and (3.10) for each xeV(G)-T, N(x)cT. Let

2). kiTI1<4k-2 and IT| is even , thus and by (3.4)

ITl=2, Let T=(x

V(F)=(ai,a

1,)(2)0 By (3010) e(s’ai)<k/2 (i=1’2), and 80 by

(3.3) e(s,{x })>0 and.e(t,(x }I)>0., Ue may let e(s,xl))O,

1°%2 1'%2
then e(t,x1)=0, e(t,x2)>0 and e(s,x2)=0. (81’82) is not a
separating set , thus e((s,xi).(t,xz)))ﬂ, and so there is a

€d(x ). For i1=1,2, e((s,xzrai})23k—2e(ai,(s,x'))2

91 1°'%2 2
3k-2(k-1)=k+2. Thus for gzea(s,x1> and g5e8(t,x,),

3. Proof of Theorem 1

The proof of Lemma 4.1 will be given }ater.
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Lemma 4.1. Suppose that k>4 is an even integer, n)>3 is an
integer, G is a 2-connected graph, V(G)=T9U1UU2 (disjoint

union), T=(sl....,5n,t1,...,tn). ITl=2n, TUW, el'(G,k),

1
e(si5=e(ti)=k (1€i<k), for each xéUl. e(x)=k or k+i, ahd for
each x€U2, e(x)<k is even. Then there is a subgraph G*cG such
that

(a) for éome 1€i< j<1<{n, G-E(GY) has edge-disjoint paths
Pltsi,ti], P2[sj,tj] and P3[5i’tl]'

(b) V(6*)=K; VUK, and K,;"K,=¢,

(c) T-(si.ti,sj,tj,s].t])CKlér(G*,k-d).

(d) for each xEKZ, e(x3G") is even.

Proof of Theorem 1

By (1.1) it suffices to prove>g(3k)54k and g(3k+2)<{4k+2
(k>2). Let a=0 or 1, m22 is an integer, ki=4m+2a and n:!=3m+2a.
Assume that G is a k~edgé~conne¢ted graph and
(51,..‘.sn,t1,...,tn)i=T are vertices of G (not necessarily
distinct). UWe prove that there are edge—-disjoint paths
Pl""’Ph such that Pi joins s, and ti.(lgign). We may assume

(see the proof of Theorem 2 and Figﬁre 3 in [£61)

(4.1) e(si)=e(ti)=k (1<i¢n) and ?or each xeV(G), e(x)=k or

k+1.

We proceed by induction on lEGYl. If S84S5 then by Lemma 2.4
there is a path PCt;,t,] such that s,eV(P) and 2(G-E(P))k-2.

By induction G-E(P) has edge-disjoint paths Pgﬂsa,t Jyeee,

3
PnEsn,tn]. Thus let |Tl=2n. By Lemma 4.1 there is a subgraph

G*<G such that (a),(b),(c) and (d). hold. By Lemma 2.3
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G*(Kl,k—d) is (k-4)-edge-connected, and by induction G*(Kl,k—d)
has (n-3) edge—-disjoint paths joining (Sr’tr) (1<r<n, ré#i, j, 1),

Thus the result holds in G.
Proof of Lemma 4.1

Suppose that G satisfies the hypothesis of Lemma 4.1, but
the result does not hold. Choose G with this property such

that |E(G)| is minimal.

(4.2) U2= P

Proof. Assume'xEUz. Then e(x)>4., By Lemma 2.2 we have an
admissible 1ifting Gx of G at x. The result holds in Gx’ and

so in G.

(4.3) If 1<i<jsn, Gch is a subgraph such that G-E(G,) has

1
edge—disjoint paths Plﬁsi,ti] and Pz[sj,tj] ’ V(Gl)=K1UK2,
Kan2=y5, T—(si,ti,sj,tj)CKljand for each x€K2. e(x;Gl) is

even, then Klfr(Gl.k—2).

Proof. Assume Kler(Gi,k—2). Let 1S]Sh and 1#i,j. By Lemma

2.4 61 has a path PEsl.t‘] such that A(G,-E(P))>k-4. Let

1
G*!=81~E(P).

(4.,4) 1¥F xeul, then e(x)=k+1.

Proof. Assume e(x)=k. By Lemma 2.2 there is an admissiblé»
lifting Gx of G at x. The result holds in Gx with

V(Gx)=TU(U -x)U{x), and it also holds for G.

1

(4.5) IF-x,yEU1 and fed(x,y), then A(G-f)<{k-1.
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(4.6) If a,beT, then e(a,b)=0.

Proof. If Fea(sl,tl), thén by Theorem 2 there is a path

PCs,,t,] such that f¢E(P) and A(G-E(P)-f))k-2, contrary to

(4.3). 1f Fea(si,sz), then by Theorem 2 G has a path P1E93.t3]
such that F#E(Pl) and l(G—E(Pi)—F)zk—Z. By Lemma 2.4 G—E(Pl)—F
has a path Pz[ti.tzl'such_that 51€V(P2) and

I(G—E(PiUP )-f)2k-4.

2

(a.?) IF lexzeuip aigazeT; ‘Fi‘!a(xi.al) (i=1’2) and
gﬁa(xz.az). then V(G)—alfr(G—(Fl.Fz).k).

Proof. Set Glt=G~(F1,F2). and assume V(B)-alér(Gi,k). Set

62!=Gl(V(G)—al,k). I1f ay=8, and az=t1, then by Theorem 2 02

has a path P[sz,tzj.such that gfE(P) and l(Gz—E(P)—g)zk—Z.
contrary to (4.3). 1¥ a4=8, and 8,=95 then by Theorem 2 GZ

has a path P1[53't33 such that g#E(Pl) and A(GZ—E(Pl)—g)Zk—Z.

By Lemma 2.4 Gz—E(Pl)—g has a path P2[t1.t2] such that a,eV(P,)

2 2

and. 1(G,-E(P,YP,)~-g)dk-4.

2 12

(4.8) G has no k—set.

Proof. Assume X is a minimum k-set. Let ueX. If x,yexruwn ond

fed(x,y), then V(G)-(x,y)el(G-f,k)., For, if not, then for some
k-set Z, |Z0(x,y)|=1. Then Z-XAf@ #XUZ and by Lemma 2.6

e(X-Z)=e(XNZ)=k. Thus IX|=2 and e(x)=e(y)=k,
contrary to (4.6). Thus by (4.5) N(XNU, 3G/X)eTV(T),

and’by (4.6) XnU1#$5#X"T. By (4.4) |XnU1|22. and so IXNT|>2,
Let aeXNT, Since‘e(a.i)(k/Z (otherwise e(X-a)<k), by Lemma 2.2

X»Y {g admissible. By (4.6) (x,y)cU

for some x,yeN(a)NX, Ga 1°
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Let flea(a.x) and era(a,y), then V(G)*aGT(G—(Fl,Fz).k). Let
be((N{(x)UN(y))NX)~a, then beT, contrary to (4.7)

By (4,.2),(4.5),(4.6) and (4.8) G is a bipartite graph with
the partition (T.Ul). Let ae€T. By Lemma 2.2 for some
x.yEN(a), G:’y is admissible and we can deduce a contradiction

(see the proof of (4.8)).
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