Weakly k-linked graphs

大阪市立大学 周村治子 (Haruko Okamura)

1. はじめに

多量辺は含んでもよいが、ループは含まない有限無向グラフを考える。 今をグラフとし、 V(G)は今の点の集合、E(G)は分の辺の集合とする。パスまだはサイクルは、1つの辺を高々1回しか通れないが、同じ点を2回以上通ってもよいことにする。グラフケの辺連結度を2(G)であらわす。

定截1. Go weakly k-linked

 \iff 年の任意の長組の点の対(建複点を含んでもより) $(\beta_1,t_1),\cdots,(\beta_k,t_k)$ に対して、辺素な(i.e. 及いに辺を共有しなり) パス P_1 , P_2 , \cdots , P_k があって、 P_{C} ほおこと たこと 結ぶ (1くこく k)。

定義元. $g(k):=min\{n\mid t \cup \lambda(G) \ge n \Rightarrow G \text{ to weakly k-linked}\}$. 次の不等式がすぐに導ける。

(1.1)
$$g(k) \ge \begin{cases} k & (k p^{n} vdd) \\ k+1 & (k p^{n} even) \end{cases}$$

7(4)=3, Gis weakly 3-linked.

2(G)=4, G 13 weakly 4-linked Titar)

次のことが既知である。

(1.2) g(2) = g(3) = 3 (Okamura [4]),

g (4)=5 (Hirata, Kubota, Paito [1], Mader [3]),

 $g(2k+1) \le 3k$, $g(2k) \le 3k-1$ ($k \ge 2$) (0kamura [8]). 次の結果がえられた。

定理1. $g(3 k) \le 4 k$, $g(3k+1) \le g(3k+2) \le 4 k + 2$ (名之2)

定理工を証明するために、定理るが次要である。

定理ス. 624は偶数, G は &24で 選 かラフ、 $\{s,t\} \in V(G)$, $f \in E(G)$ とする。このとき、 $\{s\}$ とせを結ぶ、f を通らないハロス P があって、 $\lambda(G-E(P)-f) \geq \&-\lambda$ 。

東連する話題が、[5], [6], [7] でも議論エれている。

Notations and definitions

Let X,Y,(x,y) \subset V(G), f \in E(G) and X \cap Y= \not D. We often denote (x) by x. V(f) denotes the set of end vertices of f. We denote by $\partial(X,Y;G)$ the set of edges with one end in X and the other in Y, and set $\partial(X;G):=\partial(X,V(G)-X;G)$, $e(X,Y;G):=|\partial(X,Y;G)|$ and $e(X;G):=|\partial(X,V(G)-X;G)|$. $\lambda(x,y;G)$ denotes the maximal number of edge-disjoint paths between x and y. We set $\bar{X}:=V(G)-X$, $N(x;G):=\{a\in V(G)-x\mid e(a,x)>0\}, N(X;G):=UN(x;G), and$ $\Gamma(G,k):=(Z\subset V(G)|for each a,b\in Z, \lambda(a,b;G)\geq k)$. In all notations, we often omit 6. G/X denotes the graph obtained from G by contracting X, and for a∈X, we denotes the corresponding vertex in G/X by \widetilde{a} . A path P=P[x,y] denotes a path between x and y, and for $a,b \in V(P)$, P(a,b) denotes a subpath of P between a and b. We call $X \subset V(G)$ a k-set if $|X| \geq 2$, $|X| \geq 2$ and e(X) = k, and a k-set X is called minimum if for each $Y \subseteq X$ with $|Y| \ge 2$, $e(Y) \ge k+1$. For a,b \in N(x) with a \neq b, $f\in\partial(x,a)$ and $g\in\partial(x,b)$, $G_x^{a,b}$ denotes the graph $(V(G),(E(G)^{U}h)-\{f,g\})$, where h is a new edge between a and is called a lifting of G at x arising from the lifting of f and g at x. We call $G_x^{a,b}$ admissible if for each $y,z \in V(G)-x$ with $y\neq z$, $\lambda(y,z;G_x^{a,b})=\lambda(y,z;G)$.

2. Preliminaries

In this section we assume that $k\geq 1$ is an integer and G is a graph.

Lemma 2.1 (Mader [3] and [5]). If $k \ge 2$, $\lambda(G) \ge k$, $s \in V(G)$, and $(f_1, f_2) \subset \partial(s)$, then there exists a cycle C such that $(f_1, f_2) \subset E(C)$ and $\lambda(G - E(C)) \ge k - 2$.

Lemma 2.2 (Mader [2]). If $x \in V(G)$, $e(x) \ge 4$, $|N(x)| \ge 2$, and x is not a cut-vertex, then there exists an admissible lifting of G at x.

Lemma 2.3 ([8,Lemma 3]). If $k \ge 3$, $V(G) = W_1 \cup W_2$, $W_1 \cap W_2 = \emptyset$, $W_1 \in \Gamma(G,k)$, and each $x \in W_2$ has even degree, then we can obtain a k-edge-connected graph $G(W_1,k)$ from G such that $W_1 \subset V(G(W_1,k))$ by sequences of vertex-deletions and edge-liftings.

Lemma 2.4 ([8]). If $k \ge 4$ is even , $\lambda(G) \ge k$, and s,t,a $\in V(G)$ (s=t or s≠t), then there exists a path P[s,t] such that a∈V(P) and $\lambda(G-E(P))\geq k-2$.

Lemma 2.5. If $X \subset V(G)$, e(X) = k, and $\lambda(G/X) = \lambda(G/X) = k$, then λ(G)=k.

Lemma 2.6. If $\lambda(G)\geq k$, $X,Y\subset V(G)$, X-Y, Y-X, $X\cap Y$, and $\overline{X\cup Y}$ are not empty, and e(X)=e(Y)=k, then k is even and $e(X-Y)=e(Y-X)=e(X\cap Y)=k$.

Proof. By simple counting we have

$$e(X-Y)+e(Y-X)=e(X)+e(Y)-2e(X-Y,\overline{X}\overline{U}\overline{Y}),$$

$$e(X-Y)+e(X-Y)=e(X)+e(Y)-2e(X-Y,Y-X).$$

Thus $e(X-Y)=e(Y-X)=e(X\cap Y)=k$, and $k=e(X)=e(X-Y)+e(X\cap Y)=0$ (mod 2).

Lemma 2.7. Suppose that $\lambda(G)=k\geq 3$ and $|V(G)|\geq 4$. Then

- (1) If k is odd, G is k-regular, and $x \in V(G)$, then $|N(x)| \ge 3$.
- (2) if k is even, $(x,y)\subset V(G)$, e(x)=k, and $e(y)\leq k+1$, then $e(x,y) \le k/2$.

Proof. (1) If $|N(x)| \le 2$, then for some $y \in N(x)$,

 $e(x,y)\geq (k+1)/2$ and $e((x,y))\leq k-1$.

(2) If $e(x,y)\geq k/2+1$, then $e((x,y))=e(x)+e(y)-2(k/2+1)\leq k-1$.

3. Proof of Theorem 2

If V(f)=(s,t), then by Lemma 2.1, for a $g\in\partial(s)-f$, G has a cycle C such that $(f,g)\subset E(C)$ and $\lambda(G-E(C))\geq k-2$, and the result holds. If V(f)=(a,s) and $a\neq t$, then by Theorem 1(1) in $\begin{bmatrix} 5 \end{bmatrix}$ G has a path P[a,t] such that $f\in E(P)$ and $\lambda(G-E(P))\geq k-2$. Thus let $V(f)\cap(s,t)=\emptyset$, and set $T:=V(f)\cup(s,t)$. We may assume (see the proof of Theorem 2 and Figures 2,3 in [8])

(3.2) For each $x \in T$, e(x) = k, and for each $x \in V(G)$, e(x) = k or k+1. We proceed by induction on |E(G)|. We assume that the result does not hold in G. Then

(3.3) e(s,t)=0.

(3.4) $V(G)-T \neq \emptyset$.

Proof. Assume V(G)=T. Let $V(f)=\{a,b\}$. Then $2e(s,t)=e(s)+e(t)-e(\{s,t\})=e(a)+e(b)-e(\{a,b\})=2e(a,b)>0.$

(3.5) If $X \subset V(G) - T$ and $|X| \ge 2$, then $e(X) \ge k+1$.

Proof. Assume e(X)=k and $x\in X$. By induction G/X has a required path PEs,t]. If $X\notin V(P)$, then P is a required path for G, thus let $X\in V(P)$ and $E(P)\cap\partial(X;G/X)=(g_1,g_2)$. By Lemma 2.1 G/X has a cycle C such that $(g_1,g_2)\subset E(C)$ and $\lambda(G/X-E(C))=k-2$. By combining P and C in G, we get a required path for G (see Lemma 2.5).

(3.6) If $x \in V(G)-T$, then e(x)=k+1.

Proof. Assume e(x)=k. By Lemma 2.2 there is an admissible lifting G_x of G at x. Set $G_1:=G_x(V(G_x)-x,k)$ (see Lemma 2.3). Then $\lambda(G_1)=k$, and by induction G_1 has a required path P[s,t]. Let P_1 be the corresponding path in G, and let P_2 be a simple subpath of P_1 between s and t. Then P_2 is a required path for G

(3.7) If $\{x,y\}\subset V(G)-T$ and $g\in \partial(x,y)$, then $\lambda(G-g)< k$.

(3.8) If $X\subset V(G)$ is a minimum k-set and $(x,y)\subset X-T$, then e(x,y)=0.

Proof. Assume e(x,y)>0. By (3.7) there is a k-set Y such that $|Y\cap(x,y)|=1$. Then $Y-X\neq \phi\neq \overline{X-Y}$, since X is minimum. Then by Lemma 2.6 $e(X\cap Y)=k$. Thus $X\cap Y=\{x\}$ or $\{y\}$, contrary to (3.6).

(3.9) If $X \subset V(G)$ is a k-set, then $|X \cap T| = 2$.

Proof. Let $X_1 \subset X$ be a minimum k-set $(X_1 \text{ might equal } X)$. By $(3.5) |X_1 \cap T| \geq 1$. Assume $X_1 \cap T = (a)$. By (3.1), (3.2), and $(3.6) |X_1 - a| \geq 2$. Let $x \in X_1 - a$, $y \in \overline{X}_1$, and set $G_1 := G/\overline{X}_1$. Then $|V(G_1)| \geq 4$ and by $(3.8) N(x; G_1) \subset (a, \widetilde{y})$. By Lemma $2.7(2) e(x, a) \leq k/2$ and $e(x, \widetilde{y}; G_1) \leq k/2$, contrary to (3.6). Thus $|X_1 \cap T| \geq 2$, and similarly $|\overline{X} \cap T| \geq 2$. Hence $|X \cap T| = 2$.

(3.10) G has no k-set.

Proof. Assume that G has a k-set X. Let $X_1 \subset X$ and $X_2 \subset \overline{X}$ be

minimum k-sets. By (3.9) $|X_{i}^{T}|=2$ (i=1,2).

(3.10.1) If Y is a k-set and $X_1 \cap Y \neq \phi$, then $X_1 \subset Y \subset \overline{X}_2$.

For , if $X_1 - Y \neq \emptyset$, then $Y - X_1 \neq \emptyset$ and $\widehat{Y \cup X}_1 \neq \emptyset$, since X_1 is minimum. By Lemma 2.6 $e(X_1 - Y) = e(X_1 \cap Y) = e(Y - X_1) = k$. Thus $|X_1| = 2$ and by (3.6) $X_1 \subset T$. Let $X_1 = (a_1, a_2)$ and $a_1 \in Y$. If $|Y - X_1| \geq 2$, then by (3.9) $|(Y - X_1) \cap T| = 2$, and so $|Y \cap T| = 3$, contrary to (3.9). Thus $|Y - X_1| = 1$, and by (3.6) $|Y - X_1| = T$. Let $|Y - X_1| = (a_3)$. Yhin $|Y - X_1| = 1$, and by (3.6) $|Y - X_1| = T$. Let $|Y - X_1| = (a_3)$. Now $|Y - X_1| = (a_3) =$

 $(3.10.2) V(G)=X_1 VX_2.$

For, assume $V(G) \neq X_1 \cup X_2$. Then there is a $Y \subset \overline{X}_2$ such that $X_1 \not\subseteq Y$ and e(Y) = k. We choose Y such that |Y| is minimal $(Y \text{ might equal } \overline{X}_2)$. Let $x \in Y - X_1$. If $N(x) \subset X_1 \cup \overline{Y}$, then $e(x, X_1) \geq (k+1)/2$ or $e(x, \overline{Y}) \geq (k+1)/2$, and so $e(X_1 \cup x) < k$ or e(Y - x) < k. Thus for some $y \in Y - X_1$, e(x, y) > 0. By (3.7) there is a $k - s \in Z$ such that $|Z^n(x, y)| = 1$. We may let $X_1 \cap Z \neq \emptyset$ (if not, then we take \overline{Z} as Z). Then by (3.10.1) $X_1 \not\in Z \subset \overline{X}_2$. By choice of Y, $Z - Y \neq \emptyset$. By Lemma 2.6 e(Z - Y) = k, contrary to (3.6) or (3.9).

Let $X_1^nT=(a_1,a_2)$ and $X_2^nT=(b_1,b_2)$. By (3.8) for each $x\in X_1^{-1}$, $N(x)=(a_1,a_2)^{U}X_2$, and for each $y\in X_2^{-1}$, $N(y)=(b_1,b_2)^{U}X_1$. By (3.6), for i=1,2, $|X_i|$ is even and $(k+1)|X_i^{-1}|\le 3k$, thus $|X_i^{-1}|=0$ or 2. By (3.4) we may let $X_1^{-1}=(x_1,x_2)$. For i=1,2, if $e(a_i,X_2)\ge k/2$, then $e(X_2^{U}a_i)\le k$, thus $e(a_i,X_2)\le k/2-1$. Similarly

 $e(x_1, X_2) \le k/2 \ (i=1,2). \quad \text{If } V(f) = (b_1, b_2), \ \text{then } e(a_1, a_2) = 0. \ \text{By}$ Lemma 2.7(2) $e(a_1, x_1) \le k/2 \ (i=1,2), \ \text{and so } e(a_1, x_1) > 0 \ (i=1,2).$ Similarly $e(a_2, x_1) > 0 \ (i=1,2)$ and the result follows. If $V(f) = (a_1, a_2), \ \text{then we may let } |X_2 - T| = 0, \ \text{contrary to } (3.3). \ \text{Thus we may let } V(f) = (a_1, b_1). \ \text{Now } e(a_2, b_2) = 0. \ \text{If } e(b_2, (x_1, x_2)) > 0,$ let $g_1 \in \partial(b_2, x_1), \ \text{then } e(x_1, a_2) = 0, \ \text{and so there are } g_2 \in \partial(x_1, x_2)$ and $g_3 \in \partial(a_2, x_2). \quad e((a_1, x_1, a_2); G/X_2) = e(a_1) + e(x_1) + e(a_2) - 2e(a_1, (x_1, a_2)) \ge 3k + 1 - 2(k - 1) = k + 3. \quad \text{Thus } \lambda(G/X_2 - (f, g_1, g_2, g_3)) \ge k - 2.$ Therefore $e(b_2, (x_1, x_2)) = 0, \ \text{and so } |X_2 - T| = 2 \ (\text{note that } e(b_2, a_2) = 0). \quad \text{Let } X_2 - T = (y_1, y_2). \quad \text{Similarly } e(a_2, (y_1, y_2)) = 0.$ Since (a_1, b_1) is not a separating set, $e((x_1, x_2), (y_1, y_2)) > 0.$ Let $g_1 \in \partial(x_1, y_1). \quad \text{Then } e(x_1, a_2) = e(y_1, b_2) = 0, \ \text{and for } g_2 \in \partial(x_1, x_2),$ $g_3 \in \partial(x_2, a_2), \ g_4 \in \partial(y_1, y_2) \ \text{and } g_5 \in \partial(y_2, b_2),$ $\lambda(G - (f, g_1, g_2, g_3, g_4, g_5)) = k - 2.$

By (3.7) and (3.10) for each $x \in V(G)-T$, $N(x) \in T$. Let $V(f)=(a_1,a_2)$. $k|T| \le 4k-2$ and |T| is even , thus and by (3.4) |T|=2. Let $T=(x_1,x_2)$. By (3.10) $e(s,a_1) \le k/2$ (i=1,2), and so by (3.3) $e(s,(x_1,x_2)) > 0$ and $e(t,(x_1,x_2)) > 0$. We may let $e(s,x_1) > 0$, then $e(t,x_1)=0$, $e(t,x_2) > 0$ and $e(s,x_2)=0$. $\{a_1,a_2\}$ is not a separating set , thus $e(\{s,x_1\},(t,x_2)) > 0$, and so there is a $g_1 \in \partial(x_1,x_2)$. For i=1,2, $e(\{s,x_2,a_1\}) \ge 3k-2e(a_1,\{s,x_2\}) \ge 3k-2(k-1)=k+2$. Thus for $g_2 \in \partial(s,x_1)$ and $g_3 \in \partial(t,x_2)$, $\lambda(G-(f,g_1,g_2,g_2)) \ge k-2$.

3. Proof of Theorem 1

The proof of Lemma 4.1 will be given later.

Lemma 4.1. Suppose that $k\geq 4$ is an even integer, $n\geq 3$ is an integer, G is a 2-connected graph, $V(G)=T^{U}W_1^{U}W_2$ (disjoint union), $T=(s_1,\ldots,s_n,t_1,\ldots,t_n)$, |T|=2n, $T^{U}W_1\in\Gamma(G,k)$, $e(s_i)=e(t_i)=k$ $(1\leq i\leq k)$, for each $x\in W_1$, e(x)=k or k+1, and for each $x\in W_2$, $e(x)\leq k$ is even. Then there is a subgraph $G^*\subset G$ such that

- (a) for some $1 \le i \le j \le t_1$, has edge-disjoint paths $P_1[s_i,t_i]$, $P_2[s_i,t_i]$ and $P_3[s_1,t_1]$.
 - (b) $V(G^*)=K_1 UK_2$ and $K_1 UK_2 = \emptyset$,
 - (c) $T-(s_i,t_i,s_i,t_i,s_i,t_i) \subset K_1 \in \Gamma(G^*,k-4)$,
 - (d) for each x∈K₂, e(x;G*) is even.

Proof of Theorem 1

By (1.1) it suffices to prove $g(3k) \le 4k$ and $g(3k+2) \le 4k+2$ $(k \ge 2)$. Let $\alpha = 0$ or 1, $m \ge 2$ is an integer, $k := 4m+2\alpha$ and $n := 3m+2\alpha$. Assume that G is a k-edge-connected graph and $(s_1, \ldots, s_n, t_1, \ldots, t_n) := T$ are vertices of G (not necessarily distinct). We prove that there are edge-disjoint paths P_1, \ldots, P_n such that P_i joins s_i and t_i $(1 \le i \le n)$. We may assume (see the proof of Theorem 2 and Figure 3 in [6])

(4.1) $e(s_i)=e(t_i)=k$ ($1\leq i\leq n$) and for each $x\in V(G)$, e(x)=k or k+1.

We proceed by induction on |E(G)|. If $s_1 = s_2$, then by Lemma 2.4 there is a path $P[t_1, t_2]$ such that $s_1 \in V(P)$ and $\lambda(G - E(P))k - 2$. By induction G - E(P) has edge-disjoint paths $P_3[s_3, t_3], \ldots$, $P_n[s_n, t_n]$. Thus let |T| = 2n. By Lemma 4.1 there is a subgraph $G^* \subset G$ such that (a),(b),(c) and (d) hold. By Lemma 2.3

 $G^*(K_1,k-4)$ is (k-4)-edge-connected, and by induction $G^*(K_1,k-4)$ has (n-3) edge-disjoint paths joining (s_r,t_r) $(1 \le r \le n, r \ne i,j,l)$. Thus the result holds in G.

Proof of Lemma 4.1

Suppose that G satisfies the hypothesis of Lemma 4.1, but the result does not hold. Choose G with this property such that |E(G)| is minimal.

(4.2)
$$W_2 = \emptyset$$
.

Proof. Assume $x \in W_2$. Then $e(x) \ge 4$. By Lemma 2.2 we have an admissible lifting G_x of G at x. The result holds in G_x , and so in G.

 $(4.3) \ \text{If } 1 \leq i < j \leq n, \ G_1 \subset G \ \text{is a subgraph such that } G - E(G_1) \ \text{has edge-disjoint paths } P_1 \subseteq_i, t_i \exists \text{ and } P_2 \subseteq_j, t_j \exists, \ V(G_1) = K_1 \cup K_2, \\ K_1 \cap K_2 = \emptyset, \ T - (s_i, t_i, s_j, t_j) \subset K_1, \\ \text{and for each } x \in K_2, \ e(x; G_1) \ \text{is even, then } K_1 \not \models \Gamma(G_1, k-2).$

Proof. Assume $K_1 \in \Gamma(G_1, k-2)$. Let $1 \le l \le n$ and $l \ne i, j$. By Lemma 2.4 G_1 has a path $P[s_1, t_1]$ such that $\lambda(G_1 - E(P)) \ge k-4$. Let $G^* := G_1 - E(P)$.

(4.4) If $x \in W_1$, then e(x)=k+1.

Proof. Assume e(x)=k. By Lemma 2.2 there is an admissible lifting G_x of G at x. The result holds in G_x with $V(G_x)=T^{\vee}(W_1-x)^{\vee}(x)$, and it also holds for G.

(4.5) If $x,y \in W_1$ and $f \in \partial(x,y)$, then $\lambda(G-f) \leq k-1$.

(4.6) If a,b∈T, then e(a,b)=0.

Proof. If $f \in \partial(s_1, t_1)$, then by Theorem 2 there is a path $P \sqsubseteq s_2, t_2 \rfloor$ such that $f \notin E(P)$ and $\lambda(G - E(P) - f) \geq k - 2$, contrary to (4.3). If $f \in \partial(s_1, s_2)$, then by Theorem 2 G has a path $P_1 \sqsubseteq s_3, t_3 \rfloor$ such that $f \notin E(P_1)$ and $\lambda(G - E(P_1) - f) \geq k - 2$. By Lemma 2.4 $G - E(P_1) - f$ has a path $P_2 \sqsubseteq t_1, t_2 \rfloor$ such that $s_1 \in V(P_2)$ and $\lambda(G - E(P_1^{\mathsf{UP}}_2) - f) \geq k - 4$.

(4.7) If $x_1, x_2 \in W_1$, $a_1, a_2 \in T$, $f_i \in \partial(x_i, a_1)$ (i=1,2) and $g \in \partial(x_2, a_2)$, then $V(G) = a_1 \notin \Gamma(G - (f_1, f_2), k)$.

Proof. Set $G_1:=G-(f_1,f_2)$, and assume $V(G)=a_1\in\Gamma(G_1,k)$. Set $G_2:=G_1(V(G)=a_1,k)$. If $a_1=a_1$ and $a_2=t_1$, then by Theorem 2 G_2 has a path $P[a_2,t_2]$ such that $g\notin E(P)$ and $\lambda(G_2-E(P)=g)\geq k-2$, contrary to (4.3). If $a_1=a_1$ and $a_2=a_2$, then by Theorem 2 G_2 has a path $P_1[a_3,t_3]$ such that $g\notin E(P_1)$ and $\lambda(G_2-E(P_1)=g)\geq k-2$. By Lemma 2.4 $G_2-E(P_1)=g$ has a path $P_2[t_1,t_2]$ such that $a_2\in V(P_2)$ and $\lambda(G_2-E(P_1)=g)\geq k-4$.

(4.8) G has no k-set.

Proof. Assume X is a minimum k-set. Let $u \in \overline{X}$. If $x,y \in X \cap W_1$ and $f \in \partial(x,y)$, then $V(G) - (x,y) \in \Gamma(G-f,k)$. For, if not, then for some k-set Z, $|Z^{\cap}(x,y)| = 1$. Then $Z - X \neq \emptyset \neq \overline{X^{\cup}Z}$ and by Lemma 2.6 $e(X-Z) = e(X^{\cap}Z) = k$. Thus |X| = 2 and e(x) = e(y) = k, contrary to (4.6). Thus by (4.5) $N(X^{\cap}W_1; G/\overline{X}) \subset T^{\cup}(\widetilde{U})$, and by (4.6) $X^{\cap}W_1 \neq \emptyset \neq X^{\cap}T$. By (4.4) $|X^{\cap}W_1| \geq 2$, and so $|X^{\cap}T| \geq 2$. Let $a \in X^{\cap}T$. Since $e(a, \overline{X}) \leq k/2$ (otherwise $e(X-a) \leq k$), by Lemma 2.2 for some $x, y \in N(a)^{\cap}X$, $G_a^{\times, y}$ is admissible. By (4.6) $(x, y) \subset W_1$.

Let $f_1 \in \partial(a,x)$ and $f_2 \in \partial(a,y)$, then $V(G) = a \in \Gamma(G - (f_1,f_2),k)$. Let $b \in ((N(x) \cup N(y)) \cap X) = a$, then $b \in T$, contrary to (4.7)

By (4.2), (4.5), (4.6) and (4.8) G is a bipartite graph with the partition (T, W_1) . Let a \in T. By Lemma 2.2 for some $x, y \in N(a)$, $G_a^{x,y}$ is admissible and we can deduce a contradiction (see the proof of (4.8)).

References

- 1. T. Hirata, K. Kubota, and O. Saito, A sufficient condition for a graph to be weakly k-linked, J. Combin. Theory Ser. B 36 (1984), 85-94.
- 2. W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete Math. 3 (1978), 145-164.
- 3. W. Mader, Paths in graphs, reducing the edge-connectivity only by two, Graphs and Combin. 1 (1985), 81-89.
- 4. H. Okamura, Multicommodity flows in graphs II, Japan. J. Math. 10 (1984), 99-116.
- 5. H. Okamura, Paths and edge-connectivity in graphs, J. Combin. Theory Ser. B 37 (1984), 151-172.
- 6. H. Okamura, Paths and edge-connectivity in graphs II. In:
 Number theory and Combinatorics (Tokyo, Okayama, Kyoto
 1984), pp.337-352. Singapore: World Sci. Publishing 1985.
- 7. H. Okamura, Paths and edge-connectivity in graphs III.

 Six-terminal k paths, Graphs and Combinatorics 3 (1987),

 159-189.
- 8. H. Okamura, Paths in k-edge-connected graphs, J. Combin.
 Theory Ser. B 45 (1988), 345-355.