Algebraic Riemann manifolds
 Kazuo Yamato 大 和一夫
 College of General Education，Nagoya University

We give a criterion by which we decide whether two given Riemann manifolds M, \bar{M} are isometric or not．We recall the following classical theorem．

Theorem（ C^{ω} isometry theorem ）．Let M, \bar{M} be real analytic Rie－ mann manifolds of dimension n ．Let $p \in M, \bar{p} \in \bar{M}$ ．Suppose that there exists a linear isometry $I: T_{p}(M) \rightarrow T_{\bar{p}}(\bar{M})$ which preserves the curvature tensors R, \bar{R} ，and their covariant differentials $\nabla^{k} R, \nabla^{k} \bar{R}$ of any order k ． Then the mapping I can be extended to an isometry h between neigh－ borhoods of p, \bar{p} ．Hence in particular if M, \bar{M} are complete，connected，and simply connected，then M, \bar{M} are isometric．

By replacing C^{ω} with the Nash category C^{Ω} ，and introducing the notion ＂minimal differential polynomial＂ϕ_{M} of a C^{Ω} Riemann manifold M ，we observe that the proof of this theorem implies the following criterion． Theorem 1．Let M, \bar{M} be C^{Ω} Riemann manifolds of dimension n．Let $p \in M, \bar{p} \in \bar{M}$ ．Suppose that
（1）the minimal differential polynomials $\phi_{M}, \phi_{\bar{M}}$ coincide，
（2）the two point p, \bar{p} are＂nonsingular＂with respect to $\phi_{M}, \phi_{\bar{M}}$ ，respec－ tively，and
（3）there exists a linear isometry $I: T_{p}(M) \rightarrow T_{\bar{p}}(\bar{M})$ which preserves the curvature tensors R, \bar{R} ，and their first $4 n-5$ covariant differen－ tials $\nabla^{k} R, \nabla^{k} \bar{R}$ ．

Then the mapping I can be extended to an isometry h between neighborhoods of p, \bar{p}.

As an application we obtain
Theorem 2. Let M be a compact C^{Ω} Riemann manifold of dimension n. Suppose that M is nowhere homogeneous, i.e. for any distinct points p, q of M, there exists no isometry $h, h(p)=q$, between neighborhoods of p, q. Then M is C^{Ω} embeddable, and the embedding is given by means of general scalar curvatures. If any point of M is nonsingular with respect to ϕ_{M}, then some finite number of general scalar curvatures of order at most $4 n-5$ give a one to one mapping of M into a vector space.

Reference

K.Yamato, Algebraic Riemann manifolds, Nagoya Math. J. 115 (1989) (to appear).

