College of General Education, Nagoya University

We give a criterion by which we decide whether two given Riemann manifolds M,\overline{M} are isometric or not. We recall the following classical theorem.

THEOREM (C^{ω} ISOMETRY THEOREM). Let M,\overline{M} be real analytic Riemann manifolds of dimension n. Let $p \in M$, $\overline{p} \in \overline{M}$. Suppose that there exists a linear isometry $I: T_p(M) \to T_{\overline{p}}(\overline{M})$ which preserves the curvature tensors R,\overline{R} , and their covariant differentials $\nabla^k R$, $\nabla^k \overline{R}$ of any order k. Then the mapping I can be extended to an isometry h between neighborhoods of p,\overline{p} . Hence in particular if M,\overline{M} are complete, connected, and simply connected, then M, \overline{M} are isometric.

By replacing C^{ω} with the Nash category C^{Ω} , and introducing the notion "minimal differential polynomial" ϕ_M of a C^{Ω} Riemann manifold M, we observe that the proof of this theorem implies the following criterion.

THEOREM 1. Let M, \overline{M} be C^{Ω} Riemann manifolds of dimension n. Let $p \in M, \bar{p} \in \overline{M}$. Suppose that

- (1) the minimal differential polynomials ϕ_M , $\phi_{\overline{M}}$ coincide,
- (2) the two point p,\bar{p} are "nonsingular" with respect to ϕ_M , $\phi_{\overline{M}}$, respectively, and
- (3) there exists a linear isometry $I: T_p(M) \to T_{\overline{p}}(\overline{M})$ which preserves the curvature tensors R, \overline{R} , and their first 4n - 5 covariant differentials $\nabla^k R, \nabla^k \overline{R}$.

As an application we obtain

THEOREM 2. Let M be a compact C^{Ω} Riemann manifold of dimension n. Suppose that M is nowhere homogeneous, i.e. for any distinct points p,q of M, there exists no isometry h, h(p) = q, between neighborhoods of p,q. Then M is C^{Ω} embeddable, and the embedding is given by means of general scalar curvatures. If any point of M is nonsingular with respect to ϕ_M , then some finite number of general scalar curvatures of order at most 4n-5 give a one to one mapping of M into a vector space.

REFERENCE

K.Yamato, Algebraic Riemann manifolds, Nagoya Math. J. 115 (1989) (to appear).