Context-free Languages in $X^+ \setminus Q$

M. Ito and M. Katsura

伊藤正美(京都産業大・理) 勝良 昌司(京都産業大・理)

Abstract

Let X be a nonempty finite set, called an *alphabet*, such that |X| > 1. By Q we denote the set $\{f \in X^+ \mid f = g^i \ (i \ge 1, g \in X^+) \Rightarrow i = 1\}$. Moreover, for any $i \ge 1$, $Q^{(i)}$ means the set $\{f^i \mid f \in Q\}$. Let $L \subseteq X^*$. Then P_L is the following congruence relation on X^* :

 $u \equiv v \ (P_L) \Leftrightarrow \forall x, y \in X^* \ (xuy \in L \Leftrightarrow xvy \in L)$

If $u \equiv v$ (P_L) implies u = v, then $L \subseteq X^*$ is called a *disjunctive* language. Let $L \subseteq X^*$. If $X^*uX^* \cap L \neq \emptyset$ for any $u \in X^*$, then $L \subseteq X^*$ is called a *dense language*. It is easy to see that a disjunctive language is a dense language.

Now we collect some results and a problem related to context-free languages.

- (C.1) There is an infinite context-free language $L \subseteq X^*$ such that $L \subseteq Q$.
- (C.2) There is an infinite context-free language $L \subseteq X^*$ such that $L \subseteq Q^{(2)}$.
- (C.3) Let $i \ge 3$. Is there an infinite context-free language $L \subseteq X^*$ such that $L \subseteq Q^{(i)}$?
- (C.4) For any $n \ge 1$, there is an infinite context-free language $L \subseteq X^*$ such that $L \subseteq \bigcup_{1 \le i \le n} Q^{(i)}$ and $|L \cap Q^{(n)}| = \infty$.

Note that some of the above results do not hold for some classes of regular languages. For instance, there is no dense regular language $L \subseteq X^*$ such that $L \subseteq Q$ (compare with (DC.1)). We consider now the case of dense (or disjunctive) context-free languages.

- (DC.1) There is a disjunctive context-free language $L \subseteq X^*$ such that $L \subseteq Q$.
- (DC.2) Is there a dense (or disjunctive) context-free language $L \subseteq X^*$ such that $L \subseteq Q^{(2)}$?
- (DC.3) Let $i \ge 3$. Is there a dense (or disjunctive) contextfree language $L \subseteq X^*$ such that $L \subseteq Q^{(i)}$?
- (DC.4) There is a disjunctive context-free language $L \subseteq X^*$ such that $L \subseteq Q \cup Q^{(2)}$, $|L \cap Q| = \infty$ and $|L \cap Q^{(2)}| = \infty$.
- (DC.5) There is a disjunctive context-free language $L \subseteq X^*$ such that, for any $i \ge 1$, $|L \cap Q^{(i)}| = \infty$.

To solve the problems (C.3), (DC.2) and (DC.3), we will determine the structure of context-free languages in $X^+ \setminus Q$ and $Q^{(2)}$.

Theorem 1. Let $L \subseteq X^*$ be a context-free language such that $L \subseteq X^+ \setminus Q$. Then $L_1 = L \cap Q^{(2)}$ is a context-free language and $L_2 = L \cap (\bigcup_{i\geq 3} Q^{(i)})$ is a regular language. More exactly, L_2 can be represented as follows :

 $L_2 = (\bigcup_{1 \le i \le n} f_i^{m_i} (f_i^{k_i})^*) \cup F \text{ where } f_i \in Q, m_i \ge 3, k_i \ge 1 \ (1 \le i \le r) \text{ and } F \subseteq X^* \text{ is a finite set.}$

From the above, we have :

Theorem 2. For any $i \ge 3$, there is no infinite context-free language $L \subseteq X^*$ such that $L \subseteq Q^{(i)}$.

As for context-free languages in $Q^{(2)}$, we have :

Theorem 3. Let $L \subseteq X^*$ be a context-free language such that $L \subseteq Q^{(2)}$. Then $L = (\bigcup_{1 \le i \le r} (f_i g_i^{k_i} (g_i)^* h_i)^2) \cup F$ where $k_i \ge 1$, $f_i g_i^{k_i} (g_i)^* h_i \subseteq Q$ $(1 \le i \le r)$ and $F \subseteq X^*$ is a finite set.

This result induces the following :

Theorem 4. There is no dense context-free language $L \subseteq X^*$ such that $L \subseteq Q^{(2)}$.

For a dense regular language $L \subseteq X^*$, we know that $L \cap Q$ becomes a disjunctive language. However, in the case of dense context-free languages, only the following result holds.

Theorem 5. Let $L \subseteq X^*$ be a dense context-free language. Then $L \cap Q$ is a dense language.

Problem 1. Is $L \cap Q$ a disjunctive language when $L \subseteq X^*$ is a disjunctive language ?