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- The notion of an infinitesimal has been used since the time of
Archimedes. His book, "The Method", was discovered in 1909 in Library of
Constantinoble. Calculus was formulated using infinitesimals in the late
sixteen hundreds by the German mathematician Leibniz and by Newton.
Leibniz regarded infinitesimals as a wuseful fiction which facilitated
mathematical computation and invention. Even then, there was controversy.
Bishop George Berkeley wrote, "What afe these fluxions? They are neither
finite quantities, nor quantities infinitely small, nor yet nothing. May we not
call them the ghosts of departed quantities?" His point was to question the
intellectual consistency of -atheists who believed in infinitesimals.  The
question was, how can there be a positive number which is smaller than any
real number without being zero.

Abraham Robinson in 1960 (see [31]’) gave a rigorous foundation for
the use of infinitesimals in analysis. He used model theory, a branch of
mathematical logic. Robinson’s invention, called nonstandard analysis, is
more than a justification of the method of infinitesimals; it is a powerful new
tool for mathematical research. In the 25 years since Robinson’s discovery,
the use of nonstandard models has led to many new insights and some
solutions to unsolved problems in areas as diverse as functional analysis,
probability theory, complex function theory, potential theory, number

theory, mathematical physics, and mathematical economics.
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As a simple introduction, we will extend the real numbers R with an
ordered field *R containing infinitesimals.
Here is a simple constniction of *R from real—valuéd sequénces: |
Sequences do not form a field. E.G.: E = evens O = odds in N then
Xg X0 is identically 0.
Fix a FREE ULTRAFILTER %in N.

%c P(N) and ¢ ¢ %

Ae & Be ¥=> AnNBe %

ACN & A¢ “=> N—-Ae %

A finitein N => N—Ae %
We say a property holds a.e. if it holds on some set U € %
We set a sequence <> = <§;> when I, =5 ae *R = the set of

1

equivalence classes.

Now xp =0 or x5=0. RC *R via map c - [<c>]. The sequence
<1/i> represents an infinitesimal, and <i> represents an infinite number.

In general, A property holds for *R if it holds a.e. on .

An internal subset E OF *R corresponds to a sequence <Ai> by the
relation [<r;>] € E iff 1, € A; a.e. A non—internal set is called external.
For example, N is external in *R. A hyperfinite set is such an internal set
E with Ai finite a.e. E.G., Ai = {1, 2,---,i}. The "internal cardinality"

of this particular set is [<i>].

It is better to ignore any particular construction of *R and work with just

the properties. That is what we will introduce next.
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I. MODEL THEORY VIEWPOINT IN NONSTANDARD ANALYSIS.
We start with superstructure V(S), where S is a set containing R.
V(S) = all sets obtained from S in a finite number of steps using the usual
operations of set theory. E.G., V(S) contains individuals including all reals,

the set of Lebesgue measurable sets, the set of all Borel measures on R.

Next we let L be a formal language for V(S). L contains the
following: A name for each object in  V(S), variables, connectives,

quantifiers, brackets, and sentences built from these.

1.1 THEOREM (Robinson): There is a (not unique) structure V(*S) built
from a set *S 2 S such that:

1) A name of an object in V(S) names a similar object in V(*$S) i.e., one
built in the same way. (We write *A for the object in V(*S) with the
same name as A. The set A is called standard, *A is called the
(nonstandard) extension of A. The extension of any individual s is denoted
by s not 's.)

2) (Transfer Principle): Every sentence in L true for V(S) is true when
interpreted in V(*S); quantification, is over "internal" objects in V(*S).

3) If A € V(S) is a set, 3 "hyperfinite" B € *TF(A) such that for each

acA, *a € B.

Internal objects in V(*S) are objects which are members of the
extensions of standard objects. External means noninternal. Here is a proof
that N is external in *N: If this were not true, then there would exist a first

infinite element of *N and thus a last element of N.
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Hyperfinite sets are internal sets in internal 1:1 correspondence with
an initial segment of *N. Such sets have the formal combinatorial properties
of finite sets. For example, let *INm denote the infinite elements in*N. For

any 7 E*[Nm, Nc{ne *N:1<n<« n}. This is an example of the Property 3.

An element a € *R is finite if 3 n € N such that, |a] <n; a is
infinite if YV n € N, |a] > n; a is infinitesimal if Vn € N, |a| < 1/n.
The only infinitesimal in R is 0. We write a ~b when a — b is

infinitesimal. The monad m(r) of r € R is theset {p € *R: p~r}.

*R contains infinite positive and infinite negative elements. If p is
finite in *[R, there exists a unique standard real number r =~ p. 1 is the
supremum of the set of standard rational numbers less than p; 1 is called

the standard part of p. We write r = st(p) = °p. .

Here are some example of applications in real analysis:

Let s, be a sequence in R. s, L iff YVwe *[Nm, s, L. B is a cluster
point of S, iff 3 ne *IN(IJ such that 5y B. A real-valued function f is
continuous on a set A iff Yxe A, Vye A, y~rx3 *(y) ~f(x). { is
uniformly continuous on A iff Vx € *A,Vye ™A, y~x => *(y) » *(x).
Aset A CR is compact iff Vpe *A, 3Ir e A with 1 o p-
A function f continuous on a compact set is uniformly continuous since
Vx,y € *A with y ~x, 1 =st(x)=st(y) € A, so *(y) ~ 1(r) = *(x).
A sequence s n in a compact set A has a cluster point since vV n € *INw, if
r= st(sn), then re A and S, % T For Ax ~ 0 but Ax # 0, if
st(Ay/Ax) is well defined, then f (x) = st(Ay/Ax). For a continuous f,

jg f(x) dx = st()ﬁ]: f(x) Ax).
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Here is \an application of hyperfinite sets to the proof that a
continuous function f on [0,1] takes its maximum value:
Fix we ;*{Nw, Let x;=0,%; =1/w,--x; =if/w,-+-x =1 Choose the
maximum of  {f(0),- --,*f(xi),- --,f(1)}; call it >i‘f(xk). Let 1 = st(x)).
If se[0,1], and X; 8, then f(r)~ *f(xk) > *f(xj) ~ f(s), so f(r) > 1(s).

II. NONSTANDARD MEASURE THEORY

One can construct a hyperfinite set X as the set of elémentary ‘
outcomes in a conceptual experiment in the "nonstandard world". For coin
tossing, for example, X is the set of internal sequences of 0’s and 1’s of
length 7€ *le. Given a hyperfinite set X, let X denote the set of all
internal subsets of X. M is an internal c—algebra but also an ordinary
algebra in X. Let w denote an internal *R—valued probability measure on
(X,H). Let P be the finitely additive R—valued measure on (X,H) defined
by setting P(A) = st(x(A)). For coin tossing, for example,
P(A) =st(|A]|/2") where |A| denotes the internal cardinality of A.

Let o(K) denote the o—algebra generated by A.

We extend (X,4,P) to a standard probability space (X,o(K),P) on
X as follows; First, we assume V(*S) is "R, —SATURATED" (This is true
for an ultrapower.) This means that any ordinary sequence {A;:i€ N} from
internal set E is an initial segment of an internal sequence {A;: i€ *N}
from E. Ifnow {A;:ie€N}cJM is pairwise disjoint and A =U A, isin A
then all but a finite number of the Ai’s are empty. (If not, we can extend

{A} to {Agice *N}; theset {me "N Acu A.} is internal and

1<i<m
contains *INm, so it contains some finite element in N.) By Carathéodory’s
extension theorem, P has a o—additive extension to the external o—algebra

o(H) since, because the sum is finite, P(A) = T P(A;).
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Given an *R-valued function f on X, we set °f(x) = st(f(x)) or
+o if the value is infinite. A function g X - R U {4+wo,—w} is
‘o(M)—measurable iff 3 J—measurable f such that °f = g P-a.e. The
function f is called a lifting of g If such an f is finite valued,
then °ffdr = [°f dP. This is also true if [[|f] — (|f| A 7)] dx is

infinitesimal for all 7 € *[Nm.

The above construction was used by the author in [18] to obtain an
underlying space for coin tossing. Similar constructions gave Poisson
ProCesses [‘18] and representing measures for harmonic functions [19], [20].
The coin tossing space was used by R. M. Anderson [2] to make rigorous the
probabilist’s intuiﬁve treatment of quwnian motion as an infinitesimal
random walk and the It0 integral as a pathwise Stieltjes integral. In this
sense, standard Brownian motion is nonstandard coin tossing. We will

discuss these applications in Sections V and VI

ITI. A FUNCTIONAL APPROACH TO NONSTANDARD INTEGRATION

In what follows, we will always assume Rl-—sa,turation. We will work
with an internal set X, an internal vector lattice L consisting of
*R—valued functions on X, and an internal positive linear fﬁnctional I
on L. Except for Theorem 3.9, we will assume that 1 € L and I(1) is
finite in *R.  This assumption corresponds to the assumpﬁon of finite
measure spaces and compact topological spaces as in [25]. Without this
assumption, one must assume that 1 A ¢ € L for each ¢ € L. See [24] for

this more general theory.
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3.1 EXAMPLES:

1) X is a hyperfinite set, L is a set of *R—valued. internal functions on
X, I(f) = (1/|X])- f(x).

2) (X, 4, =) is an internal probability space, L is the space of internal
H—measurable simple functions, I(f) = [ fd~.

3) X = *0,1], L =%¢(o,1]), I is a positive linear functional on L.
E.G., I(f) = */} f(x) dx.

3.2 DEFINITIONS:

LO’ the set of null functions, is the set of all internal and external
*R—valued functions h on X suchthat Ve >0 in R 3 v € L with
|h] < ¢ and I(p) < €.

L, is the sef of all real—valued functions f on X having representation

f=¢+h forsome peL and hELO.
For each fe Ly, J(f) = °I(p).

L1 is a real vector lattice with 1 € Ll‘ The positive real—valued functional
J is well defined on Ll' Note that we assume no continuity for I. With

Nl—saturation, however, we have continuity for J via the following result.

3.3 MONOTONE CONVERGENCE THEOREM:

If {fn :n € N} is increasing sequence in L, with real upper envelope F
and sup J(f ) < +w, then FeL, and J(F) = lﬁn J(E,)- |
PROOF. We may assume each fn >0. Foreach nelN, we may fix v, € L

and hn € LO so that fIl =@, + hn' and 0 < o, $ @, By Nl—saturation,

+1-
3 v, €L with ¢ 2o for each ne N and °I(<pw) = 1::‘1 °I(<pn). It also
n

follows by R,—saturation that F— ¢ w € LO.
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3.4 INTERNAL APPROXIMATION PROPERTY:

A real—valued function f isin L1 iff Ve>0 inR, 3 1/)1 and ¢2 in L
with ¢, <f< ¢, and I(V)2 — 't/)l) < e

PROOF of sufficiency. Assume there are sequences Yy T and wn 1l in L
such that for each nelN, ¢ <f< ¢ and I(g[:Il - <pn) < 1/n. Extend both
sequences to 'N. Choose ww € L so that for each n € N, oy < ¢w < ¢n.

Now wn—wngf—ww$¢n—¢n. Thus f—9 eL; and fe Ly

3.5 PROPOSITION. If g€ L is finite valued, then °p¢ L, and,
IC0) = “1(yp).

PROOF. °I(1) < +w and Ye>0 in R, [p—¢| < ¢ 50 p—pe Ly

3.6 DEFINITION: Fix B={ACX: x, €L;}, p(A)=J(x,) VA€B.

3.7 THEOREM. B is a o—algebra and p is a complete, o—additive, finite

measure on (X,B). A bounded g: X - R is B—measurable iff g€ L,, and

then J(g) = I & dp.

3.8 EXAMPLE: Let (X,A,x) be an internal probability space and I be the
mw—integral on the class L of internal JM—simple functions. For A € A, set
P(A) = st(w(A)). Then M is an ordinary algebra, and P is a finitely
additive, real—valued mez;sure on M. Our construction produces a standard
probability space (X,B,P) extending (X,4,P) with K C B and
P(A)=P(A) foreach A€Ml If BeB and ¢>0 in R, 3Ifunctions
p and ¢ in L with p<xg <9y and I(¥—¢) < e Let A ={p> 0},
Ay ={921}. Now, A, A €l, A;CBCA,, Ay —A) <Y —9) <e
Using saturation, one shows 3 C € B. such that p(C a B) = 0. Thus, we -

have direct approximation of sets in B by setsin M.
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In [24], the author gave a simple proof of a result from [21] stating
that the inverse image under the standard part map of a compact set is
measurable in any completion of the sigma algebra generated by internal
Borel sets. That proof, given in the next section, is stated in terms of
continuous functions, but it works just as well for simple functions. The
basic fact, one that has become increasingly important in some of the recent
literature, is that certain uncountable operations on internal objects yield
measurable objects. To give the general principle in our context, we put the

necessary finiteness condition in the statement of our result.

3.9 THEOREM. Assume k—saturation. Let {cpi: i € I} be a subset of L
closed under the lattice operation A with ¢ >0 Vi and card(I) < «.

Assume I(p;) is finite for some i € I and A ¢ is finite valued.
i

Then f= °(A p,) isin L; and J(f) = inf °I(cpi).
i

Proof: By k—saturation, thereisa @ € L with 0 < ¢ < A forall i€l
and °I(y) = inf °I(<pi). Forany ¢> 0 in R and any i€,
(1-ep<f<(l+ ey,
and so
—epli—pl(1+ ey — ¢
It follows that f— o isnull,so fe L, and J() = °I(p). o

3.10 EXAMPLE. Let X be a hyperfinite set of ordinals containing all

standard ordinals less than or equal to the first uncountable ordinal wy; if
7€ X then 7<w;. Let Y(A) denote the internal cardinality of A for each
internal A.C X. Even with w'i' saturation, the set consisting of}kall elements
of X which are larger than any standard countable ordinal is not in the

completion of the sigma aigebra generated by the internal subsets of X.
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IV. FUNCTIONALS ON SPACES OF CONTINUOUS FUNCTIONS
Let Y be a standard set with a compact Hausdorff topology 7. We will
work with an enlargement of a structure containing Y and R and assume
r—saturation with « 2 X; and &> Card(7). This will be explained later.
For each y € Y, themonad m(y) =n{*U:Ue7,ye U}. Each xe*Y is
in the monad of a unique y € Y; we write y = st(x). This is Robinson’s
criterion from [31] for the compactness of Y. With each real—valued
function g on Y, associate é on *Y where é(x) = g(st(x)). For AcCY,
set A =U {m(y) : y € A} so X[X = (XA)” on *Y. Let X =Y, and let
L = *C(Y). Let I be an internal positive linear functional on L = *C(Y),
with I(1) finite in *R. We will apply the general theory to (X,L,1).
The next result is where we use k—saturation. The proof originated in [24],

and has been used above to establish the more general result, Theorem 3.9.

4.1 PROPOSITION. For each compact K C Y, K € B, and u(K) =
where oy = inf{°I(*f): f € C(Y), x <f<1}.

aK,

PROOF. By k-—saturation,3p€eL with x << x- and °I(p) = ayg.
K K
VieC(Y) with xp <f<1, Ve>0in B p<x- < (14 ™,
K

0 Xx- —¢€Lg x- €Ly, and WK) =J(x-) = "I(¢) = ay.
K K UK

42 THEOREM. Let By, = {B C Y: B ¢ B}, and py(B) = u(B) V B € By.
Then BY is a o—algebra containing the Borel sets, and y is a complete,
regular measure. A function g Y - R is By-—measurable iff é is

B-measurable on *Y. For feC(Y), [y fduy, = °I("1).
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4.3 COROLLARY: The Riesz representation theorem for the dual space of
C(Y) is now established. Just set I equal to the nonstandard extension of a

standard functional on C(Y).

4.4 COROLLARY (Anderson—Rashid [3], Loeb [21]): If I comes from an
internal Baire measure v, Then p, = st(v). in the weak™ topology. This
gives weak convergence results for measures since a weak™ cluster point of a
net of measures can be obtained be téking the standard part of an infinitely

indexed element in the nonstandard extension of the net.

4.5 EXAMPLE: Let Y =[0,1], and let I be the nonstandard extension of
the standard Riemann integral on Y. A real-valued g on Y is Lebesgue
integrable iff é = ¢+ h where ¢ € *e(Y) and h € ,LO’ The Lebesgue
integral of g equals the standard part of the internal Rieménn integral of ¢.

A bounded g is Riemann ihtegrable iff 0(*g) € L, (result with Cornea.)

4.6 EXTENSIONS: Extensions of the general theory to functions taking
their values or integrals in nonstandard hulls of topological vector lattices are
under development with Horst Osswald of Munich. Preliminary results can

be found in [27].

V. APPLICATIONS TO PROBABILITY
POISSON PROCESSES: These are formulated in [18] as an internal
random distribution of an infinite number 6f unit masses into an infinite

number of infinitesimal intervals.

11
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COIN TOSSING: This is formulated in [18] as follows. Fix 75 € *INm, and
let' © = {=1, 1} Thatis, Q is the internal set of all internal tosses of
length 7. Let H be the set of internal subsets of © and =(A) = [A} /2",
Set P(A) = st(x(A)) V A € K; let P also denote the measure p on B
developed in the general theory. Then (,B,P) exténds (QH4x) Itisa

probability space for coin tossing.

BROWNIAN MOTION (R. M. Anderson [2]): Take the above coin tossing
space. For any coin toss w € , let Xi(w) = w, (-1 or1). Let x(t, ) be

the internal random walk

X(t,6) = (1/45)-22’1 X,(0) (1€ *[)
Here, the particle located by x(t,w) starts at 0 and at each time t, =1 /7,
i=1,2,--,n, moves right or left by {At=1/{7.
For P—almost every w, x(t,w) is infinitely close in the uniform topology to
somé standard f in C([0,1]). For those w and t € [0,1] Anderson set
B(t,w) = °x(t,w). This is Brownian motion. The projection of P onto
C([0,1]) using the standard part map (similar to the use of the - map) is

Wiener measure. This gives a simple proof of Donsker’s theorem.

Anderson in [2] also replaced standard functions with infinitely close
functions constant on infinitesimal intervals At in *[0,1] and then
integrated against x(t,w). This process made It0 integrals the standard part
of internal pathwise Stieltjes integrals. Anderson’s work makes rigorous the

formula dx = dt?. It gives an easy proof of It6’s lemma.
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VI. APPLICATIONS TO POTENTIAL THEORY

For these applications, we will work with harmonic functions on the
unit disk and indicate that the results hold for much more general situations.
Let D_ denote the open disk {z € : |z| <1}, andlet D =D,. Let C,
be the circle {z € C: |z| =1}, and let C=C,. Let P(z,x) be the Poisson
Kernel (1 — |x|2)/|z_—x|2, and let x, denote the origin. The space 1
consisting of positive harmonic functions on D taking the value 1 at X, is
convex and compact with respect to the topology of uniform convergence on

compact subsets of D. We call this topology the ucc topology. If fe C(C),

then f has a continuous extension on D, harmonic on D, given by
hix) = [ P(zx) f(z) A(dz), where ) denotes normalized Lebesgue

measure on C.

Not every harmonic function on D 1is obtained from a continuous

function. By the Riesz—Herglotz theorem, however, there is for each h € 7
a probability measure (all measures are Borel) y, on C such that
h = [oP(z,-) vy (da).

The mapping z - P(z,-) from C into 1t s a homeomorphism. We may
think of Yy a8 either a measure on C or on the collection of harmonic
functions {P(z,-): z € C}. The latter point of view is that of Martin
boundary and Choquet theories. The simplest realization of Choquet theory
deals with a triangle. Each point inside and on a triangle is represented by a
unique affine weight on the extreme points of the triangle, i.e., on the
vertices. The set 7(1 is convex and compact in the ucc topology. The
extreme points are the functions {P(z,-): z € C}. Each h € s

represented by a unique probability measure v, on this set.

13
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Fix he 'll. As we shall see, the usual construction of " is simple
for the disk. This construction does not, however, generalize without going
to an ideal boundary. We will give a construction that does generalize using

results from- [19], [20] and [23].

‘ . .. r .
First, we recall that on the circle Cr’ harmonic measure w is the
measure that gives the value at x of the harmonic extension of a continuous
function on CI. Moreover, normalized Lebesgue measure on Cr is the

harmonic measure ur . Given h € 7(1, the measures h-ur have weak—x
X0 *0

limit », on C as r-1. Although this does not work in general, here is a
method stated for the disk that does. First, for the disk, let {Air} form an

interval partition of Cr’ and choose y§ € Af. Let 6y; denote unit mass at
i

the point y§ . The family of measures D h(yi)-u; (AE)- 6yr also has the
0 i

weak—k limit v, on C as r-1 and the partition becomes finer and finer.

This is because this finite sum of point masses is the measure that gives the

Riemann sum approximation to the integral of a continuous function against

the measure h- u)rc . We will move these point masses to a new space.
0

Let 6; be unit mass on the function equal to u;(AD /u}r{ (A?) inside C_
‘ 0
and 0 on and outside C; this function is in the space [0,+m]D supplied
with the product topology. The product topology is the ucc topology on the
. r
set {h > 0: h harmonic on D , h(xy) = 1}. Now, X, h(yi)-p;O(Ai)- 5§ has
weak— limit 1 on {P(z,-):z € C} C 1 ¢ [0,+uo]D as r -1 and the
partition becomes finer. This result continues to be true for quite general

potential theories. (See [20] and [23].) It is the only potential theoretic

general construction that I know that does not use the Martin boundary.
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The nonstandard proof of this result in [20] used a construction from
[19] that was the first use of the genéral measure theory after coin tossing
and the first use of the standard part map to move a measure. The proof
starts with a circle C, with ‘r <1 but re 1. After suppressing the

superscript r, we have for each x € D,

h(x) = J Cr*h(Y) duy, = ? "h(y;) uxO(Ai)[ux(Ai)/uxo(Ai)]-
The family of weights *h(yi) uxO(Ai) is made into an ordinary probability
measure (using ‘the general theory) on the set of nonstandard harmonic

functions p,x(Ai) /ux (Ai) and then projected to a representing measure on
0 i

7(1 via the standard part map. The process preserves affine combinations, so

the final measure is the unique one on the extreme harmonic functions

(Corollary of a result by Cartier, Fell, and Meyer, see [19].)

From this work on representing measures has come other work using
nonstandard analysis in potential theory. The main thrust is a study of a

Martin—type boundary for general domains. See [19], [22], and [6].

VII. FURTHER APPLICATIONS
Here is a partial list of some other applications of the general theory:

1) H. J. Keisler’s work establishing a new strong existence theorem for
stochastic differential equations in [16].

2) N. J. Cutland’s papers on control theory in [7] and [8].

3) E. A. Perkins work (awarded the Rollo Davidson Prizé in Probability
Theory) on problems in the theory of local time ([28], [29], [30].) One
striking result strengthened a classical theorem of Levy by combining
exceptional sets of measure 0 depending on a space variable x into

a single exceptional null set working uniformly in x.

1

~

5
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4)

5)

6)

7

8)

9)

10)
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T. Kamae’s paper on the ergodic theorem in [15].

D. Hoover, E. Perkins and T. Lindstrom’s work on stochastic

- integration in [12] and [17]. .

The large body of work in mathematical economics by
R. M. Anderson, D. J. Brown, A. Khan, H. J. Keisler, C. Lewis, and
S. Rashid. .

Papers on infinite particle systems and thermodynamic limits by
A. E. Hurd [13], L. L. Helms and P. A. Loeb [10], [11], together with
new results in the book by Albeverio et al. [1].

L. Arkeryd solved a 100'year old problem by obtaining a Solution of
the Boltzmann equation corresponding to specified periodic boundary
conditions and quite general L! initial conditions in [4] and [5].
There are recent papers on descriptive set theory by C. W. Henson
and D. Ross, and by H. J. Keisler, K. Kunen, A. Miller, and S. Leth.
There are four new books on the subject, [1], [14], [32] and the

collection of papers [9].
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