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On the product of the terms of a finite arithmetic progression

by

R. Tijdeman

(Leiden, The Netherlands)

Let $a,$ $d$ and $k$ be positive integers, $k\geq 3$ . We consider the arithmetic progression

$a,$ $a+d,$ $a+2d,$ $\ldots$ , $a+(k-1)d$ and in particular the product $\Delta=a(a+d)\ldots(a+$

$(k-1\}d)$ .

There are two circles of problems we shall consider:

I: What can be said about the greatest prime factor $P(\Delta)$ of $\Delta$ and the number

of distinct prime divisors $\omega(\Delta)$ of $\Delta$ ?
$\iota$

II: Can $\Delta$ be an (almost) perfect power? Can each of $a,$ $a+d,$ $\ldots,$ $a+(k-1)d$ be

an l-th power for some $\ell\geq 2$?

This lexture reports on joint work with T.N. Shorey. It can be considered as an

updating of my first lecture given in Banff in 1988, [20]. Almost all results have

effective proofs, but for this aspect I refer to the original papers. I am grateful to

Shorey for his remarks on an earlier draft of the present paper.

I. Without loss of generality we may assume $gcd(a, d)=1$ . A first general result on
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I was obtained by Sylvester [19] in 1892. He proved

(1) if $a\geq d+k$ then $P(\Delta)>k$ .

Suppose $d=1$ . Then we consider the product of a block of $k$ integers. If $a\geq 1+k$ ,

then there is apparently at least one number in the block $a,$ $a+1,$ $\ldots$ , $a+k-1$

which is not composed of primes $\leq k$ . If $a=1+k$, this is Bertrand’s Postulate. If

$a<1+k$ , the last term of the block is less than $2k$ . Then the question becomes

whether $k+1,$ $\ldots,a+k-1$ contains a prime. This is the classical problem on gaps

between consecutive primes. The theorem of Hoheisel, Ingham as improved by many

others says that if $a>k^{23/42}$ and $k$ is sufficiently large then there is a prime. (The

exponent 23/42 has been slightly improved, see [7]). Probably $a>(1+\epsilon)(\log k)^{2}$

for large $k$ is sufficient according to a hypothesis of Cram\’er, but it will be extremely

hard to prove this.

Suppose $d>1$ . Then (1) was slightly improved by Langevin in 1977 as follows.

(2) lf $a>k$ , then $P(\Delta)>k$ .

Shorey and I showed that in fact 2, 9, 16 is the only exception:

Theorem 1. ([14]). Let $d>1,$ $k>2,gcd(a, d)=1,$ $(a, d, k)\neq(2,7,3)$ . Then

$P(\Delta)>k$ .

. The proof rests on a sharp upper bound for $\pi(x)$ due to Rosser and Schoenfeld and

is further computational.
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lf $a$ becomes large, then much better lower bounds are possible. Shorey and I

improved upon some estimate of Langevin [5].

Theorem 2. ((a) and (c) in [15], (b) unpublished). Let $\chi=a+(k-1)d,$ $\chi_{0}=$

$\max(\chi/k, 3)$ ,

$\epsilon>0$ .

(a) $P(\Delta)>>k\log\log\chi_{0}$ $(\geq k\log\log d)$ .

(b) if $\chi>k(\log k)^{\epsilon}$ then $P(\Delta)>>\epsilon k$ log log $a$ .

(c) if $\chi>k^{1+\epsilon}$ then $P(\Delta)>>\epsilon k\log\log\chi$ .

The proof is based on Baker’s method, in particular a result on the Thue equation

by $Gy6ry[4]$ . Note that some conditions in (b) and (c) are necessary. $h(b)$ we

can take $a=[k/2],d=1$ and it follows that $P(\Delta)\leq a+(k-1)d<3k/2=$

$o(k\log\log a)$ . $h(c)$ we can take $a=1,$ $d=[(\log\log\chi)^{1/2}]and^{\sim}$ it follows that

$P(\Delta)\leq a+(k-1)d<k(\log\log\chi)^{1/2}=o$ ( $k$ log log $\chi$).

Very recently we studied $\omega\backslash (\Delta)$ . If $a=d=1$ , then $\omega(\Delta)=\omega(k!)=\pi(k)$ . There are

more examples with $\omega(\Delta)=\pi(k)$ , for example 1, 625, 1249, and 1, 3, 5, 7, 9.

Theorem 3. [16]

$\omega(\Delta)\geq\pi(k)$ .

The proof is sinilar to that of Theorem 1. Here only limited improvement is possible
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if $a$ becomes large. We cannot exclude that there are $k-l$ primes $p_{1},$ $\ldots,p_{k-1}$ in

such a way that 1, $p_{1},$ $\ldots,p_{k-1}$ are in arithmetic progression, so that we cannot

prove anything better than $\omega(\Delta)\geq k-1$ .

Theorem 4. (a) For any positive integer $t>1$ we $have$

if $\chi\geq k^{\frac{k}{\ell-1}+1}$ then $\omega(\Delta)>k-t$ .

(b) there are infinitely many instances with $\chi\geq k^{2.7}$ and $\omega(\Delta)<ck$ with $c<1$ .

The proof of (a) is elementary. For (b) we use estimates for the Dickman function

$\psi(x, y)$ . If we take $t=.6k$ in (a), then we find that $\omega(\Delta)>4k$ if $\chi\geq k^{2.7}$ and (b)

shows that $ck$ for some $c$ with $0<c<1$ is the actual order of magnitude.

II. How many $\ell th$ powers can be in arithmetic progression? If $\ell=2$ , then there are

infinitely many triples of squares in arithmetic progression, but Fermat proved that

there are no four squares in arithmetic progression. D\’enes [1] proved in 1952 that

there are no three $\ell$-th powers in arithmetic progression for $3\leq\ell\leq 30$ and for 60

other prime values of $\ell$ and he conjectured that this is true for all $\ell$ . He used Kummer

theory and his method is not applicable for irregular primes. The celebrated result

of Faltings [3] implies that for any $\ell\geq 5$ there are only finitely many triples of

coprime $\ell$-th powers in arithmetic progression, but his result does not provide any

bound for $k$ independent of $\ell$ . In the sequel we assume $gcd(a, d)=1,$ $k\geq 3$ and

$\ell\geq 2$ . Let $d_{1}$ be the maximal divisor of $d$ composed of prime factors $\equiv 1(mod l)$ .
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Theorem 5. ((a), (c) and (d) from [12], (b) from [13]).

Suppose $a,a+d,$ $\ldots$ , $a+(k\cdot-1)d$ are all $\ell$-th $po$wers. Then

(a) if $d$ is odd, then $k=3$ ,

(b) $k<(1+\epsilon)2^{\iota u(d_{1})}$ for $k\geq k_{0}(\epsilon)$ ,

(c) $k<<\omega(d)\log\omega(d)$ ,

(d) $k<<\sqrt{\log d}$.

A much weaker condition is that not each of the numbers is an $\ell$-th power, but that

the product of the numbers is an $\ell$-th power. If $d=1$ we find that

(3) $a(a+1)(a+2)\ldots(a+k-1)=y^{p}$ $(\ell>1)$ .

It was proved by Erd\"os and Selfridge [2] in 1975, 36 years after Erdos started this

research, that (3) has no solution in positive integers $a,$ $k>2,$ $y,$ $\ell>1$ . Later Erdos
$t$

conjectured that if

(4) $a(a+d)(a+2d)\ldots(a+(k-1)d)=y^{p}$

then $k$ is bounded by an absolute constant. Still later he conjectured $k\leq 3$ . Some

special cases are in the literature. Euler proved that the product of four numbers in

arithmetic progression cannot be a square. Of course, this implies Fermat’s result

that there are no four squares in arithmetic progression. Obl\’ath [8] proved the result

for the product of five numbers in arithmetic progression. He [9] also proved that
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the product of three numbers in arithmetic progression cannot be a third, fourth

of fifth power. Marszalek [6] was the first to deal with the general problem. He

proved that $k$ is bounded by a number depending only on $d$ . He gave rather refined

estimates, but a rough simplification of his result gives:
$k\leq\exp(2d^{3/2})$ if $\ell=2$ ,
$k\leq\exp(2d^{7/3})$ if $\ell=3$ ,

$k\leq Cd^{5/2}$ if $\ell=4$ ,
$k\leq Cd$ if $\ell\geq 5$ , where $C=3\cdot 10^{4}$ .

Shorey [10] proved that $k$ is bounded by a number depending on $P(d)$ , the greatest

prime factor of $d$ , provided that $\ell>2$ . Shorey [10] further proved that $d_{1}>1$ if

$m>k$ and $k$ large.

Shorey and I have obtained many results on equation (4). Actually we proved these

results under the following weaker assumption.

(5) $\{\begin{array}{l}Leta,d,k,b,y,\ell bepositiveintegerssuchthatgcd(a,d)=1k>2,\ell>1.,.P(b)\leq k,P(y)>kanda(a+d).(a+(k-1)d)=by^{\ell}\end{array}$

In the sequel we assume that (5) holds.

Theorem 6. $\log k<<\underline{\log d_{1}}$

$\log\log d_{1}$

Proof. For $P\geq 7$ , see [18]. For $\ell\leq 5$ see [17], formula (2.14).

Observe that this is a considerable improvement of Marszalek’s result. We see that

$k/darrow 0$ as $darrow\infty$ and even $\log k/\log darrow 0$ as $darrow\infty$ .

Theorem 7. [17] $k<<d_{1}^{1/(l-2)}$ .

This implies Shorey’s estimate $d_{1}>1$ for $\ell>2$ and $k$ large.

6



� $l$

Theorem 8. [17] $\mathfrak{l}$

$\frac{k}{\log k}<<\ell^{\omega\langle d)}$ (even $<<\ell^{\omega(d_{1})}$ for $\ell\geq 7$).

Thus $k$ is bounded by a number depending only on $p$ and $\omega(d)$ . Actually we tried

to prove that $k$ is bounded by a number depending only on $\omega(d)$ , but we did not

succeed.

Suppose $p>2$ and $P(d)$ is bounded. Then $k$ is bounded or every prime factor of

$d_{1}$ is bounded by Theorem 7. However, by definition every prime factor of $d_{1}$ is

larger than $p$ . So we obtain that $\omega(d)$ and $\ell$ are bounded, hence, by Theorem 8,

$k$ is bounded. Thus Theorems 7 and 8 generalize the results of Shorey mentioned

above.

Theorems 7 and 8 imply a slightly weaker inequality than Theorem 6 gives. It

is well known that $\omega(.n)<<\log$ n/log log $n$ for all $n>e$ . Suppose $\ell\geq 7$ . If

$P\leq\log\log k/\log$ log log $k$ then Theorem 8 implies

$\log k<<\frac{\log d}{\log\log d_{1}}$ log log log $k$

and if $P>\log\log$ k/log log log $k$ then Theorem 7 implies

$\log k<<\frac{\log d_{1}}{\ell}<\log d_{1}\frac{\log log\log k}{\log\log k}$ .

Theorems 7 and 8 have proofs based on multiple application of the box principle.

For $P=2$ the proof is elementary, but complicated. For $P\geq 3$ the proof is completely
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different. For $p\geq 7$ we obtain the best results via elementary arguments, but for

$P=3$ and 5 we reach the best estinates when we use Brun’s sieve and some result

of Evertse on the number of solutions of the equation $ax^{\ell}-by^{\ell}=c$ , proved by using

hypergeometric functions. I want to stress that many lemnas and arguments are

due to $Erd_{0}^{\infty}s$ .

We have proved that $P(d)$ , and even $P(d_{1})$ , tends to $\infty$ when $karrow\infty$ . In fact we

can prove

Theorem 9. [18]

$P(d_{1})>>P\log k$ log log $k$ for $P\geq 7$ ,

$P(d)>>l\log k\log\log k$ for $p\in\{2,3,5\}$ .

$h[18]$ we give also lower bounds for the smallest prime factor and the greatest

square free divisor of $d_{1}$ .

Up to now I have restricted myself to dependence on $d,$ $d_{1},$ $k$ and $\ell$ . Of course, $a$

can also been taken into account.

Theorem 10 [17].

(a) There is an absolute constant $\ell_{0}$ such that for $p\geq\ell_{0}$ we have

$k<<a1$ .

(b)

$k<<a,\{v(d)1$ .
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For (a) see Shorey [11]. Further (b) follows from the combination of (a) and Theorem

8.

The last theorem concerns upper bounds for the largest term in the arithmetic

progression.

Theorem 11. [17]. There is an absol$ute$ constant $k_{0}$ such that $k\geq k_{0}$ implies

$a+(k-1)d\leq 17d^{2}k(\log k)^{4}$ if $P=2$

and

$a+(k-1)d<<k( \frac{d}{\ell})^{p/(p-2)}$ if $\ell>2$ .

Finally I want to state a conjecture for the general situation in the line of the

conjectures of D\’enes and Erdos stated above.

Coniecture. If (5) holds, then $k+P\leq 6$ .

If $k+\ell\leq 6$ , then $(k,\ell)=(3,3)$ or $(4, 2)$ . It is shown in [20] that in these cases there

are infinitely many solutions. As a more moderate target I challenge the reader to

prove that $k$ is bounded by a function of only $\omega(d)$ if (5) is satisfied.

Mathematical Institute R.U.

Postbox 9512

2300 RA Leiden

The Netherlands.
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