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A note on a theorem of Fukasawa-Gel' fond
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§ 1. Introduction
In 1915, G. Pélya [5 ] showed that an entire function f satisfying

_log | |, _
f(Ng)CZ and lim < log 2, where Np:= NU {0} and

r
p—+ oo

[ £ | := max | f(z)]|, is a polynomial. Because of the existance of the en-
lz | r

tire function 22, the valué log 2 in the above result is best possible. Let
g €N, and let f(k)(z) for k&N, denote k-th derivative of f(z). Then
A. Gel'fond [2 ] ,in 1929, proved that an entire function f which satisfies

__ logff |
1lim — < (g+1)log{1 + e
r— 4 oo

—4/(4+1) (k)

} and ({ Np)cZ for all

k=0,1,..., § is a polynomial. A. Selberg [6 ] showed that the above upper boound
' -8/(4+1)

can be replaced by (g+1)logw with some @ , >1 + e when ¢ =>=1.

£ 2
In another direction, S. Fukasawa [1 ] , in 1926, studied entire func-
tions satisfying f(Z [1 ] ) cZ [1 ], and in 1929, A. Gel' fond [3 ] refined
the result of Fukasawa and obtained: There exists a real number o >0 such that
log |f |
if f is an entire function satisfying iim ——FC < e and

r—+4 oo r‘2

f(Z [1])cZ [1], then f is a polynomial.
Several authors have tried to determine the exact value of ¢, and
finally in 1981, F. Gramain [4 ], proved a more general theorem to show that

the best possible value of ¢ is equal to g /2e:

Theorem (F. Gramain) Let K be any imaginary quadratic number field whose dis—
criminant is - -A and let a:=y A/2 be the area of the fundamental para-

llelogram of the lattice of integers @, in K.

K
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(i) If f 1is an entire function satisfying

f(GK) CGK (1)
and
log [ £ |
. Fis :
1lim 5 < Sea (2)

r—+4+o00 P
then f 1is a polynomial.

{ii ) There exists an entire function f such that (@
—T—loglfll"_ T
lim - = .
2ea
r—+oco

) CO and

K K

In particular, f 1s not a polynomial.

In this note, we shall prove the following generalization of part

(i) of Gramain's theorem:

Theorem. Let K and 63&( be as above, then there exists an entire function

f such that

1 (k) i _
T f (8K) CO]K for all k=0,1..., £, (3)
and
e 1T (gii)g
lim = .
2 2ea
r— -+ oo r

1t follows from our theorem that when the condition (1) in Gramain' s
theorem is replaced by (3), the upper bound which corresponds to the right-hand

side of (2) does not exceed (4 +1) /2ea.

§ 2. Lemmas
In this section we prepare some notions and lemmas.
Let A = {Cm }mENu
elements are arranged in the following way: m<n (mneN,) if and only if we

have either |(m |<lc:n | or |§m | = tgh | with arg §m< arg Cn'

be any homogeneous lattice in RZ = C, whoose

Lemma 1. ( [4 ] lemma 2) Let a be the area of the fundamental parallelogram of

A, then we have for any neNj,

‘ an
|1, | | =
Here and in the sequel ¢, C

P G
stants depending only on A,

e

1

. denote effectively computable positive con-
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lemma 2. ( [4 ] lemma 3) Let neN with nz=2 and let zeC, if we define
g =0 by|z|:0|§n[,then :

‘ n ‘
logﬂlz—t_jj | —%nlogn— nw( @) gczmax(ha)y‘nlogn,
J':O .
z-£ . =1
.,l CJ =
where
logd - ——log B if §=1,
_ 2 a
& 1 1 T i <1
2 Tz T gy Af d=l

In what follows we assume that k is always an integer with 0k =< ¢

The following lemma 3 is a generalization of lemma 7 in [4 ] .

Lemma 3.  Let A = {gm }mEN and a be as in lemma 1 and let f be an en-
[1} R
tire function. Define for neN,,
n-1
L _ g +1 B k
Pn,k(Z), = H_ (z {m) (z cn)
m=0
with the convention that’ PO l;((z) i= zk, and let
1
1 L)
= : d 4
»an’k 2751 Pn k,H(C) §, ( )
C ]
n

where. Cn is 'a closed curve containing the points {O, £ P Cn in its in-
terior. Then the following formula holds for all z € C contained in the in-

terior of CN:

N £ P (z)
N+1, 0 (&)
f(z)y= ¥ X a P (z)+ — —.d&.  (5)
P n, k n, k 2wi . PN+1,0( E)IE-2) (

(i)If f satisfies N

' — 2elf T (g4ng

r := lim B < , (6)

2a
r— -4 00 r

then the series

oo .

Yy T a P (z) (7)

n=0 k=0 o,k n,k
converges unifor*miy to f on any compact set in (, and the coefficients a i
satisfy

g +1 .
L log | a | + n log n
Tin .Y 2 < 21 ineg Ty Los)
n 2 g +1
n—+4 oo :
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(i) If {bn k;ne Ny, 0=k =g} 1is a sequence of complex numbers satisfying
t .
Z+1
log|b | + ——S— nlogn

— n,k el e 9 g+1 l .

lim - ST s— (1 +1log =), (9)
n—-+4 oo

then the series

o g .
> X b (z) . (10)
n=0 k=0 <, k

converges uniformly on any compact set in € and defines an entire function
g satisfying '
log g | r g+1 22

lim 5 = 2exp( 7+ -1J). (11)
r—+4 o0 r

Remark. From the conclusions of both parts of lemma 3, the inequalities (8) and
(11) can be replaced by equalities.
Proof.. We first prove part (ji) of lemma 3. Let pn:: | Cn | and fix A’

+
such that A<’ < %(Hlog —ag)’» and choose a sufficiently small

8ge] 0,1 [ satisfying

30+ 2 (91108 By < (12)
By the assumption (9), there exists an integer n 1' such that
log | bn k! + 12;1_ nlogn <A’n forall nzn,. For any R=0, there

exists some integer n, = n, such that @ o, = R. Hence it follows from

lemma 2 that’
g+1

log |b P (z) | = {A"+

n, k n, k (0'1 1og— }n+ o(n) = C

e
for all n> Ny and all ze (C with |z | £R. Therefore the series (10) con-
verges unif‘omly on any compact set in C and defines an entire function g

of which we consider the rate of growth.

Let ze (C satisfy |z |=:r >0, then, using lemmas 1 and 2, we
0
get for all n with p,Zr
| g +1 2
log | b (z) | = {A2"+ (————1log——}n+o ( ¥/ mlog n),
n, 11 n, k 2
0 (13)
and also for all n gn1 with 0, <r
log | bn WP, k(2 = {47 +(g+1)(log —a - —2— log 2y} n+ Owlo%z;

If we define Sy 54 and S5 by
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s 1= ) X b P . (z) |,
0 0 <n =n, Ok g PKBK -
s, 1= = = P .(z) |,
! nzn, 0k ¢ m, k0, k
o, =C r
S S, = Z Z b P (Z) ’
< o, >ro0sk=sg m, Ko, k .
then we have
lg | = s,+5, +3,. (15)

r 0 1 2

Making use of lemmas 1 ,2 and (13), we get

s, = gl L+ mrt/2a > e [ {47 - E;(H log% )} n+O( ¥ 0 log n)],
o, >r : '
e A omy £ 2R
and thus, by (12) and the f‘ac’; that = (A > log a) = > eXp(QH 1),
- g+1 2 2A" .
log S,E S exp( 7 1) + O(r log r). (16)
Since we have, by (14),
s;< % e[ n {2 + (£+D)(ogr - —Flog m)} + O(rlog r)],
o, =r
we obtain from lemma 1 and the fact that wmax x{ A" +H(g+1)(log r - %—logx)}
x>0
_ 4+1 2 24"
= 5 rexp( ———Q-H 1),
g+1 2 A’ 2
log s, = 5t exp(ﬂ+1 1) + o(r7). (17)
Therefore, from (15), combining the estimates (16); (17) and 1og sag c3log r

and then letting A’ -4, we get the conclusion (11) of part (ij) of lemma 3.

We - next prove part (i) of lemma 2. Let T’ with
<1’ < (g+1V)xw/2a be fixed and let Cn in (4) be the circle with center
0 and radius @ 0, where @ >1 1is a parameter which will be chosen later.
Then, by (4), (6) and lemma 2, we get

2
log Ian,klér’ (8o, ) *+1log Gp -
1
- 2+1){ —mn log n + n(log 6-%—log£a)}

for all sufficiently large n&N, and hence, using lemma 1, we obtain

£+ t’ 8% _
2 4

’ .
—n—{ 1og|an’k| + nlogn}§~

~(g+1)( logg- zlog L)t o (1).
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Since the right-hand side of the above inequality attains its minimal value when
02 = (g+1)n/ 2ar’ , we obtain

Er— 1 ‘ g +1
lim - {1og | an’ K | + T
n—+4 oo .

which yields (8).

2_7)}’

n log n } = {1+1og(‘€+1

Thus, by the assumption < (g +1)xn/2a as well as the inequality
(8), it follows from part (i) of lemma 3 that the series (7) converges on any

log|g |
2,

compact set and defines an entire function g(z) satisfying lim e
r—+ oo r
(g) = g(k)( ¢ ) holds for all

k=01,..., £ and all {&A. Hence, to complete the proof of part (i) of

IA
~

(k)

and further, from the formula (5),

lemma 3, it is sufficient to show that an entire function ¢ satisfying

_log | ¢ |
g — . Ltz

2 2a
r—+ 0o r

(18)

and ¢ (k)(A) = {0} forall k=01,..., £, is identically zero. Assume
that ¢ 1is not zero, then the Taylor expansion of ¢ at z=0 has the form
aghzh + ah_+1zh+1+ «v. WwWith some oy # 0 (h=0) and, by Jensen's formula,
we have

log|¢fp-glog|agh|+hlogr+ (£+1)0~ 'loglg‘:’| (19)

<lgf=r

Applying - lemmas 2 and 3 to the right-hand side of (19), we obtain
T= (4+1)n/2a, which contradicts the assumption (18).
§ 2. Proof of Theorem

We can deduce the conclusion of our theorem by taking A = D= @& K
in the following lemma 4:
Lemma 4. Let the lattice A CR? =C be as in lemma 3 and let D be a sub-
set of (C which has the following property: there exists a constant § >0 such
that for any ze&C, we can find some deD satisfying | 2~ d | =< §. Then

1 (k)

there exists an entire function satisfying = f (A) CD for all
- log | £ | :
k=01..., § and 1im r _(£4+4+0=
2 2ea
r— 4 oo r

Proof. We use the same notation as in lemma 3. Since the coefficients of a gen-
eralized interpolation series of f at the points of A are given by (4), we

obtain from the residue theorem
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s % ey ERYESLS ¢y "
a = +
n, k =0 h=0 h{(g-h)! B d¢ Pn’k+1(§) - ¢
k e "
L s n’ ( d )k—h 1
b0 h!(k-h)! df Pn 0(d_j) ) :
- ’ S L= &
Thus we have
n-1 ¢ f(h)(gng k-1 f(h)(grﬁ
P (L ) a =X Zp +Xq +
n,0'>n’” nk =0 h=0 h, k,m, n h! h=0 h, k, n h!
Mg )
TR :

with some ph,k,m,n and qh’k,nezﬁl. Therefore, if we define a,

1 (k)
R L

k by choosing

( Cn)ED such that

| By ol&yla,  ~ 261 =0, (20)

]

then we get from lemmas 1 and 2

= - l&fl( n log n - n log 1%) + o (n),

log | an,kl 5

and thus, from.part (ij) of lemma 3, the series (10) converges and defines an
entire function f which satisfies the required conditions; and the proof of

lemma 4 is completed.

Remark. As in the remark of lemma 8 in [4 ], we can construct infinitely (even

uncountably) many functions f, by choosing "%T f(k)( grl)EED such that, for
example | a Pn k(gn) - 48| = 36 instead of (20). »
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