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Incremental Attribute Evaluation and Parsing
Based on ECLR-attributed Grammars
(extended abstract)

Masataka Sassa
Univ. of Tsukuba, lnst. of lnformation Sciences

AbsC ract

Amethod of incremental attribute evaluation and parsing is described. lt
is based on aclass of one-pass attribute grammars calIed ECLR-attributed
grammars which works with LR parsing. $\cdot$ The method unifies incremental
attribute $eVa\mathfrak{l}uation$ and incremental parsing in asingle aIgorithm. lt is
expected to be space efficient with respect to inherited attributes.
Multiple substitutions in the original input are also aIlowed.

1. Introduction

The importance of interactive environments which support software
developments has been highly recognized. As atypical example, Iet us
think of an environment where alanguage-based editor, interpreter,
debugger and code generator are unified around asingle intermediate
representation, as follows.

source –Ianguage- –intermediate $—-$ interpreter
based $representat|on----$ debugger
editor code generator

lf we regard such a system as aIanguage processor, the front-end,
which backs up the editor, deals with the conversion from the source
program into the intermediate representation, i.e. [exical, syntactic and
(static) semantic analysis. According to the interactive nature of
modification of the source program by the editor, it $wiIl$ be nice if the
analysis is made in an incremental way.

SeveraI systems exist so far which make incremental syntax and
semantic analysis. As for incremental syntax analysis or incremental
parsing, some systems aIlow only modification of the parse tree itself
[Notkin 85]. But, recent experience with [anguage-based editors shows
that ahybrid approach which also accepts text mode editing in addition to
structure mode editing is indispensable. $ln$ this sense, incrementaI
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parsing [Ghezzi 80, Jalili 82, Agrawal 83, Yeh 88] is effective.
As for semantic analysis, the use of attribute grammar [Knuth 68] is

becoming popular due to its good baIance between formality and easiness
of automatic generation of attribute evaluators. Therefore, henceforth we
adopt attribute grammars as the base and use an attributed parse tree as
the intermediate representation. As for incremental attribute evaluators,
previous $wo\uparrow ks$ were mostIy based on elaborate approaches $wh|ch$ are
separate from parsing [Yeh $83b$] or rather expensive [Reps 83]. However,
the experience in the HLP84 system [Koskimies 88] and in our Rie system
[lshizuka 85] [Sassa $85a$] showed that the use of one-pass attribute
grammars is efficient and practicaI enough.

Considering the above facts, we present in this report aunified method
which performs both parsing and attribute evaluation in an incremental
way in one pass. lt is based on aclass of one-pass attribute grammars
called ECLR-attributed grammars [Sassa 87]. lt works with LR parsing.

Our basic hypothesis is that we maintain the attributed parse tree
(hereafter APT). This wilI be justified in aprogramming system which
unifies an interactive interpreter, debugger etc. in addition to a
language-based editor.

One of the main advantages of our method is that the storage for APT
is space efficient due to the concept of LR-attributed grammars and
equivalence classes in ECLR-attributed grammars. In particular inherited
attributes must be stored onIy in apart of the nodes of the APT, not in
every node, and inherited attributes having the same va[ue can share a
memory space. Ty.pical storage reduction of 1/3 $- 1/10$ is expected for
inherited attributes. Synthesized attributes are stored in each node as
usual.

Our incremental parsing method is acombination of the methods of
Ghezzi and Mandrioli [Ghezzi 80] and of Yeh and Kastens [Yeh 88], both for
LR grammars. The former method uses aparse tree, but it is for LR(0)
grammars without $\epsilon$ -productions(productions where the right-hand side is
empty) and deaIs only with asingle modification in the originaI input. The
[atter method is for LR(1) grammars with $\epsilon$ -productions and a[Iows

mu[tiple modifications. But it uses aspecial data structure for space
efficiency and keeps LR states in it.

Our incrementa1parsing method is for LR(1) grammars with
$\epsilon$ -productions and allows multiple modifications. We use the general
(attributed) parse tree as the internal structure. We need not store $LR$

states in the APT in contrast with the methods of [Jalili 82, Agrawal 83,
Yeh 88] etc. (although some uses different data structures). Elimination
of LR states will be convenient in editors allowing also structure mode
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editing, Iike “cut and paste” of subtrees.
$ln$ the following, we explain incremental parsing in section 2, and

incremental evaluation in section 3.

2. Incremental parsing
We assume that readers are familiar with basic concepts of grammars

and LR parsing. Unless otherwise stated, the definitions and notations of
[Aho 86] are used in this report.

Let $G=(N, T, P, S)$ be an augmented LR(k) (henceforth, simply $LR$ )
grammar whose first production is of the form $nSarrow S’\^{k\prime}$ .

Suppose that $w=x_{0}\gamma_{7}x_{7}\gamma_{2}x_{2}$ $\gamma_{m}x_{m}^{-}$ is in $L(G)$ , and that $w$ has
been parsed by an LR parser, yielding the parse tree shown in Fig. 1(a).

Suppose also that $w’=x_{0}y_{7}’x_{7}\gamma_{2}’x_{2}$ $\gamma_{m}’x_{m}$ is in $L(G)$ and $w’$ is
obtained from $w$ by substituting $y_{j}’$ for $\gamma_{j}(i=1,\ldots,m)$ . (Note that $x_{0}$ or $x_{m}$

may be $\epsilon$ , but not $x_{j}(i=1,\ldots,m- 1)$ . $\gamma_{j}or\gamma_{j}’$ , but not both, may be $\epsilon$ . The Iast
terminal of $x_{m}$ is $.)

After modification, only apart of the parse tree remains “vaIid”. By
“valid”, we mean that the grammar symbol [abeling anode of the part and
the production appIied at the node are the same as in the original parse
tree. $\ln$ fact, only the shaded area in Fig. l(b) is valid after modification.
The zig-zag of aborder in Fig. l(b) means that there may be some
productions for which some sons are in the shaded part but others are not,
like the production ${}^{t}Aarrow\chi\gamma Z’’$ . The border in $zig$ -zag can not be known in
advance.

Let us divide $x_{j}$ into three parts, i.e. $x_{j}=t_{j}u_{j}v_{j}$ $(i=0, m)$ . The
invalidity of the par.$t$ above $v_{j-]}$ $(i=1 ,...,m)$ is due to the fact that

Iookahead symbols $wh|ch$ involve the first part of $\gamma_{j}’$ may affect the move
of the LR parser in $v_{i- 7}$ . For LR(k) parsers, it is clear that [etting the

length of $v_{j- 7}$ $|V_{\vdash\}}|=k- 1$ is enough for safety. (At the boundary, $v_{m}=$

$\epsilon.)$ (L\’etting $|v_{j- 7}|$ be not $k$ but k-l comes from the fact that when the
parser made ashift operation for the [ast symbol of $v_{\int- 7}$ the $k$ lookahead
symbols were still in $x_{j- \mathfrak{j}}$ . So the valid part of the parse tree also
includes the [eaf node corresponding to the Iast symbol of $v_{j- t}$ . cf.
section 2.2.)

The invaIidity of the part above $t_{j}$ is due to the possibility that the
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parsing configuration of the LR parser at the end of the part of $\gamma_{l}’$ might

not be generally the same as when it parsed the originaI input. Again, the
length of $t_{\int}$ or the border above the end of $t_{j}$ can not be known in advance.

( $t_{0}=\epsilon$ . $t_{j}$ may be $\epsilon.$ )

$ln$ Fig. l(c)(d), acoupIe of other possibilities are iIlustrated. The
shaded parts may be disconnected from each other $(Fig.(c))$ or several
modifications may cause invalid parts to fuse into one $(Fig.(d))$ .

To be more precise for [ater explanations, Iet $TAIL_{j}(z)$ be the Iast $j$

terminaI symbols of $z$ in $w$ or $w’$ . lf $|_{Z}|\leq j$ , this denotes the sequence of
terminal symbols starting from j-th position before the end of $z$ in $wor$
$w’$ (or the first terminal of $w$ or $w’$ if it exceeds the beginning) up to the
end of $z$ . Then, $v_{j}$ means $TAIL_{k- 1}(x_{\int})$ .

2.1 $Outli\acute{n}e$ of the incrementaI parser
The outline of reconsiruction of the parse tree is generally as follows

(Fig. 2).
First, initialize $i$ to 1.
Then, the incremental parser recovers its parsing configuration of the

moment just before reading $v_{\int- 7}$ (Fig. $2(c)(d)$ ).

Next, it parses the part $v_{j- \mathfrak{j}}\gamma_{j’}t_{\int}$ and newly makes a fragment of the
parse tree corresponding to ihat part (Fig. $2(c)$ ). We calI it anew parse
subtree. (lt is not realIy asubtree because of the $zig$ -zag in the border,
but we call it as such for simplicity of terminology). Here, we generally
preserve the original parse tree, preferably as much as possible. Since it
is nol generalIy possible to know the end of $t_{j}$ beforehand, the incremental
parser checks the matching condition after entering the analysis of part
$x_{j}$. When this condition $hoIds$ , that is, when the parsing configuration

becomes the same as when it parsed the originaI input, the incremental
parser for this part stops. (Sometimes the matching condition may not
hold in the part $x_{j}$ , and anaIysis may proceed to the following part, Iike
$\gamma_{i+7}’$ etc. (Fig. 1 $(d)$ ). But [et us assume for the moment that the matching

condition ho[ds in the part $x_{j}$ , before $v_{j}$ . The precise treatment will be
given in section 2.4).

Then, the new $parse$ subtree corresponding to $v_{\int- 7}y_{j}’\prime t_{j}$
“ is

connected to the appropriate node of the $or|ginal$ parse tree. This
connection of the subtree after succeeding in reparsing is safer than
modifying the original parse tree itself, in the case when syntax (and
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semantics) errors occur in the modified part of input, since the original
parse tree will still be retained.

lf there are -muItiple modifications, skip parsing $u_{f}$ and increment $j$ by
1.

Now, we arrive at the same situation as we started the incremental
parsing for $\gamma_{j’}$. Repeat the above steps until we reach $x_{m}$ .

Now, we present the incremental parser using the following grammar
as arunning exampIe.

Gl: (0) $E’arrow E$

(1) $Earrow E+T$

(2) $Earrow T$

(3) $Tarrow T^{\star}F$

(4) $Tarrow F$

(5) $Farrow(E)$

(6) $Farrow i$

The LR states are given in Fig. 3(a) [Aho 86]. Here, we give only the
canonical collection of LR(0) items, or the core part of LR items, for
simplicity, but it does not affect the genera[ity of discussion. The
parsing tabIe is given in Fig. 4[Aho 86].

$SoS_{W’=x\gamma x\gamma x^{1}ii+}etha_{07722^{input_{\star}wis_{i}}=}\star j+i$

where $x_{0}=i\star$ , $y_{\mathfrak{j}}=\epsilon,$ $x_{7}=i+i$ , $y_{2}=\epsilon$ $x_{2}=\star i+i$ . The corresponding
parse tree is shown in Fig. 5(a). Subscripts [ike $i_{1},$ $T_{1}$ are used only to
discriminate occurrences in the foIlowing explanations. (Henceforth we
often use subscripts and superscripts for $discrimination/explanation$ .
Their meaning will be cIear.)

lf we replace the part $Y_{7}=\epsilon,$ $\gamma_{2}=\epsilon$ by $y_{7}’=$ $(, \gamma_{2}’=)$ , the modified
input $w’$ becomes

$w’=x_{0}\gamma_{7}’x_{7}\gamma_{2}’x_{2}=i\star(i+i)\star i+i$

The new parse tree is shown in Fig. 6(a). Only the shaded part of the
original parse tree in Fig. 5(a) turns out to be valid after $modif\dot{\}}cation$ . $\ln$

this example modification, the two inva[id parts above $\gamma_{7}’$ and $\gamma_{2’}$ of Fig.
6(a) have fused into one (cf. Fig. 1 $(d)$ ).

2.2 Initialization of the incremental parser

5



73

$ln$ order to initialize the incremental parser, [et us introduce some
concepts.

For each node $n$ in the parse tree, [et $\rho refix(n)$ be afunction or afield
of $n$ which gives apointer to either (a) its left brother node (if one
exists), or (b) the [eft brother node of the cIosest ancestor that has aleft
brother (if such an ancestor exists), or (c) $niI$ (otherwise). (This
corresponds io the rightmost thread of [Ghezzi 79] or LINK fieId of [Yeh
88]).

For anode $n$ , let us consider asequence of nodes by succesive
application of prefix $()$ starting from $n$ . Assume that $n$ is the beginning of
the sequence and the node immediately before “nil” is the end of this
sequence. Let us $ca\mathfrak{l}1$ it prefix chain. lt actually corresponds to the
reverse of the viable prefix in LR parsing [Aho 86]. As an examp[e,the
prefix chain of $\star 2$ in Fig. 5is

$\star 2$ $T_{1}$

and that of $i_{5}$ in Fig. 5 is
$i_{5}+4E_{1}$

The prefix chain of anode $n$ can be easily got as follows.

function Trace prefix chain $(n)$ :
$current_{-}node$ $:=n$ ;
$prefix_{-}chain$ $:=\epsilon$ ;
Ioop

append $current_{-}node$ to $prefix_{-}chain$ ;
while $current_{-}node$ is the leftmost son of anode do

$current_{-}node:=current_{-}node’s$ father ;
if $current_{-}node=$ root node then return $(prefix_{-}chain)$ ;

end whiIe ;
$current_{-}node:=current_{-}node’s$ Ieft brother ;

end loop;

Now, consider the initialization of the incrementaI parser for part $\gamma_{f}’$ .
We assume that

... $\gamma_{t}’$ $\gamma_{2}’\ldots$ $\gamma_{j- 7}’$

have been a[ready parsed and their parse subtrees are connected to the
original parse tree. $(\#)$

The incremental parser skips parsing of the shaded part above $u_{j- t}$ and
sets up its parser configuration at the moment when it has just shifted
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$1$

the last terminal symbol of $u_{j- \mathfrak{j}}$ (Fig. $2(c)(d)$ ). The initialization can be $|$

done by using the prefix chain $|$

$a,$ $X_{n- t},$ $\chi_{n- 2\prime}\ldots,$ $\chi_{7}$

starting from the last terminal symbol aof $u_{j- 7}$ . ( $\ln$ case of
$LR(1)^{:^{\dagger}}1(’$

grammars, ais in fact the [ast terminal symbol of $x_{\int- t}$ itself.) (lf $i- t=$

$0$ and $|x_{0}|\leq$ k-l, [et abe the first terminal symbol of $x_{0}.$ ) lt is $known|$

that for any teminal symbol $a_{J}$ the conflguration of the parse stack at $the|$

moment where ahas been shifted can be obtained by this prefix chain $[Yeh|$

$88]$ . $1f$ we assume $(\#)$ , the subtree to the left of ihis prefix chain $is|$

assured to be valid after the modification.

Thus, the initialization of the parser configuration, which is $(parse|$

stack, remaining input), is made as foIlows:

procedure lnitialize incremental parser (for $\gamma\prime j$ ):

(1) Put (nil, nil) and then the initial LR state /0 on the bottom of the parse
stack (see note 1).
(2) Get the prefix chain $a,$ $\chi_{n- 7’}\chi_{n- 2’}$ ... , $\chi_{t}$ starting from the $last|$

terminal symbol a of $u_{i- 7}$ .

(3) $1f$ the prefix chain $=\epsilon$ , then skip this step. $|$

Otherwise, put into the parse stack each grammar symboI in the above
prefix chain in reverse order like $x_{t},$ $\chi_{2’}$ ... , $\chi_{n- t}$ $a$ , recovering the $|$

corresponding LR states /7’ /2 , $\ldots,$
$/_{n- t},$ $l_{n}$ by performing LR parsing $using|$

the goto function of the parsing table. $\ln$ the parse stack eIements $for|$

grammar symbols, we a[so make afieId where pointers $\rho_{Xt^{J}}\rho_{\chi 2},$ $\ldots$ $p_{a}$ to
nodes corresponding to $\chi_{7’}\chi_{2}$ $\ldots$ a in the originaI parse tree are stored.

Thus in general, the parse stack is like (note 2)
(nil,nil) $l_{0}(X_{t}, p_{\chi 7})/t(X_{2}, \rho_{X2})$ /2 $(\chi_{n- t}, \rho_{Xn- t})/_{n- 7}(a, p_{a})/_{n}$

(4) Let the remaining input be
$b\ldots\^{k}$

where $b$ is the input symbol next to aand $\^{k}$ is the end of input.

Examole- Let us see the incremental parsing of $\gamma_{\mathfrak{j}}’=(_{3’}$ in Fig. 6. Now, $|$

:

the Iast terminal symboI of $U0$ or ain the above procedure is $\star 2$ Then,
$|$

the prefix chain is $\star 2’ T_{1}$ . So, the parse stack will be initialized as

7
$\mathfrak{l}$



75

(nil, nil) $|0(T_{1}, p_{T1})|2(_{2}^{\star},$ $P_{2^{)}}^{*}|7$

where $p_{T1}$ and $P_{2}^{*}$ are pointers to $n_{\backslash }odes$ for $T_{1}$ and $\star 2$ ’respectively.

The remaining input is (3 $i_{4’}\ldots$ $.

2.3 Termination of the incrementaI parser
After finishing the parsing of $\gamma/$ and entering $x_{j}$ , the incremental

parser can stop parsing when acondition that the parser is in the same
configuration as it parsed the original input holds. This condition is
called the matching condition. Actually, $t_{\int}$ is defined to be the part of the
input from the beginning of $x_{\int}$ up to the position of the input where the
matching cond.ition holds (Fig. $1(b)$ ).

Suppose that areduction $Aarrow\alpha’’$ occurs. [nformalIy, if there is the
same nonterminal $A$ in the original parse tree such that the configuration
of the parser when it was originally recognized is the same as the current
one, we can say that the matching condition holds (Fig. 2 $(a)(b)(c)(e)$ ).

To be more precise, recall that aparser configuration is determined by
(parse stack, $r_{1}emaining$ input)

So, if the content of the parse stack” and “remaining input” (here we only
think of the input in the part $x_{j}$ except $v_{\int}$ ) are the same for the original

and the current one, we can say that future moves of $th_{-}e$ parser (for the
part $x_{j}$ except $v_{j}$ ) will $aIso$ be the same, due to the nature of LR parsing.

(Considering the case of Fig. l(d), the “remaining input” may be in practice
the part $x_{j}$ except $v_{j}$ for some $j\geq i$ ).

Firstly, checking equaIity of the remaining input is triviaI. If the
parser is reading some part in $x_{j}$ (except $v_{\int}$ ), the remaining input is of

course the same.
Secondly, to check equa[ity between the parse stack corresponding to

the orlginal parse tree and the current parse stack, we do not need $to\downarrow ook$

at all parse stack elements. $1t$ will be shown that if we have the original
parse tree, it is only required to check the topmost and the next element
of the current parse stack.

To check the matching condition, Iet ancest $(n)$ , where $n$ is aleaf
(terminal) node in the parse tree, be afunction or a $fieId$ of $n$ which gives
the topmost ancestor that has $n$ as the rightmost descendant (if such an
ancestor exists), or $niI”$ (otherwise). (This corresponds to LAB in [Yeh
$83a])$ . For example in Fig. 5,

ancest $(i_{5})=T_{3}$ , ancest$(\star 6)=$ nil, ancest$(i_{7})=E_{2}$

Using this, the matching condition can be stated as follows.
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Matching condition: (Fig. 2)
Suppose that areduction by $Aarrow\alpha^{\prime l}$ bas occurred. Let the current

configuration be
$(... (X, p_{\chi})/_{q- 1}(A, \rho_{A}’)/_{q},$ $d\ldots$ )

where the first component is the parse stack and the second component is
the remaining input.

Note that $p_{A}’$ points to anode of the new parse subtree because we
have just made areduction and $p_{\chi}$ might be nil if it is the bottom element
of the stack.

Let the terminal symbol just before $d$ in the original parse tree be $c$

(note E2, appendix 3). Let $n$ be the node specified by ancest$(c)$ in the
original parse tree (note 3). The matching condition holds if
(i) $d$ is in $x_{j}$ except $v_{j}$ for some $1\geq f$,

(ii) “ the grammar symboI corresponding to $n$ $”=A$ , and
(iii) prefix$(n)=p_{X}$ (comparison of pointers, note 1).

The matching condition is assured to eventually hold, since at [east it
holds when areduction to the start symbol occurs at the end of input,
where $d=\,$ $n$ is the root node, $A$ is the start symbol and $p_{X}=niI$ .

The proof is given in Appendix 2. Notes regarding $\epsilon$ -productions are
given in Appendix 3.

$Examo\dagger e$ See Fig. 5and 6. Suppose that $i=1$ and the incremental
parser has read $i_{9’}$ and the lookahead is $+8$ Thus, $c=i_{7}$ and $d=+8$

Suppose that areduction $Earrow T’$ occurred and the parse stack is now
$(niI,nil)$ $I_{0}$ $(E_{2}, p_{E2})$ $|_{1}$

(This is exactIy what wilI happen when we reparse the input of Fig. 6.)

The matching condition holds for this reduction $Earrow T”$ because $n$ ,

which is the node specified by ancest$(i_{7})$ , is the node for $E_{2}$ , and

(i) $+8$ is in $x_{j}$ for $j=2\geq i=1$

(ii) “the grammar symbol corresponding to $n\prime\prime=E$ , holds $($

(iii) prefix $(n)$ is nil. $(X, p_{\chi})$ is (nil,nil), thus $p_{\chi}$ is nil. Thus, prefix$(n)=$

$p_{X}$, holds.

2.4 Incremental parser
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We can now present the incremental parser as awhole, which is stated
in the following aIgorithm.

AIgorithm lncremental parser
lnput: The parse tree of $w=\backslash x_{0}\gamma_{7}x_{t}\gamma_{2}x_{2}...\cdot y_{m}x_{m}$ and still unparsed

input $w’=x_{0}\gamma_{7}$
‘

$x_{\}}\gamma_{2}’x_{2}\ldots\gamma_{m^{r}}x_{m}$ .
Output: The parse tree of $w’$ if $w’$ belongs to $L(G)$ , otherwise an error
indication.
Method: lt consists of the following steps:
(1) Set $j=1$ .
(2) Skip parsing of $u_{j- 7}$ . By using the procedure “lnitialize incremental

parser” presented before, set the parse stack to have the same contents as
when it has just shifted the Iast terminal symbol of $u_{\vdash 7}$ .
(3) $\ln$ the. following steps (4) through (7), if “accept’t or “error” turns up,
go to step (8).
(4) Using the normal parser, parse the rest of $v_{j- 7}$ and $\gamma_{j}’$ while making a
new parse subtree.
(5) After the [ookahead is within $x_{j}$ , continue parsing and making the new
parse subtree, but test the matching condition every time areduction is
made.
(6) $\downarrow f$ the matching condition does not hold yet, but the Iookahead comes
to be within $v_{j}(i<m)$ , increment $j$ by one, and go to step (4).

(7) When the matching condition holds after reading $t_{j}$ and at node $n_{A}$ of

the original parse tree, then replace the subtree of $n_{A}$ by the new parse
subtree for “... $v_{j- 7}\gamma_{l}’t_{\int}’’$ . lncrement $i$ by one. lf $i\leq m$ , go to step (2).

(8) Stop.

. $*Examole$
: When we modify the original input

$w=x_{0}\gamma_{7}x_{7}Y_{2^{x_{\star}}2^{=}}i$

‘
$i$

$+|$ $|+i$ to
$w’=x_{0}\gamma_{7}’x_{7}\gamma_{2}’x_{2}=\star$

.

$’$

$\star(i+i)$ ’ $i+i$ , where $x_{0}=|$ , $Y_{t}=$

$\epsilon$ , $x_{\mathfrak{j}}=i+i,$ $\gamma_{2}=\epsilon$ , $x_{2}=$ $|+i,$ $\gamma_{7}’=$ (and $\gamma_{2}’=$ ), the modified parse
tree and incremental parsing for the modified input are as shown in Fig. 6
and 7, respectively. Matching condition does not hold within $x_{-7}$ , and we go
from step (6) to step (4) again. The matching condition holds at $x_{2}$ at $E_{2}$

of Fig. 6or at $E$ in the $last\downarrow ine$ of Fig. 7. At step (7) of the algorithm, we
connect $E_{2}$ , which is the root of the new parse subtree, to $E_{3}$ .
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3. Incremental attribute evaluation and parsing
$ln$ this section, we show amethod of incremental attribute evaluation

based on acIass of one-pass attribute grammars.
As arunning example, we use the folIowing attribute grammar. [ts

syntactic part is the same as in grammar Gl. The attribute $/ev$

represents the number of enclosing parentheses in an expression.

AG1: (0) $E’arrow$ $E$

{E.l$ev=0$ }
(1) $Earrow$ $E+T$

{ $E_{2}.1ev=E_{1}$ .lev; T.lev $=E_{1}$ .lev}
(2) $Earrow$ $T$

{T.l$ev=E$ .lev}
(3) $Tarrow$ $T^{\star}F$

{ $T_{2}.Iev=T_{1}$ .lev; F.Iev $=T_{1}$ .lev}
(4) $Tarrow$ $F$

{F. $lev=T.lev$ }
(5) $Farrow$ (E)

{E.lev $=F.1ev+1$ }
(6) $Farrow$ $i$

{ $/\star$ here F.lev is the no. of parentheses enclosing $i^{\star}/$ }

Subscripts [ike $E_{1},$ $E_{2}$ etc. are used to discriminate occurrences of
grammar symbols in productions.

lncremental attribute evaluation presented here is based on aclass of
one-pass attribute grammars called ECLR-attributed grammar [Sassa 87].
lt is aclass of attribute grammar where attribute evaluation can be made
in one-pass during LR parsing and in aspace-efficient way. We first give
abrief outline of LR- and ECLR-attributed grammars.

Hereafter, we assume that $k$ of LR(k) is 1. (So, $v_{j}$ is in fact $\epsilon$ , although

we retained $v_{j}’s$ in figures.)

3.1 LR-attributed grammar
Suppose that the input for grammar AG1 is

$i_{1}\star 2$ $i_{3}$ $+4i_{5}$ $\star 6$ $i_{7}+8$ $i_{9}$

as in Fig. 5and the ana[yzer is now at the beginning, i.e. the lookahead is
$i_{1}$ . Although we do not have the parse tree of Fig. 5yet since we are at
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the very beginning, the LR theory tells that the parser is at LR state $1_{0}$ of
Fig. 3.

Furthermore, since we know the current LR state, it is possible to get
the values of inherited attributes even if we do not know exactly the
parse tree. For example, we know that in LR state $1_{0}$ , LR items (i) and (ii)

derive (ii) and (iii), (iii) and (iv) derive (iv) and (v), (v) derives (vi) and
(vii). $Trac|ng$ these derivations in reverse order, we are able to see that
F. $lev=0$ , because

$F^{5,2}$ .lev $=T^{5,1}$ .lev
( $=T^{4,2}$ .lev $=T^{4,1}$ .lev $\ldots$ )
$=T^{3,2}.1ev=E^{3,1}.Iev$

( $=E^{2,2}.|ev=E^{2,1}$ .lev $\ldots$ )
$=E^{1,2}.|ev=0$

(Attributes in parentheses may or may not occur.)
Thus, we are able to know that F.lev of $F$ somewhere above $i_{1}$ of Fig. 5

( $F_{1}$ , in this case) is $0$ and T.lev of $T$ somewhere above $i_{1}$ ( $T_{1}$ in this case)

is also $0$ .
Note that we have been able to get the values of inherited attributes

even if we do not know the exact parse tree. This is the basic idea of
LR-attributed grammar (henceforth LR-AG). That is, an LR-AG is known to
be aclass of attribute grammars where the values of inherited attributes
can be computed “uniquely”, or without any inconsistency, during LR
parsing [Jones 80] [Sassa $85b$].

$ln$ LR-AG, evaluation of inherited attributes is made at the point. when
the parser enters anew LR state, that is, at state transition time. This
means that we can make “semantic action” (in traditional terminology) not
only at reduction time, but also in the midst of the right hand side of a
production.

Amore complete description of LR-AG can be found in [Sassa $85b$].

3.2 ECLR-attributed grammar
$\ln$ the previous section, readers would have noticed that most vaIues of

attribute $/ev$ of AG1 are the same. For example in LR state $1_{0}$ , the values
of E.lev, T.lev and F.lev are $aI1$ the same. We can utilize this
characteristic to save storage space and evaIuation time for inherited
attributes as folIows.

We collect the set of inherited attributes which have the same value in
each LR state into an equivalence cIass. For exampIe in AG1, we can make
an equivalence cIass

12



$EC_{1}=$ {E.l $ev$ , T. $lev$ , F. $lev$ }
$ln$ storing attribute values, we allocate asingle Iocation not for each
inherited attribute but for each equivalence class. This is the basic idea
of ECLR-attributed grammar (hereafter ECLR-AG). [ntroduction of
equivaIence classes contributes to reduction of storage space for
inherited attributes. Aspace reduction of 1/17 $-$ 1/9 is reported in
[Sassa 87]. Also, atime reduction of about 8percent is reported there.

To define ECLR-AG more formaIly, we introduce some concepts.
First, the $L$-attributed property is defined as usual.

Def. Attribute grammar AG is called $L$ -attributed, iff for any
produciion $\chi_{0}arrow\chi_{7}\ldots\chi_{np}$ the foIlowing condition hoIds.

Each inherited attribute of $X_{k}(1\leq k\leq np)$ depends only on inherited
attributes of $\chi_{0}$ and synthesized attributes of $x_{t}\ldots\chi_{k- t}$ .

Next, let EC $=\{EC_{1}, EC_{2}, \ldots, EC_{n}\}$ be a disjoint partition of the set of
all inherited attributes of agiven grammar. Each $EC_{j}$ is called an
equiva[ence cIass. An equivalence class is supposed to be aset of
inherited attributes whose values are mutually the same in each LR state.
For example, we may $Iet$ EC $=$ $\{EC_{1}\}$ , $EC_{\{}=$ {E.lev, T.lev, F.lev}for
grammar AG1.

Then, [et IN be the set of inherited attributes of nonterminals after
the ‘1 (dot or the LR marker) of LR items in agiven LR state. $1t$ represents
the set of inherited attributes to be evaluated at that LR state. That is, $if|$

$/iis$ an $LR$ state,
$|$

IN $(l_{i})=\{A.a|A.a$ is an inherited attribute of $A,$ $A$ is a
nonterminal such that [$8arrow\alpha.$ A $\beta$] is an LR item of $/i$ } $.-.\wedge\grave{i}\#$

For exampIe, IN(1) of the above LR state $1_{0}$ is {E.lev, T.lev, F.lev}. $|$

5
Lastly, in order to describe that attribute values can be $\backslash evaIuated!$

concept is important in defining ECLR-AGs, we explain it in detaiI.
$uniqueIy”,$ we introduce afunction $caIledsemant|c\exp ression$ . Since

$this_{\grave{\mathfrak{k}},\grave{*}r}\not\in@!$

Recall that we got
F.Iev $=0$ and T. $lev=0$ $r\grave{\xi\wedge}$

in the $examp^{1}e$ before. In generaI, we can see that the value of an
$:^{\int_{-}} i=\wedge\underline{5}$

13 $|$

$\iota_{A}- ^{\sim}\vee \mathfrak{k}:|$
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inherited attribute $A.a$ in IN $(/i)$ for an LR state $/f$ can be computed as a
function of the values of attributes in the kernel of $/j$ . This function is
$caIled$ the semantic expression [Jones 80, Sassa $85b$ , Sassa 87]. That is,
the semantic expression $E_{li}(A.a)$ of an inherited attribute A.a in IN $(l_{j})$

of LR state $l_{f}$ is aael of possible expressions or symbolicaI forms for
evaluating $A.a$ in terms of attributes of LR item(s) in the kernel of $/j$ . For
example,

$E_{10}$ (F.lev) $=$ {expr. for evaluating $F^{5,2}$ .lev} $=\{0\}$

$E_{10}$ (T.lev) $=$ {expr. for evaIuating $T^{3,2}$ .lev}
$u$ {expr. for evaluating $T^{4,2}.1ev$ }

$=\{0\}\cup\{0\}=\{0\}$

Similarly, we can see that
$E_{10}$ (E. $lev$) $=\{0\}$

Since $E_{10}$ (A. $a$) $=\{0\}$ for all A. $a\in$ IN (1) $\cap EC_{1}$ , we denote this by

$E_{10}(EC_{1})=\{0\}$

The fact that an inherited attribute value is evaluated uniqueIy can be
expressed by that the semantic expression contains only one expression.

We show a[I semantic expressions for LR states of Fig. 3(a) in Fig. 3(b).

Now, the definition of ECLR-AG is as follows.

Def. Agrammar $G$ is ECLR-attributed with respect to apartition
$EC=\{EC_{1}, EC_{2}, \ldots, EC_{n}\},$ iff
(1) $G$ is $L$-attributed, and
(2) for each $EC_{j}$ , and for each LR state $1_{j}$ of $G$ , semantic expressions

$E/j(A.a)’s$ are the same and unique (i.e. contain only one expression) for all
$inher|\{ed$ attributes A. $a\in EC_{j}\cap|N(l_{j})$ .

Examole: Grammar AG1 is ECLR-AG with respect to EC $=\{EC_{1} \}$ , $EC_{1}=$

{E. $lev$ , T.lev, F.Iev}, since
(1) AG1 is $L$-attributed, and
(2) for LR state $1_{0},$ $E_{10}(A.a)’s$ are $\{0\}$ and are the same and unique for all

inherited attributes $A.a\in$ $EC_{1}\cap IN(1_{0})=$ {E.lev, T.lev, F.lev}. Similar
reasoning holds for other LR states.
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Amore complete description of ECLR-AG can be found in [Sassa 87].

3.3 The normal evaluator
$\ln$ this section, we show the normal evaluator based on ECLR-AG, which

both parses the input and eva[uates attributes, making an APT.

Attribute storage in APT
$\ln$ the [ast section, we saw that in ECLR-AGs we can allocate storage

for each equivaIence cIass at an LR state. This means that in the parse
tree, we need not store vaIues of inherited attributes in every node.
Rather, we can store them only in some nodes corcesponding to some LR
states, using asingle location for all inherited attributes in the same
equivaIence class.

Let us $caIl$ LR states in which IN $(l_{j})$ is not empty evaluation states.
For example in Fig. 3(a), $1_{0},$ $|4’|6$ and $1_{7}$ are evaluation states. In the APT,

we $al\mathfrak{l}oCate$ storage for equivalence classes to nodes which have those
evaluation states as their “next” LR states. Here, “next” state of anode
means the LR state to which the parser makes transition after reading the
grammar symbol corresponding to that node in that parsing configuration.
Note that a“next” LR state of anode depends on the context. Let us also
add aspecial node $\phi$ into the APT, which has the initial LR state $1_{0}$ as the
“next’l LR state.

As an example, in the APT of Fig. 5(b), we allocate storage for
equiva[ence classes to nodes $l$ (which has the eva[uation state $1_{0}$ as the
“next” state), $\star 2(--\prime\prime|_{7}),$ $+4t–\prime\prime|6$ ) $,\star 6(--\prime\prime I_{7})$ and $+8(–\prime\prime|_{6})$ . They have
va[ues for $EC_{1}$ $=$ {E.[ev. T. $lev$ , F.lev}which are all $0$ in this particular
exampIe. Here onIy a $Sma\mathfrak{l}1$ part of nodes contain values of inherited
attributes.

As for synthesized attributes, storage is allocated as usual in nodes of
the APT, of which the corresponding grammar symbol has synthesized
attri $b$ utes.

The normaI evaIuator
Let us now present the normal evaluator which, in addition to parsing

and making the parse tree, evaluates attributes and stores their values
into nodes of the parse tree, making the APT. (Note :The evaluator
presented here $is_{\backslash }$ a $litt\mathfrak{l}e$ different in appearance from the one presented
in [Sassa 87], although the principle is the same (see discussion).)

The configuration of the parse stack in this normal evaluator is similar
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to the one in the incremental parser given before. Only the bottom
element is alittle different. The form of the parse stack is in $g_{-}enera1$

(nil, $\rho_{\phi}$ ) $l_{0}(\chi_{t’}\rho_{X7})/7(X_{2}, p_{X2})\ldots(x_{m}, p_{Xm})/_{m}$

where $/iis$ an LR state, $\chi_{j}$ is agrammar symboI and $\rho_{Xi}$ is apointer to the

node in APT corresponding to $\chi_{j}$. In particular, $\rho_{\phi}$ is apointer to node $\phi$ .

Note: As in section 2, $x_{j}’s$ need not be stored.

Now, the algorithm for the normal evaluator is as follows.

Algorithm Normal evaluator
lnput: The input $w=x_{0}\gamma_{7}x_{t}\gamma_{2^{\chi}2}\ldots\gamma_{m}x_{m}$ .
Output: APT of $w$ .
Method:
configuration $:=$ ((nil, $p_{\phi})l_{0}$ , $a_{7}\ldots a_{n}$ $) ;

Ioop
Iet configuration be

$((nil, p_{\phi})l_{0}(X_{t} p_{\chi 7})\ldots/_{m- t}(\chi_{m} p_{Xm})/_{m}$ , $a_{j}\ldots a_{n}$ $) ;

action $:=$ ACTION $[/_{m}, a_{j}]$ {ACTION in the parse table} ;

if action $=$ “accept” or action $=$ “error” then exit ;
if IN $(/_{m})\neq\emptyset$ then compute values of equivalence classes of inherited

attributes in IN $(l_{m})$ {note 2,3} and put them in node pointed by

$p_{\chi_{m}}$ ;

case action of
shift /”:

make anew (leaf) node corresponding to $a_{j}$
;

put values of synthesized attributes of $a_{j}$ {from lexical analysis}

into that node ;
$\rho_{aj}:=$ pointer to that node ;

configuration $:=$ $(... /_{m}(a_{j}, \rho_{\partial j})/,$ $a_{j+t}\ldots a_{n}$ ) ;

“reduce by $Aarrow\alpha^{\prime 1}$ :
make anew (internal) node corresponding to $A$ ;
compute values of synthesized attributes of $A$ {note 3}
and put them into that node ;{note 4}
$\rho_{A}$ $:=$ pointer to that node ;
$k$ $:=|\alpha|$ ;
make the node pointed by $\rho_{A}$ be the father of nodes pointed by
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$\rho_{Xm- k+t}$ , $p_{Xm- k+2}$ \dagger – $p_{\chi_{m}}$ ;

pop $configurat|on$ down to $(... /_{m- k}, a_{j}\ldots a_{n}$ ;
$l:=$ GOTO $Hl_{m- k},$ $A_{\backslash }$ ] {GOTO in th $e$ parse table} ;

configuration $:=$ $(... /_{m- k}(A, p_{A})/,$ $a_{j}\ldots a_{n}$ ) ;

end case
end loop

$\ovalbox{\tt\small REJECT} xm$ The normal evaluator for input $i\star i+i\star i+i$ proceeds as
shown in Fig. 8. This makes the APT of Fig. 5(b).

3.4 The incremental evaluator
$ln$ this section, we present the incremental evaluator based on the

ECLR-AG. We note that the power of the incremental evaIuator is
naturally the same as the normal evaluator.

The general idea of incremental attribute evaluation is simiIar to the
incremental parser. One difference is that modification of $\gamma_{j}’$ may also
affect attribute values in some part “above” $u_{f}$ in addition to the part

“above” $v_{j- 7}$ and $t_{j}$ (Fig. $1(b)$ ). That is, there may be some part above $u_{\int}$

where the attribute values become invalid, although the parse tree is valid
there. The general scheme is as shown in Fig. 9. The shaded part $re$ mains
valid concerning the parse tree and attribute vaIues.

Here, $t_{\int}$ and $v_{f}$ are the same as before, but $u_{f}$ is now divided into two
parts $r_{j}$ and $s_{j}$. We define $r_{j}$ so that in the part above $r_{j}$ , the parse tree is
the same as the original one, but the attribute values are not the same. $\ln$

the part above $s_{j}$, both the parse tree and the attribute values are the

same ( $r_{j}=\epsilon$ fo $ri=0$).

Thus in general, $w’=x_{0}\gamma_{7}’x_{7}\gamma_{2}’x_{2}\ldots\gamma_{m}’x_{m},$ $x_{j}=t_{j}r_{j}s_{j}v_{j}$.
Now, we are ready to present the incremental evaluator.
The idea is to combine the incremental parser of section 2and the

normal eva[uator of section 3.3 with consideration of the validity of
attribute va[ues. Two points, initialization and termination should be
made clear.

3.4.1 Initialization of the incremental evaluator
First, we will show some properties concerning Fig. 9.

Prop. 3.1 Values of attributes (also values of inherited attributes in
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evaluation states associated to nodes in this part) in the shaded part
“above” $s_{j}$ (if $s_{j}\neq\epsilon$ ) are still vaIid after modification.
(The proof is omitted. See [Sassa 88] for details.)

Now, initiaIization of the incremental evaluator for $\gamma_{l}’$ is quite similar
to that of the incremental parser. The only difference is that we put (nil,
$p_{\phi})$ , where $p_{\phi}$ is apointer to node $\phi$ , instead of (nil, nil) at the bottom of
the stack.

Examole In the running example (Fig. 6), if the incremental evaluator
starts at point after $\star 2$ ’the parse stack will be initialized as

$(niI,p_{\phi})|_{0}(T_{1}, p_{T1})|_{2}(^{\star}2’ p*2)|_{7}$

where $\rho$ Tl and $p*2$ are pointers to nodes for $T_{1}$ and $\star 2$

’ respectively.
Notice that we are able to access $1N(1_{0})$ attached to $\phi$ and $1N(1_{7})$ attached
to $\star 2$ tracing pointers from the parse stack.

3.4.2 Termination of the incrementaI evaIuator
Termination of the incremental evaluator for the part $\gamma_{f}’$ requires

checking of attribute values in addition to the matching $cond|tion$ for
parsing presented in section 2.3.

Assume that the matching condition holds at reduction $Aarrow\alpha’’$ . Let the
corresponding node of the new parse subtree be $n_{A}’$ and that of the originaI
parse tree be $n_{A}$ (Fig. $2(b)$ ).

Recall that in attribute $\backslash grammars$ the onIy way of passing attribute
vaIues from the subtree of $n_{A}’$ outward is through synthesized attributes
of $n_{A}’$ . Therefore, $|f$ values of synthesized attributes of $n_{A}’$ are the same
as those of $n_{A}$ we can reaIly teminate incremental evaluation for the part
$\gamma_{j}’$ .

lf synthesized attributes values of $n_{A}’$ and $n_{A}$ are not the same, we
shouId continue incrementaI evaluation. Several ways might be possible
how to continue and when to stop $re$ -evaluation. For the sake of
simplicity of the algorithm however, here we only show the simp[est
method, and [eave possible improvements to further discussion.

So, here we continue $re$ -evaluation of inhe( $|ted$ and synthesized
attributes until the aftribute matching condition holds.
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Attribute matching $con|$dition: (Fig. 10)
Let $n_{A}$ be the node in the original parse tree where the matching

condition holds. Assume that areduction $Carrow\beta’’$ occurs. Let the
corresponding node of the original parse tree be $n_{C}$ . The condition holds if:
(i) Node $n_{C}$ is an ancestor of $n_{A}$ , or $n_{A}$ itself.
(ii) Newly evaIuated va[ues of synthesized attributes of $n_{C}$ are the same
as the old values of synthesized attributes of $n_{C}$ .

The condition means in general that attributes are to be re-evaluated
for nodes in the shaded part “above” $r_{j}$ of Fig. 10 after the matching
condition for incremental parsing is satisfied. (The cases in which $r_{j}$

extends to $v_{\int}$ or $Y_{i+t}’$ etc. are treated properly in section 3.4.3.) Whether
or not we rewrite attribute $va\mathfrak{l}ueS$ on the originaI APT in re-evaluating
attributes, is discussed in the next section.

3.4.3 Incremental evaluator
We can now present the incremental evaluator as awhole, which is

stated in the fo[llowing aIgorithm.

Algorithm [ncremental evaluator with parsing
lnput: The APT of $w=x_{0}\gamma_{7^{\chi}7}\gamma_{2}x_{2}\ldots\gamma_{m^{\chi}m}$ and still unanalyzed input
$w’=x_{0^{Y’}t^{\chi}7^{\gamma’}2^{\chi}2}$ $\gamma_{m^{\chi}m}’$ .
Output: The APT of $w’$ if $w’$ belongs to $L(G)$ , otherwise an error indication.
Method: lt consists of the following steps:
(1) Set $i=1$ .
(2) Skip analysis of $s_{j- 7}$ . By using the procedure $1\prime lnitiaIize$ incremental
evaluator” presented before, set the parse stack to have the same
contents as when it has just shifted the last terminal symbol of $u_{jarrow \mathfrak{j}}$ .
(3) In the following steps (4) through (8), if “accept\dagger ’ or “error” turns up,
go to step (10).
(4) Using the normal evaluator, make parsing and attribute evaluation for
the rest of $v_{j-\}}$ and $\gamma_{j}’$ while making anew APT subtree.
(5) After the lookahead is within $x_{j}$ , continue parsing, attribute

evaluation and making the new APT subtree, but test the matching
condition every time areduction occurs.
(6) $1f$ in (5), (7) or (8) the matching condition or the attribute matching
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condition does not hold yet, but the [ookahead comes to be $with|\cap v_{j}(i<m)$ ,

increment $i$ by one and go to $step(4)$ .
(7) When the matching condition holds after reading $t_{j}$ and at node $n_{A}$ of

the original APT, then replace the subtree of $n_{A}$ by the new APT subtree

for ... $V_{j- t^{Y’}l^{t_{j}}}$ .
(8) Continue attribute re-eva[uation (see note 1,2), but test the attribute
matching condition every time values of synthesized attributes of anode
have been $re$-evaluated(incIuding the moment in step (7)).
(9) When the attribute matching condition holds at node $n_{C}$ , then

increment $iby$ one. lf $\llcorner m$ , then go to step (2).
(.SO) Stop.

$\ovalbox{\tt\small REJECT}$: Moves of the $incr_{\star}em$ental evaluator and the resulting APT for
the modified input $i\star(i+i)$ $|+i$ are shown in Fig. 11 and Fig. 6(b),
respectively.

3.5 Discussion
$ln$ the method of attribute evaluation presented here, space for

inherited attributes seems to be fairly small. For exampIe in Fig. 5(b),
only 5nodes out of 25 nodes have astorage tor inherited attributes. The
space reduction comes from two factors. First, the use- of LR-attributed
grammars makes storage for inherited attributes be allocated only into
“evaluation states”, not into every node. This realizes some storage
optimization, particularly in the case of left-recursive productions.
Secondly, the use of equivaIence classes in ECLR-AGs makes it possibIe
for inherited attributes in the same equivaIence class to share storage,
which is more significant.

Several optimization of the method shown here will be possible:
For unit productions, we can omit intermediate nodes of APT if (i) the

production is aunit production, (ii) attribute evaluation rules for
synthesized attributes of that production are copy rules, and (iii) there is
no evaluation state associated with that $product\dagger on$ .

Also, optimization of incremental evaluation by skipping analysis of
some subtrees of $x_{\int}$ in the APT as for incremental parsing will be an
interesting problem.

The attribute matching condition for the incrementaI evaluator might
be too restrictive. Reducing the part of $re$-evaluation at step (8) of the
incremental evaIuator will be profitable.

$ln$ actual attribute grammars, efficient treatment of big values, [ike
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the symbol table, should be further investigated [Hoover 86].
$ln$ application to Ianguage-based editors, the reIation between [exical

$Ieve\downarrow changes$ in units of characters and grammar level changes in units of
tokens should be considered carefully. For example, atoken may be
divided into two by acharacter $mod e$ editing.

4. Conclusion
Amethod of incremental attribute evaluation and parsing is described.

lt is based on aclass of $LRrightarrow attributed$ grammars $caIled$ ECLR-attributed
grammars. The method unifies incremental attribute evaluatlon and
incremental parsing in asingle algorithm. Multiple modifications in the
original input are also aIlowed.

From the one-pass nature and the use of equivalence $cIasses$ in
ECLR-attributed grammars, reduction of evaluation time and memory size
can be expected. In particular, use of equivalence cIasses contributes
quite much to space efficiency of the attributed parse tree. lnherited
attributes are stored only in asmall part of the nodes of the attributed
parse tree, and the storage requirements would be 1/3 -1/10 compared to
naive methods.
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$(a)$

Shaded part is valid. $\phi$ will be explained later.
(b)

(a) Original parse tree
(b)(c)(d) Modified parse tree

Fig. 1 Original and modified parse tree
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$x_{0}$ $\nu_{t}’$ $x_{\mathfrak{j}}$ $x_{j- t}$ $\gamma\}$ $x_{i}$ xm-t $\gamma_{m}’$ $xm$

(c)

$x_{0}$
$\gamma_{\mathfrak{j}}’$ $x_{t}$ $x_{j- \mathfrak{j}}$

$\gamma_{j}’$ $x_{j}$
$x$

m- $t\gamma_{m}’$ $xm$

(d)

Fig. 1 (cont.)
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(a)

(b) $((\cap|1,ni\dagger)$

condition

(a) original parse tree
(b) original parsing configuration $|ust$ before $d$ of (a)
(c)original parse tree (left) and new parse subtree $(r|ght)$

$(d)$ $initia[|zation$ of $pars|ng$ configuration
(e) current parsing configuration $\dot{|}ust$ betore $d$ of (c)

Fig. 2 Matching original and modified parse tree
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$|_{0^{:}}$ $E’$ $arrow$ . $E^{\,2}$ $ (i) $E_{Io}(EC_{1})\simeq 1^{-}0$ }
$E^{2,1}$

$arrow$ . $E^{2,2}+T$ (ii)
$E^{3,1}$

$arrow$ . $T^{3,2}$ (iii)
$T^{4,1}$

$arrow$ . $T^{4,2*}F$ (iv)
$T^{5,1}$

$arrow$ . $F^{5,2}$ (v)
$F^{6,\}$

$arrow$ . (E) (vi)
$F^{7,\}$

$arrow$ . $i^{7,2}$ (vii)

$1_{1}$ : $E’$ $arrow$ E.
$E$ $arrow$ $E$ . $+T$

$|2^{:}$
$E$ $arrow$ T.
$T$ $arrow$

$\uparrow$ . $\star F$

$I_{3^{:}}$
$T$ $arrow$ F.

$1_{4^{:}}$

$F^{1,1}$
$arrow$ $($ . $E^{1,3})$ $E_{10}(EC_{1}\cdot)=\{(EC_{1},- 1)+1\}$

$E^{2,1}$
$arrow$ . $E^{2,2}+T$

$E^{3,1}$
$arrow$ . $T^{3,2}$

$1^{4,1}$
$arrow$ . $1^{4,2*}F$

$T^{5,1}$
$arrow$ . $F^{5,2}$

$F^{6,1}$
$arrow$ . $(E)$

$F^{7,1}$
$arrow$ . $i^{7,2}$

$1_{5^{:}}$
$F$ $arrow$

$i$ .

$I_{6^{:}}$
$E$ $arrow$ $E+$ . $T$ $E_{10}(EC_{1})=\{(EC_{1},- 2)\}$

$T$ $arrow$ . $T^{\star}F$

$T$ $arrow$ . $F$

$FF$ $arrowarrow$ $(E)i$

$I_{7^{:}}$
$T$ $arrow$

$T^{\star}$ . $F$ $E_{10}(EC_{1})=\{(EC_{1},- 2)\}$

$FF$ $arrowarrow$ $(E)i$
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$1_{8^{:}}$

$F$ $arrow$ (E. )

$E$ $arrow$ $E$ . $+T$

$1_{9^{:}}$
$E$ $arrow$ $E+T$ .
$T$ $arrow$ $T$ . $*F$

$|_{10^{:}}T$ $arrow$ $T$ F.

$I_{\I}$ : $F$ $arrow$ (E).

$(a)$ (b)

(a) LR states for gramar Gl (canonical LR(0) collection)

(b) semantic expressions corresponding to each LR state

Fig. 3LR states and semantic expressions for grammar Gl and AG1

$|$ action $|$ goto

STATE $|_{\ovalbox{\tt\small REJECT}}|i+()$$ $|$ $E$ $T$ $F$

$0$ $|$ s5 s4 $|$ 1 2 3
1 $|$ s6 a仮仮 $|$

2 $|$ r2 s7 r2 r2 $|$

3 $|$ $r4$ r4 $r4$ r4 $|$

4 $|$ $s5$ s4 $|$ 8 2 3
5 $|$ ffi r6 $\hslash$ r6 $|$

6 $|$ s5 s4 $|$ 9 3
7 $|$ s5 s4 $|$ 10
8 $|$ s6 sll . $|$

9 $|$ rl s7 rl $r1$ $|$

10 $|$ r3 r3 r3 $r3$ $|$

11 $|$ r5 r5 r5 $r5$ $|$

Fig. 4 Parsing table for grammar Gl
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1
$i$

and the $assoc|ated$ box mean an LR state and IN $(1_{i})$ ,

$|.e$ . inherited attributes eva[uated at LR state 1respectiveIy.
$F$

1 $F_{3}$ and $F_{5}may$ be omitted as unit production.i ’

(a) original parse tree (ignore 1
$i$

etc.)
(b) original APT (with 1

$i$

etc.)

Fig. 5 Original parse tree and APT
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–original parse tree – new parse subtree

$F_{\}$ , $F_{11},$ $T_{1}1’F_{12}$ and $F_{5}$
may be omitted as unit $product|on$ .

(Note 1) cut the original $a$rc and establish a new arc.

(a) modified parse tree (ignore 1
$i$

etc.)

(b) modified APT (with 1
$i$

etc.)

Fig. 6 Modified parse tree and APT
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parse stack input

$\ovalbox{\tt\small REJECT}$
$1$

$0T2*7$ $|$ $(i+i)^{*}i+i$ $
$0T$ 2 7 $(4 .| i+i)^{*}i+i$ $
$0T2*7$ $(4 i5 | +i)^{*}i+i$ $
$0T2*7$ $(4 F3 | +i)$ ‘ $i+i$
$\ovalbox{\tt\small REJECT}|$ $i$ $i\ovalbox{\tt\small REJECT} i\ovalbox{\tt\small REJECT}$

$0T2*7$ $(4 E8 | +i)$ i+i$
$0T$ 2 7 (4 $E8+6$ $|$ I) $i+i$
$0T2*7$ $(4 E8+6i5 | )*i+i$ $
$0T2*7$ $(4 E8+6F3 | )^{*}i+i$ $
$0T2$ ‘ 7 $(4 E8+6T9 | )i+i$
$0T$ 2 7 $(4 E8 | )^{*}i+i$ $
$0T2*7(4E8)11$ $|$ ${}^{t}i+i$ $
$0T2*7F10$ $|$ $\ovalbox{\tt\small REJECT} i\ovalbox{\tt\small REJECT} i\ovalbox{\tt\small REJECT}$

$0T2$ $|$ $s_{i+i\}$

$0T2$ ‘ 7 $|$ $i+i$ $
$0T2*7i5$ $|$ $+i$
$0T2*7F10$ $|$ $+i$ $
$0T2$ $|$ $+i$ $
$0E$ $ $|$ $+i$

(nil,nil) at the bottom of the parse stack is omitted.
$(X,p_{X})$ and $\mathfrak{l}_{i}$ in the parse stack are iust written as Xand $i$ , respectively.

Fig. 7 lncremental parsing of the modified input
$i^{*}(i+i)$ $i+i$
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parse stack $|$ input $|$ evaluation

$\frac{-- L-}{0|ii+ii+i}$$
$1|IN(I_{0})^{-}=\{0\}arrow\phi$

$0i$ $5$ $|$ $i+i$ $i+i$ $|$

$0F3$ $|$

. $i+i$ $i+i$ $ $|$

$00TT22*7$ $||$

.
$i_{i}+_{+}i_{ii+i\}]^{1+i\}$ $|||N(1_{7})=\{0\}arrow$

$0T$ 2 7 $i$ $5$ $|$

$:_{i^{*}i}^{ii}$ : $||$

$0T2*7F10$ $|$

$0T2$ $|$ $+i$ $i+i$ $ $|$

$0E$ { $|$ $+i$ $i+i$ $ $|$

$0E$ { $+6$ $|$
$i$ $i+i$ $ $|1N(1_{6})=\{0\}arrow+$

$0E1+6i$ $5$ $|$ $i+i$ $|$

$0E1+6F3$ $|$ $i+i$ $ $|$

$0E1+6T9$ $|$ $i+i$ $ $|$

$0E1+6T$ 9 7 $|$ $i+i$ $ $||N(I_{7})=\{0\}arrow\star$

$0E1+6T9$ ’ 7 $i$ $5$ $|$ $+i$ $ $|$

$0E1+6T9*7F10$ $|$ $+i$ $ $|$

$0E1+6T9$ $|$ $+i$ $ $|$

$0E1$ $|$ $+i$ $ $|$

$0E1+6$ $|$ i$ $|IN(1_{6})=\{0\}arrow+$

$0E1+6i$ $5$ $|$ $ $|$

$0E1+6F3$ $|$ $ $|$

$00EE]+6T9$ $||$ $\$ $||$

$(ni1,p_{\phi})$ at the bottom of the parse stack is omitted.
$(X,p_{X})$ and $1_{i}$ in the parse stack are iust written as Xand $i$ , respectively.

IN$(1_{i})=\{v,\ldots\}arrow X$ in evaluation means: evaluate IN $(1_{i})$ according to
semantic expressions, get values $v,\ldots$ for equiva[ence classes, and $store$

them into node corresponding to X.

Fig. 8
$ii+ii+iM_{i}oves_{*}ofthe$

normal evaluato$r’for$ the origin$a1$ input
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$v_{j- \mathfrak{j}}$

$\gamma’$, $t_{j}$

$\underline{r_{j}s_{j}}$

$v_{j}$

$v_{j}$

Shaded part is valid

Fig. 9 Modified APT

$\underline{v_{j-}}$プ
$\gamma_{j}’$

$\underline{\text{乳}t_{i}r_{j}s_{j}v_{j}}$

$x_{l- t}$ $x_{\int}$

Fig. 10 Re-evaluation of attribute values
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parse stack $|$ input $|$ evaluation

$\ovalbox{\tt\small REJECT}$
$|$ $|$

$0T2*7$ $|$ $(i+i)$ i+i$ $|$

$0T2$ . $*7$ $(4 | i+i)$ $i+i$ $|1N(1_{4})\Leftrightarrow\{0\}arrow($

$0T2*7$ $(4 i5 | +i)$ $i+i$ $|$

$0T2*7$ $(4 F3 | +i)$ $i+i$ $ $|$

$0T2*7$ (4 $T2$ $|$ +i)*i+i$ $|$

$0T2*7$ $(4 E8 | +i)$ $i+i$ $ $|$

$0T2*7$ (4 $E8+6$ $|$ i)‘i+i$ $|IN(I_{6})-\{1\}arrow+$

$0T2*7$ $(4 E8+6i5 | )$ i+i$ $|$

$0T2*7$ $(4 E8+6F3 | )i+i$ $|$

$0T2*7$ $(4 E8+6T9 | )^{*}i+i$ $|$

$0T2*7$ $(4 E8 | )*i+i$ $|$

$0T$ 2 7 $(4 E8)1$ { $|$ $i+i$ $ $|$

$0T2\star 7F10$ $|$

. $i+i$ $|$

$00TT22*7$ $||$ $*i_{i+}+i_{i}\_{\}$ $||1N(|_{7})=\{0\}arrow*$

$0T$ 2 7 $i5$
$|_{1}$

$+i$ $|$

$0T2*7F10$ $+i$ $|$

$0T2$ $|$ $+i$ $|$

$0E1$ $|$ $+i$ $|$

Fig. 11 lncremental evaluation of the modified input
$i$ $(i+i){}^{t}i+i$


