NORMAL HILBERT POLYNOMIALS

by Shiroh ITOH (伊藤史朗) 龙鼠 総合科学部

1. Normal Hilbert Polynomials.

This note is a short summary of my recent work [5]. Throughtout this note (A, m) will be a Cohen-Macaulay local ring of dimension $d \geq 2$, and I will be a parameter ideal for A, i.e. I is an m-primary ideal generated by d elements. Assume that A is analytically unramified and A/m is infinite. For an ideal J in A, \overline{J} denotes the integral closure of J, i.e., $\overline{J} = \{x \in A | x^n + a_1 x^{n-1} + \cdots + a_n = 0 \text{ for some } a_i \in J^i\}$.

It is well known that there exist uniquely determined integers $\overline{e}_0(I), \dots, \overline{e}_d(I)$ such that

$$length_A(A/\overline{I^{n+1}}) = \overline{e}_0(I) \binom{n+d}{d} - \overline{e}_1(I) \binom{n+d-1}{d-1} + \dots + (-1)^d \overline{e}_d(I)$$

for all large n. We say that

$$P(I,n) = \overline{e}_0(I) \binom{n+d}{d} - \overline{e}_1(I) \binom{n+d-1}{d-1} + \dots + (-1)^d \overline{e}_d(I)$$

is the normal Hilbert polynomial of I. $\overline{e}_0(I)$ is a well-known number called the multiplicity of I i.e., $\overline{e}_0(I) = e(I) = length_A(A/I)$. Our purpose of this note is to report some properties of $\overline{e}_1(I)$, $\overline{e}_2(I)$ and $\overline{e}_3(I)$. Our results are contained in the following two theorems.

THEOREM 1. (1) $\overline{e}_1(I)$ -length_A(\overline{I}/I) \geq length_A($\overline{I^2}/I\overline{I}$), and the equality holds if and only if $\overline{I^{n+2}} = I^n\overline{I^2}$ for every $n \geq 0$.

 $(2) \ \overline{e}_2(I) \geq \overline{e}_1(I) - length_A(\overline{I}/I), \ and \ the \ equality \ holds \ if \ and \ only \ if \ \overline{I^{n+2}} = I^n \overline{I^2} \ for \ every \ n \geq 0.$

THEOREM 2. (1) $\overline{e}_3(I) \geq 0$, and if $\overline{e}_3(I) = 0$, then $\overline{I^{n+2}}$ is contained in I^n for every $n \geq 0$.

(2) Assume that A is Gorenstein and $\overline{I} = m$. Then $\overline{e}_3(I) = 0$ if and only if $\overline{I^{n+2}} = I^n \overline{I^2}$ for every $n \geq 0$.

Ooishi called the number $\overline{e}_1(I) - length_A(\overline{I}/I)$ the normal sectional genus of I and denoted it by $\overline{g}_s(I)$.

In two dimensional case, Huneke remarked in his paper that

$$\begin{split} length_A(A/\overline{I^{n+1}}) &= length_A(A/I) \binom{n+2}{2} \\ &- (\sum_{r \geq 0} length_A(\overline{I^{r+1}}/I\overline{I^r})) \binom{n+1}{1} + \sum_{r \geq 1} length_A(\overline{I^{r+1}}/I\overline{I^r}) r \end{split}$$

for all large n ([3]). Therefore

$$\begin{split} \sum_{r\geq 1} length_A(\overline{I^{r+1}}/I\overline{I^r})r \geq \overline{g}_s(I) &= \sum_{r\geq 1} length_A(\overline{I^{r+1}}/I\overline{I^r}) \\ &\geq length_A(\overline{I^2}/I\overline{I}); \end{split}$$

thus our Theorem 1 is a natural generalization of this fact to high dimensional case, and the main difficulty is how we reduce the problem to two dimensional case.

2. Key Theorem.

Detailed studies in $\overline{e}_i(I)$'s are based on the following theorem and lemma.

THEOREM 3. There exists a system of generators x_1, \dots, x_d of I such that, if we put $C = A(T)/(\sum_i x_i T_i)$ and J = IC, where $A(T) = A[T]_{m[T]}$ with $T = (T_1, \dots, T_d)d$ indeterminates, then

- (1) $\overline{J^n} \cap A = \overline{I^n}$ for every $n \geq 0$;
- (2) $\overline{J} = \overline{I}C;$
- (3) $\overline{J^n} = \overline{I^n}C \cong \overline{I^n}A(T)/(\sum_i x_i T_i)\overline{I^{n-1}}A(T)$ for all large n;
- (4) C is normal if A is analytically normal and $dim A \geq 3$.

LEMMA 4. Choose a system of minimal generators x_1, \dots, x_d of I, and put $B = A[x_1/x_2], R = R(A, I) = A[It, t^{-1}]$ (the Rees ring of I), $D = R_P$, where $P = (t^{-1}, m)R$, and nD = the maximal ideal of D. Let $h : B \longrightarrow D$ be a canonical homomorphism which maps x_1/x_2 to x_1t/x_2t . Then

(0)
$$nD \cap B = m[x_1/x_2].$$

We here put $C = Bm[x_1/x_2]$ and J = IC. Then

- (1) $\overline{J^n} \cap A = \overline{I^n}$ for every $n \geq 0$,
- (2) $\overline{J} = \overline{I}C$ and

(3) $\overline{I^{n+r}} \subseteq \overline{I^n}$ for every $n \ge 0$ if and only if $\overline{J^{n+r}} \subseteq \overline{J^n}$ for every $n \ge 0$.

Applying the theorem (and the lemma), we have the following results.

PROPOSITION 5. With the same notation as in Theorem 3, we have the following assertions.

(1) $\overline{e}_i(I) = \overline{e}_i(J)$ for every $i \leq d-1$;

(2) $\overline{g}_s(I) = \overline{g}_s(J)$;

(3) $\overline{I^2}A(T)/I\overline{I}A(T)$ is a submodule of $\overline{J^2}/J\overline{J}$, in particular length_A($\overline{I^2}/I\overline{I}$) $\geq length_C(\overline{J^2}/I\overline{J})$.

(4) $\overline{I^{n+r}}$ is contained in I^n for every $n \geq 0$ if and only if $\overline{J^{n+r}}$ is contained in $\overline{J^n}$ for every $n \geq 0$.

PROOF. We put $z = \sum_{i} x_{i} T_{i}$ for simplicity. (1) and (2) follow from Theorem 3. (3): It is enough to show that $\overline{I^{2}}A(T) \cap (I\overline{I},z)A(T) = I\overline{I}A(T)$. $\overline{I^{2}}A(T) \cap (I\overline{I},z)A(T) = I\overline{I}A(T) + \overline{I^{2}}A(T) \cap zA(T) = I\overline{I}A(T) + \overline{I}A(T)z = I\overline{I}A(T)$. (4) follows from Lemma 4(3).

It is known that $\overline{e}_2(I) \geq \overline{g}_s(I)$ if dimA = 2; therefore by the induction on d = dimA, we have

Corollary 6. $\overline{e}_2(I) \geq \overline{g}_s(I)$.

As proved in [4, Proposition 10],

$$\begin{split} &(*)length_{A}(A/\overline{I^{n+1}}) \\ &\geq length_{A}(A/I^{n+1}\overline{I^{2}}) \\ &= length_{A}(A/I) \binom{n+d}{d} - (length_{A}(\overline{I}/I) + length_{A}(\overline{I^{2}}/I\overline{I})) \binom{n+d-1}{d-1} \\ &+ length_{A}(\overline{I^{2}}/I\overline{I}) \binom{n+d-2}{d-2} \end{split}$$

for all n. Therefore

$$\overline{e}_1(I) \geq length_A(\overline{I}/I) + length_A(\overline{I^2}/I\overline{I})i.e.,$$
 $\overline{g}_s(I) = \overline{e}_1(I) - length_A(\overline{I}/I) \geq length_A(\overline{I^2}/I\overline{I}).$

We give here the proof of (1) in Theorem 1.

Proposition 7. (1) $\overline{g}_s(I) \ge length_A(\overline{I^2}/I\overline{I})$.

$$(2) \ \overline{g}_s(I) = length_A(\overline{I^2}/I\overline{I}) \ if \ and \ only \ if \ \overline{I^{n+2}} = I^n\overline{I^2} \ for \ every \ n \geq 0.$$

PROOF. (2) We may assume that A/m is infinite. We use the induction on d=dim A. If d=2, the assertion clearly holds. So assume that d>2. if part follows from (*). only if part: Choose a system of generators x_1, \dots, x_d of I satisfying the conditions of Theorem 3, and put $z=\sum_i x_i T_i, C=A(T)/zA(T)$ and J=IC. Since $length_A(\overline{I^2}/I\overline{I}) \leq length_C(\overline{J^2}/J\overline{J}) \leq \overline{g}_s(J) = \overline{g}_s(I)$ by Proposition 5, we have $length_C(\overline{J^2}/J\overline{J}) = \overline{g}_s(J)$ and $\overline{J^2} = \overline{I^2}C$. Thus $\overline{J^{n+2}} = J^n\overline{J^2}$ for every $n \geq 0$. Then $\overline{I^{n+2}}A(T) = \overline{I^{n+2}}A(T)$ is contained in $I^n\overline{I^2}A(T) + zA(T)$, and hence $\overline{I^{n+2}}A(T) = \overline{I^{n+2}}A(T) \cap (I^n\overline{I^2}A(T) + zA(T)) = I^n\overline{I^2}A(T) + z\overline{I^{n+1}}A(T)$. By the induction on n, $\overline{I^{n+2}}A(T) = I^n\overline{I^2}A(T)$, and therefore $\overline{I^{n+2}} = I^n\overline{I^2}$.

As we remarked in [4, Proposition 3],

(**) if
$$\overline{I^{n+2}} = I^n \overline{I^2}$$
 for every $n \geq 0$, then $G = R'/t^{-1}R'$ is Cohen-Macaulay.

Since

$$\begin{split} length_A(A/\overline{I^{n+1}}) = & length_A(A/I^{n+1}) \\ & - \sum_{0 \leq r \leq n} length_A(I^{n-r}\overline{I^{r+1}}/I^{n-r+1}\overline{I^r}) \end{split}$$

and

$$\begin{split} &length_{A}(I^{n-r}\overline{I^{r+1}}/I^{n-r+1}\overline{I^{r}}) \\ &\leq length_{A}((\overline{I^{r+1}}/I\overline{I^{r}}) \otimes (I^{n-r}/I^{n-r+1})) \\ &= length_{A}(\overline{I^{r+1}}/I\overline{I^{r}}) \binom{n-r+d-1}{d-1} \\ &= length_{A}(\overline{I^{r+1}}/I\overline{I^{r}}) \binom{n+d-1}{d-1} - r \binom{n-r+d-2}{d-2} + lower \ degree \ terms, \end{split}$$

we have

$$\begin{split} \overline{e}_1(I) &\leq \sum_{r \geq 0} length_A(\overline{I^{r+1}}/I\overline{I^r}) \ i.e., \\ \overline{g}_s(I) &= \overline{e}_1(I) - length_A(\overline{I}/I) \leq \sum_{r \geq 1} length_A(\overline{I^{r+1}}/I\overline{I^r}). \end{split}$$

Proposition 8. (1) $\overline{g}_s(I) \leq \sum_{r \geq 1} length_A(\overline{I^{r+1}}/I\overline{I^r})$.

(2) If $depth_M R' \geq d$, then $\overline{g}_s(I) = \sum_{r \geq 1} length_A(\overline{I^{r+1}}/I\overline{I^r})$ and $\overline{e}_2(I) = \sum_{r \geq 1} length_A(\overline{I^{r+1}}/I\overline{I^r})r$, where $M = (t^{-1}, It)R$.

3. $\overline{e}_2(I)$.

In this section, we shall give the proof of (2) in Theorem 1. By Corollary 6, the assertion remained to be proved is the following

Proposition 9. $\overline{e}_2(I) = \overline{g}_s(I)$ if and only if $\overline{I^{n+2}} = I^n \overline{I^2}$ for every $n \ge 0$.

If part of the above proposition clearly holds by (*). Only if part follows from the following proposition.

PROPOSITION 10. Assume that $d \geq 3$, and choose a system of generators x_1, \dots, x_d satisfying the conditions of Theorem 1, and put $z = \sum_i x_i T_i, C = A(T)/zA(T)$ and J = IC. If $\overline{J^{n+2}} = J^n \overline{J^2}$ for every $n \geq 0$, then $\overline{I^{n+2}} = I^n \overline{I^2}$ for every $n \geq 0$.

PROPOSITION 11. Let r be either 1 or 2. Then the following assertions are equivalent.

- (1) $\overline{I^{n+r}} = I^n \overline{I^r}$ for every $n \ge 0$.
- (2) $[H_N^i(R')]_j = 0$ for $i + j \ge r + 1$.
- (3) $[H_N^i(R')]_j = 0$ for i + j = r + 1.

Proof of Proposition 10: Assume that $d \geq 3$, and choose a system of generators x_1, \cdots, x_d satisfying the conditions of Theorem 3, and put $z = \sum_i x_i T_i, C = A(T)/z A(T), J = IC$, as in Theorem 3. $S = A(T) \otimes R(=R(A(T), IA(T))), S' = A(T) \otimes R'(=R'(A(T), IA(T))), N' = ItS, M' = (t^{-1}, It)S' F = S/ztS(=R(C,J))$ and $F' = \sum \overline{I^nC}t^n(=R'(C,J))$. Suppose that $[H^i_{N'}(F')]_j = 0$ for i+j=3. We shall prove $[H^i_N(R')]_j = 0$ for i+j=3. Since $A \longrightarrow A(T)$ is faithfully flat, $H^i_N(R') = H^i_{N'}(S')$; thus it is sufficient to prove that $[H^i_{N'}(S')]_j = 0$ for i+j=3. We first prove that $[H^{i-1}_{N'}(S'/ztS')]_{j+1} = 0$ for $3 \leq i \leq d$ and $j \geq 3-i$. If this is proved, then $([H^i_N(S')]_j =)[H^i_{N'}(S'(-1))]_{j+1} \xrightarrow{zt} [H^i_{N'}(S')]_{j+1}$ is injective; since every element of $H^i_{N'}(S')$ is annihilated by some power of zt, $[H^i_N(S')]_j$ must be 0. Since dimF'/(S'/ztS') = 0, we have $H^1_{N'}(S'/ztS') = F'/(S'/ztS')$ and $H^i_{N'}(S'/ztS') = H^i_{N'}(F')$ for $i \geq 2$. Therefore, for $3 \leq i \leq d$, $H^{i-1}_{N'}(S'/ztS')_{j+1} = H^{i-1}_{N'}(F')_{j+1} = 0$, since F' is a Cohen-Macaulay ring. We next prove that $H^2_{N'}(S')_1 = 0$. It is known that $H^2_{N'}(S')_0 = 0$; therefore

 $0 = H_{N'}^2(S')_0 \xrightarrow{zt} H_{N'}^2(S')_1 \longrightarrow H_{N'}^2(S'/ztS')_1 = 0$; hence $H_{N'}^2(S')_1 = 0$. It is also known that $H_{M'}^0(S') = H_{M'}^1(S') = 0$ and $H_{M'}^i(S') = H_{N'}^i(S')_i = 0, 1$. Therefore $H_{N'}^i(S') = 0$ for i = 0, 1.

4. $\overline{e}_3(I)$.

In general, it is known that

$$(-1)^d \overline{e}_d(I) = F(0) = \sum_i (-1)^i length_A([H_N^i(R')]_0).$$

If d=3, then $\overline{e}_3(I)=length_A([H_N^3(R')]_0)=length_A(H^2(X,O_X))$, because $[H_N^2(R')]_0=[H_M^2(R')]_0=0$. Therefore by Proposition 5,

$$(***) \overline{e}_3(I) \geq 0.$$

It is then natural to ask when $\overline{e}_3 = 0$. It follows from [4, Appendix 2] that there exists a canonical graded homomorphism $\alpha: H_N^d(R') \longrightarrow H_m^d(A)[t, t^{-1}]$. We denote by α_i the graded part of degree j of α . Then we have

LEMMA 12. $\alpha_j = 0$ (i.e., $[H_M^d(R')]_j = [H_N^d(R')]_j$) if and only if $\overline{I^{n+d-1+j}} \subseteq I^n$ for every $n \ge 0$.

Proof of Theorem 2. (1): By Proposition 5, we may assume that d = dim A = 3. Then the assertion follows from (***) and Lemma 12. (2): This follows from the following proposition.

PROPOSITION 13. Assume that A is a Gorenstein local ring and $\overline{I^2} = I\overline{I}$. If $\overline{I^{n+2}}$ and $m\overline{I^{n+1}}$ are contained in I^n for every $n \geq 0$, then $length_A(\overline{I^2}/I\overline{I}) = 1$ and $\overline{I^{n+2}} = I^n\overline{I^2}$ for every $n \geq 0$.

PROOF. Since $m\overline{I^{n+1}} \supseteq I^n$, we have $(I^n:m)/I^n \supseteq (\overline{I^{n+1}}+I^n)/I^n = \overline{I^{n+1}}/I^n\overline{I}$, and hence $length_A(\overline{I^{n+1}}/I^n\overline{I}) \le length_A((I^n:m)/I^n) = \binom{n-1+d-1}{d-1}$, because A is Gorenstein. Therefore

$$length_A(A/\overline{I^{n+1}})$$

$$= \operatorname{length}_{A}(A/I^{n+1}) - \operatorname{length}_{A}((I^{n}\overline{I}/I^{n+1}) - \operatorname{length}_{A}(\overline{I^{n+1}}/I^{n}\overline{I})$$

$$\geq \operatorname{length}_{A}(A/I) \binom{n+d}{d} - \operatorname{length}_{A}(\overline{I}/I) \binom{n+d-1}{d-1} - \binom{n-1+d-1}{d-1}$$

$$= \operatorname{length}_{A}(A/I) \binom{n+d}{d} - (\operatorname{length}_{A}(\overline{I}/I) + 1) \binom{n+d-1}{d-1} + \binom{n+d-2}{d-2}.$$

(We have already proved in [4, Proposition 10] that $length_A((I^n\overline{I}/I^{n+1}) = length_A(\overline{I}/I)\binom{n+d-1}{d-1}$.) Thus by (*), $length_A(\overline{I^2}/I\overline{I}) = 1$ and $length_A(A/\overline{I^{n+1}}) = length_A(A/I)\binom{n+d}{d} - (length_A(\overline{I}/I) + 1)\binom{n+d-1}{d-1} + \binom{n+d-2}{d-2}$, and in particular, $\overline{I^{n+1}} = I^{n-1}\overline{I^2}$.

It is natural to ask whether the assertion (2) in Theorem 2 is true for any parameter ideals.

Conjecture: Assume that A is Gorenstein and $d = dim A \ge 3$. Then $\overline{e}_3(I) = 0$ if and only if $\overline{I^{n+2}} = I^n \overline{I^2}$ for every $n \ge 0$.

Assume that d=3 and $\overline{e}_3(I)=0$: By Proposition 11, if $[H_M^2(R')]_1(=[H_N^2(R')]_1)=0$, then $\overline{I^{n+2}}=I^n\overline{I^2}$ for every $n\geq 0$.

REFERENCES

- 1. H. Flenner, Die Stz von Bertini fr locale Ringe, Math. Ann. 229 (1977), 97-111.
- 2. S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan 30(1978), 179-213.
- 3. C. Huneke, Hilbert functions and symbolic powers, *Michigan Math. J.* 24 (1987),293-318.
- S. Itoh, Integral closures of ideals generated by regular sequences, J. of Alg. 117(1988),390-401.
- 5. S. Itoh, Coefficients of normal Hilbert polynomials, preprint.
- 6. J. Lipman and B. Teissier, Pseudo-rational local rings and a theorem of Brianon-Skoda about integral closures of ideals, *Michigan Math. J.* 28 (1981),97-116.
- 7. A. Ooishi, Castelnuvo's regularlity of graded rings and modules, *Hiroshima Math. J.* 12(1982),624-644.
- 8. A. Ooishi, Genera and arithmetic genera of commutative rings, *Hiroshima Math. J.* 17(1987),47-66.
- A. Ooishi, Δ-genera and sectional genera of commutative rings, Hiroshima Math.J. 17(1987),361-372.