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FAMILY OF OPERATORS DEFINED ON. ANALYTIC f‘UNCT;[ONS
LA g . ‘
TUSAKU KOMATU (iR T3 K% - 'l\ﬁ}%f’ﬁ)
1. Intfoduction.
Let 9: denote the class of analytic functions f which are holomorphic in the
unit disk E‘= {121 < 1} and normalized by £(0) = £'(0) - 1 = 0. On the other hand,

let ¢ be a probability measure supported by the unit interval I = [O, 1]. Then a

1inearvoperatoroc ia defined on F by means of

, f(zt)
L £(z) = f o (t) (red).
I \

t

In a series of previous papers [(5~19], we havé dealt with various problems
conceming £ .The present note is a survey of several results obtained on these
problems in which they are rearrah.ged in Bystematlc and partly improved forms. The
details of proofe are to be refaued tol respective 011gin>al papers‘

2. Additive femily ‘of operatom.

Since £ € F ixnplies c[:f ¢ F, tkhet iteration {OC“ ‘}::0 arises aufomaticall&
within the class /fr However, this sequence can further be ihterpolated into a
. family {OCAJ depending on. a contlnuous 'parameter A2Z 0 in such a. manner that
it 18 subject to the addltivity OC cﬁf& c[,hﬂ“. In fact, by refernng to (3] and
(28], we have the following theorem.

THEOREM 2. 1. There exists always an additivq familf {J:A} generated by q.

o ' :

Purther, if the sequence {o(,?‘}y given by |

ol = fx Laa(t) Ww=1, 2 ...)

4

is fully monotone, there exists a probability measure g, as an esgentially unique

solution of the moment problem of Hausdorff type

f £ raa(t) = o, =1, 2 ...)
I



2.

A \ .
such that oL admits the integral representation

R f(zt) o
L f(z) = f — 40, (t) (red).
. It

THEOREM 2. 2, For any £ € F, the limit relations

A
lim L £(z) = £(z) and 1oL f(z) = =
A->40 Ad oo

-

hold in E uniformly in the wider sense except the extreme cases where we have al-
wayeon(z) =z for the fommer relation and aCf(z) = f(z) for the latter.
THEORBM 2. 3. The family generated by the measure g(t; &) = £% with a>0

is given by
A=l

o’ : 1
oC(a)A £(z) = f f(zt)t“"2 <log ——) dt.
F(A) t

It is remarked that the operator o(,(a.) with an integera. waa dealt w1th by

several authors; for 1nstance, oC(l) by Srlvastava and Owa (29], oC(Z) by Libera
[21] and Livingston [22] o[(n) with n= 2, 3, .., by Bemardl [1], each in connec-
tion w1th some classes of functions univs.lent in E,

3. Relation to fractional calculus.

The operator oC((L) is expressed in temns of ordinary integration operator

'I'HH)REM 3. l Any operatoroc under consideration is commutatlve with
= d/d log z.

THEOREM 3. 2. For any > 0 and A Z 1, we have

2L ) =0 W or AL =acl@ - (@ - DL

In particular, o[,(l)’\ coincides with the fractional integration of order A with

A

respect to log Z.

THEOREM 3. 3. For any 4 > 0, we have

) = o~ )
&(a):az(——i—*—ij;\jﬁ (“lj jf( ff(g)dg.

x=1 (¢ + 1) VK

where (')n denotes Pochhammer symbol. In particular, when g_= k > 1 is an integer,
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‘the expression reduces to finite sum consisting of the beginning k - 1 terms.

4. Distortion of the real part.

—
Consider the functionals on S defined by
‘ £(z) ' £(z)

h(r) = min Re and  H(r) = max Re Y
“lzl=r Z lzl=r z

. ~ ~
r € [0, 1) being a fixed parameter, and denote by h and H the correspunding quan-

A ’ A ~
tities aesociated with £ = ol f. The monotoneity h(r)Z= h(r)2 1€ H(r)S u(r) is

gharpened as follows.

THEOREM 4, 1. ﬁ(r)g h(r) + (1 - n(x))P, ﬁ(r) £ H(r) - (u(r) - 1)@,

1 -t

da(t).

b -

IT+ ¢t
The equality sign in either estimation does not appear for an r € (0, 1) unless
f(z) = z, provided ¢ is not the measure concentrated at 1.

By means of a theorem due to Koebe [4], this theorem iE; slightly sharpened.

THEOREM 4. 2. | S - L
2(H(r) - h(r))‘\f (r) - - H(r) + n(x)
arctan ————

as(t) + ————— £ h(x)
TC I 1 - T‘(r)t 2
A “2(u(r) - h(x)) f o(r) + ¢ H(r) + h(r)
<u(r) £ - arctan — da(t) + —————— ;
- TC I 1+ T(r)t 2
¢ H(r) + h(r) - 2
T(I‘) = - tan( ) .
4  H(r) - h(r)

5, Distortion on the value-range.
Let 3(0() withol < 1 denote the subclass of 3'— consisting of f such that
He(f(z)/z)? K in E.

THHOREM S. 1. For any [ € T(o() we have

L£(z)  Lo(r; &) . L(r; o)

Z r r

- -1 (lzl < r< 1),
where ¢ ax.ld (l/ are elementary functions in ?(o() defined by
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X(z; o() A l;az"

= (l -O() »+0(,
_ z l -2
Pz o) K(z% k) (2 o) B (LR
= > and ———— =1+ (1 - 2&)z 4 —— .

The extremal functions are of the form f(z) = gX(Ez; ) with 1€l = 1, unless g
coincides with the point measure concentrated at 0.

THEOREM 5. 2. If d®(r; ot) is bounded as r~» 1 — 0, then [ (r; k) is also
bounded énd both possess their respective finite limits. The value-range of
on(z)/z in' B is then'given by

on(z)

L -0, M) < LY - 03 A) - 1.

IfoC)D(r; ) is unbounded as r-> 1 - 0, then z[yb(r; ol) is also unbounded and the
value-range is given by

oL £(z) .
Re —— > B() & 1im (GC)(r;o() -UC*nf/(r; A)) + 1.

2z - r+l-o
6. Length and area distortions.
For the mapping w = £(z)/z with f & ?(d), let L(r; f) denote the lgngth ofb
the image curve of {lzl = r % 1} aﬁd A(r; £) the area of the image domain of {lzl
< T <1} according to multiplicity. In connection with a theorem of Rogosinski

[27], following estimations are derived.

_ A4TCT
TIEOREM 6. 1. L(r; £Lf) < f L(rt; £)do(t), L(T; £) < (1 =) ;o

1 _ B -
1 41{“[2

A(ry Lr1) 2 fI a(rty £)ao(t), ATy 1) = ;7‘;1‘("71 0%5 (- Q-2

7. Some classes of univalent functions,
Let ¥ denote the lladamard product. The particular function Mz) =z/(1 - z)
plays the role of identity with respect to* within the class of holomorphic func- .

tions vanishing at 0. Since within ? the operators (/(, and K are commutative, we get
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Lr= L(£%X) =1xLY.

cOnsquéntiy;(j: is répréé;nted also byi*dCXL ordCKL# ;

Let‘j ,XC and j«;«denote the familiar classes of univalent functions. Among
several results we state hére a typical one.

THEOREM 7. 1. In case of ol generated by t, if [ €& S then J:Af E,JC at least
for ;\;,Ao where Ao is a certain number less than 4.

In connection with this theorem, it seems plausible that 1'6)3 impliestAf
€ ﬁ for A 2 1. Bgt it has been pointed out by Owa [26], by'referring to a result
of Krzyz-Lewandowski [20], that this is not the case. HoweVer, another conjecture
that f € ./<J i{npliee oC,Af c f(, for A 2 1 has been affirmed. Helafed problems have
been variously observed by Owa [24], [25], [26].

8. Distortién propertiee on.éome linear coﬁbinations.

Aany £ € JF yields together with its derivatives some related functions within

F. In ract, any function F of the form

- X ’ d
F(z) 7\; A IT(z) (e §F), J‘:}d—lo—g—; :

belongs to EF, provided complex coefficients A's eatiefy;Z:f;o A, = 1. Bvery distor-
. _ .
tion property on o[,valid in bf can be, of course, effectively applied to such F.
For instance, in case of K = 2, generic expression of F is given by
5 .
F(z) = A £(z) + (1 - A - A )E(z) + A £(z)
o : o} 2 2
with arbitrary constants AO and A2. llence we have
‘ . 2
Lr(z) = aoli(z) + (1= = A)JLE(z) + 4,37L1(z).
In the particular case generated by t, the last expression is simplified in view of

q}JC= id. In putting A =a + ib , A = a, + ib_with real a , b, a_  and B , we have
- o o] o (o] 2 2

2 2 2
F(z) £(z)
Re =a Re + (1 - aO)Re £ (z) + a, e zf"(z)
zZ 0 z
£(z)
- b Im +b Im £'(z) - b, Im z£"(z),
o) 0 2

VA
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Lr(z) - 1 u/\z £(5) ‘ oo f(z)
Re ——— =a Ra — - + - a -8 a e f'\z
- o - . Z d,gx (1 o '2)111.3 - + 2 Re £'(z)

1 z £(¢) £(z) 4 -
_bolm—f ——d¢ + (b + by)Im = b, Inm £'(z2),
z o g z 2

the value of d in Theorem 4. 1 being equal to 2 log 2 - 1.

9. Product of operators.

In dealing with the product of operators of the type dC(a) with several dif-
ferent a's, we restrict ourselves to positive integral powers, and put for the sake

of brevity/
. N . |
h h :
K@ = — L) (h=1, 2 ...).
o : y :

It can be shown that for any polynomial P of n variables, the operator of the fomm
52,: P(f{(dl), ey JKJ(ah)) is expressible as a linear form éf K(a,) (v =1, ..., n)
together with their derivatives of order leas &han respective degreg in P. Further.'
a concrete way of déscribing such a linea? form is given as well,

10. Miscellaﬂeous supplemeﬁts.

By considering the operator<{:[p] genarated by a meagure(T'of the form

o0

ag(t) = f tp(a)as,

o

Theorem 3. 3 is generalized as follows.

~ THEOREM 10. 1. By putting (p(t) = p(t)/t, we have

. i Sk (=1) /T
DCLPJ: x =1 m[F (l)jK.

Next, we return to the fa@ily (CL(GJA], in‘whichvthe parametexs’have ini-
tially been subject to AZ 0 and A > O.vThe problem is to deal with analytic
proloﬁgation with these parameters.

THEOREM 10. 2. The operator c(:(a,)‘a is analytically prolongable with respect
to A and & within single-valuedness into the whole compiex pair cut along the

negative real axis on theo-plane.

o~
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THEOMEM 10. 3. The operator J:Qi) is inverse to C)(a) = afl(d/d log z + @ -1).

TIHOREM 10. 4. The operator d:(fl)A with ReA £ 0 is expressible in terms-of
o(id)P'With Rep > 0 in the fomm oC(Ou)A =:(](a)?(:(aj\+m, where m is any positive
integer satisfying m > (- Re A].

Finally, we note that it is reasonable to define ()(a)A with cﬁmplex;\ by means
of O(a)A = dC(a)fA. On the other hand, the operator z_l()(&)A with A> 0 and aa> 0O

may be regarded a8 a particular Gel'fond-Leont'ev derivative introduced in [2].
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