
37

弱単項二階論理式の例示および反例からの学習
Learning Weak Monadic Second-Order Logical Formulas from Queries and

Counterexamples

東京電機大学理工学部惰報科学科
Department of Information Sciences, Tokyo Denki University

Abstract

In this paper, we consider the problem of learning an unknown weak monadic
second-order (WMS for short) logical formula from examples making it
true and those making it false. It is well known that, for a WMS formula,
there exists a deterministic frontier-to-root tree automaton (dfrta for short
$)$ accepting the trees which are the encodings of those examples making the
formula true. Thus, we reduce our problem to the problem of learning an
unknown tree language from examples of its members and nonmembers. We
assume that the tree language is presented by the Angluin’s minimally ade-
quate teacher, which can answer membership queries and equivalence queries.
Our learning algorithm L_{T}^{*} to learn tree languages is based on a slight variant
of the Sakakibara’s polynomial time algorithm to learn deterministic skeletal
automata. The algorithm L_{T}^{*} runs in time polynomial in the number of states
of the minimum dfrta for the unknown tree language and the maximum size
of any counterexample provided by the teacher. Thus we propose a new
framework of concept learning in which atomic relations such as $”\subseteq$ and
many relations definable by WMS formulas, e.g. prefix-closedness of sets,
can be learned in polynomial time.

1

数理解析研究所講究録
第 716巻 1990年 37-59

38

1 Introduction
In the theoretical studies of concept learning, the problems of learning various
types of logical formulas have gained a great deal of attention in recent years.
Many works have been performed in this area. For example, Shapiro showed
an algorithm solving the model inference problem for Horn theories [11]. In
[14], Valiant provided a theoretical basis for learning boolean formulas. While
Angluin showed a polynomial time algorithm to learn acyclic propositional
Horn sentences using equivalence queries and requests for hints. [2].

In this paper, we consider the problem of learning an unknown weak
monadic second-order (WMS for short) logical formula from examples mak-
ing it true and those making it false. And we will show a polynomial time
algorithm to learn WMS formulas using membership queries and equivalence
queries. Thus we propose a new framework of concept learning in which
atomic relations such as $”\subseteq$ and many relations definable by WMS formu-
las, $e.g$. prefix-closedness of sets, can be learned in polynomial time.

It is known that, for a WMS formula, there exists a deterministic frontier-
to-root tree automaton (dfrta for short) accepting the trees which are the
encodings of those examples making the formula true [13]. Thus, we reduce
our problem to the problem of learning an unknown tree language from ex-
amples of its members and nonmembers. We assume that the tree language
is presented by the Angluin’s minimally adequate teacher, which is explained
in the next paragraph.

Concerning the problem of learning an unknown regular set from exam-
ples, Angluin introduced a learning protocol so called minimally adequate
teacher which can answer membership queries and equivalence queries [1].
Angluin showed that if an unknown regular set is presented by a minimally
adequate teacher, the regular set can be learned in time polynomial in the
number of states of the minimum deterministic finite automaton for the un-
known regular set and the maximum length of any counterexample provided
by the teacher.

In $[9, 10]$, in order to develop an efficient learning algorithm for context-
free grammars, Sakakibara reduced the problem of learning a context-free
grammar from structural data to the problem of learning a deterministic
skeletal automaton, which is a particular kind of dfrta. Then extending the
Angluin’s learning algorithm for finite automata to the one for deterministic
skeletal automata, he obtained an efficient learning algorithm for context-free

2

39

grammars. Our learning algorithm L_{T}^{*} to learn dfrtas is based on a slight
variant of this Sakakibara’s polynomial time algorithm. The algorithm L_{T}^{*}

runs in time polynomial in the number of states of the minimum dfrta for
the unknown tree language and the maximum size of any counterexample
provided by the teacher.

The paper is organized as follows: In section 2 we review the definition
of tree automata and the related terminol0gies. In section 3 we present a
polynonial time algorithm to learn dfrtas which is a slight variant of the
Sakakibara’s polynomial time’algorithm to learn deterministic skeletal au-
tomata. In section 4 we review the definition of weak monadic second-order
theory of multiple successors (WSMS for short) and introduce some neces-
sary terminologies. In section 5 we present our main theorem and illustrate by
two examples how the learner L_{T}^{*} learns a relation definable in the language
associated to the WSMS from queries and counterexamples. We present two
example runs of L_{T}^{*} to learn the unary predicate PC which is the set of
prefix-closed sets, and the binary relation $”\subseteq$ on finite sets.

2 Preliminaries
In this section, we review the definition of tree automata and the related
terminologies. For details, see [9, 12, 13].

An enpty string is denoted by A and the power set of a set A is denoted
by 2^{A} . For a set $A,$ A^{*} denotes the free monoid generated by A . Let N be
the set of non-negative integers. For $x,$ $y\in N,$ $x\succeq y$ iff there exists $z\in N^{*}$

such that $x=yz$, and $x\succ y$ iff $x\succeq y$ and $x\neq y$.
A ranked alphabet is defined to be an pair $V=<\Sigma,$ $\sigma>$, where Σ is a

finite set of symbols and σ is a napping from Σ into N . For $a\in\Sigma,$ $\sigma(a)$

is called the rank of a . We will denote the set of symbols of rank n by Σ_{n} ,
i.e. $\Sigma_{n}=\sigma^{-1}(n)$. A symbol in the set Σ_{0} is called a constant symbol. If we
consider the symbols in Σ_{n} as function symbols, the rank of each function
symbol is usually called its arity.

Definition 2.1 A Σ-tree, or a tree over Σ is a mapping t from $Dom(t)$ into
Σ , where $Dom(t)$ is a finite subset of N^{*} satisfying :

1. If $x\in Dom(t)$ and $x\succ y$ then $y\in Dom(t)$.

3

40

2. If $yi\in Dom(t)$ for $i\in N$ then $yj\in Dom(t)$ for $j\in N,$ $1\leq j\leq i$.

3. If $t(x)=a\in\Sigma_{n}$ then $xi\in Dom(t)$ for $i\in N,$ $1\leq i\leq n$.

An element of $Dom(t)$ is called a node of t . If $t(x)=a$, then a is said to be
the label of the node x of t . The set of all trees over Σ is denoted by T_{Σ} .

Definition 2.2 A ranked alphabet $V=<\Sigma,$ $\sigma>$ uniquely determines a
set Term(Σ) of terms over Σ defined to be the least subset of Σ^{*} satisfying:

1. $\Sigma_{0}\subseteq Term(\Sigma)$.

2. If $f\in\Sigma_{n}$ and $t_{1},$ $\ldots,t_{n}\in Term(\Sigma)$ then $ft_{1}\ldots t_{n}\in Term(\Sigma)$.

Since the finite trees over Σ can be identified with terms over Σ , we will
represent trees as terms.

Let $t\in \mathcal{T}_{\Sigma}$. A node p in t is a terminal node iff for all $q\in Dom(t),$ $p\neq q$.
While a node p in t is an interior node iff p is not a terminal node. The
frontier of $Dom(t)$ is the set of all terminal nodes in $Dom(t)$. The depth of
$p\in Dom(t)$ is the length of p and denoted depth (p) . For a tree t , we define
the depth of t by depth$(t)= \max\{depth(p)|p\in Dom(t)\}$. For $p\in Dom(t)$,
we define the subtree t/p of t at p by $t/p(q)=t(pq)$.

Let $ be a new symbol of rank 0 which is not included in Σ . Then $\mathcal{T}_{\Sigma}^{\}$

denotes the set of all trees over $\Sigma\cup\{}$ which contains exactly one $-symbol.
For trees $u\in \mathcal{T}_{\Sigma}^{\}$ and $v\in T_{\Sigma}\cup T_{\Sigma}^{\}$, an operation $\#$ to replace the terminal
node labelled $ of u with v is defined as follows :

$u\neq v(p)=\{u(p)v(q)ififp=rq,u(r)=\andq\in Dom(v)p\in Dom(u)andu(p)\neq\,$

For subsets $U\subseteq \mathcal{T}_{\Sigma}^{\}$ and $V\subseteq \mathcal{T}_{\Sigma}\cup \mathcal{T}_{\Sigma}^{\}$, we define $U\neq V=\{u\neq v|u\in U$

and $v\in V$}.

Definition 2.3 A deterministic frontier-to-root tree automata (dfrta for
short) is a quadruple $M=(Q, \Sigma, \delta, F)$ consists of 1-4 as follows :

1. Q is a finite set of states.

2. Σ is a ranked alphabet with the maximal rank n .

4

41

3. $\delta=(\delta_{0}, \delta_{1}, \ldots, \delta_{n})$ is the state transition function, where
δ_{k} : $\Sigma_{k}\cross(Q\cup\Sigma_{0})^{k}arrow Q$ $(k=1,2, \ldots, n)$, and
$\delta_{0}(a)=a$ for $a\in\Sigma_{0}$.

4. $F\subseteq Q$ is the set of final states.

The terminal symbols on the frontier are taken as initial states. We extend
δ to \mathcal{T}_{Σ} as usual by:

$6(ft_{1}\ldots t_{k})=\{\delta_{0}(f,\delta(t_{1}),\ldots,\delta(t_{k}))\delta^{k}(f)$ $ififk=0k>0.$’

A tree t is accepted by M iff $\delta(t)\in F$. We define the set of trees accepted by
M as $L(M)=\{t\in \mathcal{T}_{\Sigma}|\delta(t)\in F\}$. A set L of trees is said to be recognizable
if there exists a dfrta M such that $L=L(M)$.

3 Learning Tree Automata
In this section, we will present a slight variant of the Sakakibara’s polynomial
time algorithm to learn deterministic skeletal automata [9] as the one to learn
deterministic frontier-to-root tree automata. For details, see [9].

3.1 Closed Consistent Observation Tables
Let Σ be a ranked alphabet, A be a finite subset of \mathcal{T}_{Σ} , and B be a finite
subset of $\mathcal{T}_{\Sigma}^{\}$. A set A is subtree-closed if $a\in A$ then all subtrees with
depth at least 1 of a are included in A . While a set B is prefix-closed with
respect to A if $b\in B-\{}$ then there exists a tree $b’\in B$ such that $b=$

$b’\neq fa_{1}\ldots a_{i-1} a_{i}\ldots a_{k-1}$ for some $f\in\Sigma_{k},$ $a_{1},$
$\ldots,$

$a_{k-1}\in A\cup\Sigma_{0}$ and $i\in N$.

Definition 3.1 An observation table is a 3-tuple (S, E, T) consists of 1-4
as follows :

1. S is a nonempty subtree-closed set of Σ-trees with depth at least 1.

2. $X(S)=\{fu_{1}\ldots u_{k}|f\in\Sigma_{k},$ $u_{1},$
$\ldots,$

$u_{k}\in S\cup\Sigma_{0}$ and $fu_{1}\ldots u_{k}\not\in S$ for
$k\geq 1\}$

5

42

3. E is a nonempty finite subset of $\mathcal{T}_{\Sigma}^{\}$ which is prefix-closed with respect
to S .

4. T is a finite function mapping $E\neq(S\cup X(S))$ to $\{0,1\}$.

The interpretation of T is as follows : $T(s)=1$ iff $s\in L(M)$ of the unkown
dfrta M . An observation table can be visualised as a two-dimensional matrix
with rows labelled by elements of $S\cup X(S)$, columuns labelled by elements
of E , and the entry for row s and column e equal to $T(e\# s)$. The learning
algorithm uses the observation table to build a dfrta. If s is an element of
$S\cup X(S),$ $row(s)$ denotes the finite function g from E to $\{0,1\}$ defined by
$g(e)=T(e\# s)$.

An observation table (S, E, T) is closed if every row(x) of $x\in X(S)$ is
identical to some row(s) of $s\in S$. An observation table is called consis-
tent if whenever s_{1} and s_{2} are elements of S such that row$(s_{1})=row(s_{2})$,
row $(fu_{1}\ldots u_{i-1}s_{1}u_{i}\ldots u_{k-1})=row(fu_{1}\ldots u_{i-1}s_{2}u;\ldots u_{k-1})$ for all $f\in\Sigma_{k},$ $u_{1},$ \ldots ,
$u_{k-1}\in S\cup\Sigma_{0}$ and $1\leq i\leq k$.

Let (S, E, T) be a closed consistent observation table (CCOT for short
$)$. The corresponding dfrta $M(S, E, T)$ over Σ constructed from (S, E, T) is
defined with the state set Q , the set of final states F , and the state transition
function δ as follows :

$Q=\{row(s)|s\in S\}$,
$F=$ { $row(s)|s\in S$ and $T(s)=1$ },
$\delta_{k}(f, row(s_{1}),$

$\ldots,$
$row(s_{k}))=row(fs_{1}\ldots s_{k})$

for $f\in\Sigma_{k}$, and $s_{1},$
$\ldots,$

$s_{k}\in S\cup\Sigma_{0}$,
$\delta_{0}(a)=row(a)$ for $a\in\Sigma_{0}$.

The concept of the CCOT was introduced by Angluin [1]. The following
theorem is similarly proved as in [9]

Theorem 3.1 Let (S, E, T) be a CCOT. The dfrta $M=M(S, E, T)$ defined
above satisfies the following four conditions :

1. M is well-defined.
2. For every $s\in S\cup X(S),$ $6(s)=row(s)$.

3. M is consistent with the finite function T. That is, for every $s\in$

$S\cup X(S)$ and $e\in E,$ $\delta(e\neq s)\in F$ iff $T(e\# s)=1$.

6

43

4. Suppose that M has n states. If $M’$ is any dfrta consistent with T that
has n or fewer states, then $M’$ is isomorphic to M. \square

3.2 The Learning Algorithm L_{T}^{*}

Let L_{U} be an unknown recognizable tree language and M_{U} be the minimum
dfrta accepting L_{U} . It is assumed that the learner knows the ranked alphabet
Σ of M_{U} . A membership query proposes a Σ-tree t and asks whether $t\in L_{U}$.
The answer from the teacher is either yes or no . While an equivalence query
proposes a dfrta M and asks whether $L(M)=L_{U}$. The answer is either yes
or no . When the answer is no , a counterexample is also provided from the
teacher. It is a Σ-tree t in the symmetric difference of L_{U} and $L(M)$. This
learning protocol is based on Angluin’s “minimally adequate teacher” in [1].
Our algorithm to learn dfrta is shown in Figure 1.

In the algorithm L_{T}^{*} , the operation “extend T to $E\#(S\cup X(S))$ using
membership queries” is the operation to extend T by asking membership
queries for missing elements. It is clear that if L_{T}^{*} ever terminates, its output
is a dfrta M such that $L(M)=L_{U}$. The following theorem is similarly proved
as in [9]

Theorem 3.2 Let L_{U} be an unknown recognizable tree language and M_{U} be
the minimum dfrta accepting L_{U} , Using membership and equivalence queries
for L_{Uz} the learning algorithm L_{T}^{*} eventually terminates and outputs a dfrta
M isomorphic to M_{U} accepting L_{U} . Furthermore, if n is the number of the
states of M_{U} and m is the maximum size of any counterexample provided by
the teacher, then the total running time of L_{T}^{*} is bounded by a polynomial in
m and n . \square

4 Weak Monadic Second-Order Theory of
Multiple Successors

In this section, we review the definition of weak monadic second-order theory
of multiple successors (WSMS for short) and introduce some necessary ter-
minologies. For details, see [13]. We mainly describe how a dfrta recognizes
a definable relation in the language associated to WSMS.

7

44

$S:=\Sigma_{0)}\cdot E:=\{};$

Construct the initial observation table (S, E, T) using membership queries
for $al1\Sigma$-trees of depth at most 2;

Repeat
While (S, E, T) is not closed or not consistent do

If (S, E, T) is not closed then do
Find $s_{1}\in X(S)$ s.t. row (s_{1}) is different from row(s) for all $s\in S$;
Add s_{1} to S ;
Extend T to $E\neq(S\cup X(S))$ using membership queries

end
If (S, E, T) is not consistent then do

Find $s_{1},$ $s_{2}\in S,$ $e\in E,$ $k\in N,$ $f\in\Sigma_{k},$ $u_{1},$
$\ldots,$

$u_{k-1}\in S\cup\Sigma_{0}$,
and $i\in N$ such that row$(s_{1})=row(s_{2})$ and
$T(e\neq fu_{1}\ldots u_{k-1}s_{1}u_{i}\ldots u_{k-1})\neq T(e\neq fu_{1}\ldots u_{k-1}s_{2}u_{i}\ldots u_{k-1})$;

Add $e\neq fu_{1}\ldots u_{k-1} u;\ldots u_{k-1}$ to E ;
Extend T to $E\#(S\cup X(S))$ using membership queries

end
end
Once (S, E, T) is closed and consistent, let M $:=M(S, E, T)$;
Make the conjecture M using an equivalence query proposing M ;
If the teacher replies no with a counterexample t then do

Add t and all its subtrees with depth at least 1 to S ;
Extend T to $E\neq(S\cup X(S))$ using membership queries

end
Until the teacher replies yes to the conjecture M ;
Halt and output M .

Figure 1: The learning $algorithm/L_{T}^{*}$.

8

45

4.1 A Monadic Second-Order Language \mathcal{L}_{k}

Let $A_{k}=\{1,2, \ldots, k\}$ be an alphabet. The WSMSs are based on (1) the set
$A_{k}^{*},$ (2) k right-successor functions, $r_{1},$

$\ldots,$
r_{k} , where $r_{i}(w)=wi$ for all $w\in A_{k}^{*}$

and $\lambda i=i(1\leq i\leq k)$, and (3) relations and functions which can be defined
recursively from the successor functions of (2). In this paper, we deal with
the weak monadic second-order theory of A_{k}^{*} with the k successor functions.
The associated language \mathcal{L}_{k} is a monadic second-order language consisting
of the following :

\bullet individual variables, $x,$ $y,$ $z,$ $x_{1},$ $y_{1},$ $z_{1},$ \ldots , ranging over A_{k}^{*} .
\bullet set variables, $\alpha,$

$\beta,$
$\alpha_{1},$

$\beta_{1},$
\ldots , ranging over finite subsets of A_{k}^{*} .

\bullet constants $=,$ $\in with$ their usual interpretation.

\bullet binary predicate symbols $R_{i},$ $i\in A_{k}$ interpreted as follows: $R_{t}(u, v)rightarrow$

$r_{i}(u)=vrightarrow ui=v$.

\bullet propositional connectives $A_{\rangle}\neg$; individual quantifier, \exists ; set quantifier,
\exists ; punctuation and parentheses.

Notice that $\vee,$ $\forall andarrow can$ be defined $using\wedge,$ \neg and \exists . So, in the sequel,
we also use $\vee,$ $\forall andarrow to$ define relations in \mathcal{L}_{k} . Atomic formulas are those
expressions of the form $x=y,$ $x\in\alpha$ or $R_{i}(x, y)$.

Definition 4.1 \mathcal{L}_{k} -formulas are recursively defined as follows:

1. Atomic formulas are \mathcal{L}_{k}-formulas.

2. If F and G are \mathcal{L}_{k} -formulas, then $F\wedge G,$ $\neg F,$ $\exists xF$ and $\exists\alpha F$ are all
\mathcal{L}_{k}-formulas.

3. Nothing other than those that can be defined by means of a finite
number of applications of the rules 1 and 2 are \mathcal{L}_{k}-formulas.

The sentences of \mathcal{L}_{k} are those \mathcal{L}_{k}-formulas including no free variables. The
WSMS consists of all true sentences in \mathcal{L}_{k} .

9

46

Example 4.1 Let $PC(\alpha)$ be a unary predicate which is the set of prefix-
closed subsets of A_{2}^{*} . That is, $PC(\alpha)$ is true iff a set α is prefix-closed.
$PC(\alpha)$ is definable in \mathcal{L}_{2} :

$PC(\alpha)^{def}rightarrow\forall x([\exists y(R_{1}(x, y)\wedge y\in\alpha)\vee\exists y(R_{2}(x, y)\wedge y\in\alpha)]arrow(x\in\alpha))$.

The weak monadic second-order theory of one successor (the case $k=1$
$)$ is known to be decidable [3, 4, 7], that is, there is an effective procedure
for deciding truth of sentences of \mathcal{L}_{1} . While, the weak monadic second-order
theory of multiple successors is also shown to be decidable using concepts of
generalized finite automata, which is equivalent to dfrta [4, 5, 13]. That is,
the following theorem is known:

Theorem 4.1 [5] The weak monadic second-order theory of multiple suc-
cessors is decidable. \square

4.2 Recognizing Definable Relations of \mathcal{L}_{2}

In the sequel, we will concentrate the case $k=2$ because the genaralization
for more than two successor functions offers no difficulty. The outline of the
procedure to recognize a definable relation of the language \mathcal{L}_{2} is as follows :

1. Find a language $\mathcal{L}_{2}’$ equivalent to \mathcal{L}_{2} which involves no individual vari-
ables or individual quantifiers.

2. Encode n-tuples of finite subsets of A_{2}^{*} as terms on the ranked alphabet
$\Sigma^{n}=\Sigma_{0}^{n}\cup\Sigma_{2}^{n}$, where $\Sigma_{0}^{n}=\{\epsilon\}$ and $\Sigma_{2}^{n}=\{0,1\}^{n}$.

3. Find a dfrta recognizing every definable relation of $\mathcal{L}_{2}’$ interpreted under
the encoding of 2 (Existence of such a dfrta is guaranteed by theorem
4.2 stated in below).

Now we will describe the equivalent language $\mathcal{L}_{2}’$ and the encoding of n-tuples
of finite subsets of A_{2}^{*} .

The equivalent Language $\mathcal{L}_{2}’$

The individual variables of \mathcal{L}_{2} can be eliminated by simply replacing them
with set variables which are restricted to be singleton sets. We will introduce

10

47

set variables in one-one correspondence with the individual variables. The
language $\mathcal{L}_{2}’$ is a monadic second-order language consisting of the following:

\bullet set variables, $\alpha_{x},$ $\alpha_{y},$ $\alpha_{z},$ $\alpha_{x_{1}},$ $\alpha_{y_{1}},$ $\alpha_{z_{1}},$ \ldots , ranging over singleton subsets
of A_{2}^{*} .

\bullet set variables, $\alpha,$
$\beta,$

$\alpha_{1},$
$\beta_{1},$

\ldots , ranging over finite subsets of A_{2}^{*} .

\bullet $constant\subseteq$ with its usual interpretation.

\bullet binary predicate symbols $\overline{R}_{i},$ $i\in A_{i}$ interpreted as follows: $\overline{R}_{i}(\alpha, \beta)rightarrow$

α and β are singletons and $\hat{r}_{i}(\alpha)=\beta(\hat{r}_{i}$ is the set function induced
by r_{i}).

\bullet propositional connectives $\wedge,$ \neg ; set quantifier, \exists ; punctuation and
parentheses.

The formation rules for $\mathcal{L}_{2}’$ are like those of \mathcal{L}_{2} except that individual variables
are not involved.

Next we define a translation τ from \mathcal{L}_{2} to $\mathcal{L}_{2}’$. We introduce the predicate
SI (α) which is the set of singleton subsets. SI is definable in $\mathcal{L}_{2}’$:

SI (α)
def

$\forall\beta[\beta\supseteq\alphaarrow(\alpha\supseteq\beta$ \vee $\forall\beta_{1}(\beta\supseteq\beta_{1}))]$ \wedge $\exists\beta_{1}(\neg\alpha\supseteq\beta_{1})$.

Then the translation is defined as shown in Figure 2. It should be clear that
if s is any sentence in \mathcal{L}_{2} then s is true iff $\tau(s)$ is true.

The encoding of finite subsets of A_{2}^{*}

Here, we will be working with the ranked alphabet $\Sigma^{1}=\Sigma_{0}^{1}\cup\Sigma_{2}^{1}$, where
$\Sigma_{0}^{1}=\{\epsilon\}$ and $\Sigma_{2}^{1}=\{0,1\}$. We define terms as functions from finite pre-
fix closed subsets of A_{2}^{*} into Σ^{1} . For example, the term $t=001\epsilon\epsilon\epsilon 1\epsilon\epsilon$

shown in Figure 3 (b) corresponds to the function from a set $S=\{\lambda,$ $1,2,11$,
12, 21, 22, 111, 112} into Σ^{1} defined by the corresponding position of the trees
in Figure 3, e.g. $t(\lambda)=0,$ $t(11)=1,$ $t(112)=\epsilon$.

If we look at the inverse image of some function symbol, we are able to
associate a finite subset of A_{2}^{*} with a term. For example, as can be seen from
Figure 3, $t^{-1}(1)=\{2,11\}$ and $t^{-1}(0)=\{\lambda, 1\}$.

11

48

Figure 2: The translation τ from \mathcal{L}_{2} to $\mathcal{L}_{2}’$.

111 112 e e

λ

0

(a) (b)

Figure 3: A term as a function

12

49

Thus, a term in $T_{\Sigma 1}$ can be viewed as a characteristic function of a finite
subset of A_{2}^{*} , that is, the set associated with such a term t is $t^{-1}(1)$. An
inductive definition of the mapping c which assigns to each $t\in\tau_{\Sigma^{1}}$ a finite
subset $c(t)\subseteq A*$ is as follows :

1. $c(\epsilon)=\emptyset$,

2. $c(0t_{1}t_{2})=l_{1}c(t_{1})\wedge\wedge\cup l_{2}^{\wedge}c(t_{2})\wedge$

$c(1t_{1}t_{2})=l_{1}c(t_{1})\cup l_{2}c(t_{2})\cup\{\lambda\}$,

where l_{i} is the left successor by the symbol i , i.e. $l_{i}(w)=iw$, and l_{i}^{\wedge} is the
set function induced by l_{i} .

It is inductively proved that the function c is onto $2^{A_{2}^{*}}$. Though, c is not
one-one. In general, $c(t)=c(t’)$ iff t and t

‘ differ only by subterms in the
function symbol 0 . Thus, we define the encoding $e(\alpha)$ of α to be the term in
$c^{-1}(\alpha)$ in which $0\epsilon\epsilon$ is not a subterm. The following proposition is known:

Proposition 4.1 [13] The set of encodings of finite subsets of A_{2}^{*} is recog-
nizable. \square

The encoding of n-tuples of finite subsets of A_{2}^{*}

We now define the encoding of n-tuples of finite sets. We will be working
with the ranked alphabet $\Sigma^{n}=\Sigma_{0}^{n}\cup\Sigma_{2}^{n}$, where $\Sigma_{0}^{n}=\{\epsilon\}$ and $\Sigma_{2}^{n}=\{0,1\}^{n}$.
Define the mapping p_{i} : $\{0,1\}^{n}arrow\{0,1\}(i=1, \ldots, n)$ by $p_{i}(a_{1}, \ldots, a_{n})=a_{l}\cdot$.
Then, we extend p_{i} to a projection $\overline{p}_{\dot{l}}$: $T_{\Sigma^{n}}arrow T_{\Sigma 1}$. We first define a mapping
c_{n} from $T_{\Sigma^{n}}$ to $(2^{A_{2}^{*}})^{n}$ by

$c_{n}(t)=(c\overline{p}_{1}t, \ldots, c\overline{p}_{n}t)$.

Again, the encoding of an n-tuple $\overline{\alpha}=(\alpha_{1}, \ldots, \alpha_{n})$ is chosen to be the term
$e(\overline{\alpha})$ in $c_{n}^{-1}(\overline{\alpha})$ in which $0\ldots 0\epsilon\epsilon$ is not a subterm. For example, a term in
Figure 4 is equal to $e(\{\lambda, 1,11\}, \{1,21\})$. The following proposition is known
:

Proposition 4.2 [13] The set of encodings of n-tuples of finite subsets of
A_{2}^{*} is recognizable. \square

A relation R on finite subsets of A_{2}^{*} , i.e. $R\subseteq(2^{A_{2}^{*}})^{n}$, is said to be recognizable

13

5 {)

ϵ ϵ
ϵ ϵ

10

Figure 4: An encoding of a pair of finite sets.

iff $\hat{e}R$ is a recognizable tree language, where \hat{e} is the set function induced by
e . The following theorem is known :

Theorem 4.2 [13] If R is a relation definable in $\mathcal{L}_{2}’$ then R is recognizable.
\square

5 Learning Weak Monadic Second-Order Log-
ical Formulas

In this section, we present our main theorem concerning the learning of a
relation definable in \mathcal{L}_{k} . Then we illustrate by two examples how the learner
L_{T}^{*} learns a relation definable in \mathcal{L}_{2} from queries and counterexamples.

5.1 Main Theorem

Immediately from theorems 3.2 and 4.2, we obtain the following main theo-
rem:

Theorem 5.1 Let R be a relation definable in \mathcal{L}_{k} and M_{R} be the minimum
dfrta accepting $\hat{e}R$. Using membership and equivalence queries for $\hat{e}R$, the
learning algorithm L_{T}^{*} eventually terminates and outputs a dfrta M isomor-
phic to M_{R} accepting $\hat{e}R$. Furthermore, if n is the number of the states of M_{R}

and m is the maximum size of any counterexample provided by the teacher,
then the total running time of L_{T}^{*} is bounded by a polynomial in m and n . \square

14

$5j_{-}$

Corollary 5.1 Let R be a relation definable in \mathcal{L}_{k} . There is an algorithm
to learn R using membership and equivalence queries that runs in time poly-
nomial in the number of states of the minimum dfrta accepting $\hat{e}R$ and the
maximum length of any counterexample provided by the teacher. \square

We assume that the learner L_{T}^{*} knows the following things :

1. the ranked alphabet of the dfrta to be learned,

2. the valid encoding of finite subsets of A_{k}^{*} .

Thus, for a term t which is not a valid encoding for any tuple of finite
subsets of A_{k} (i.e. t has $0\ldots 0ee$ as a subterm), L_{T}^{*} automatically fills in the
corresponding entry of the observation table with “

0 ’ without asking to the
teacher.

5.2 Two Examples

In this subsection, we will illustrate by two examples how the learner L_{T}^{*}

learns a relation definable in \mathcal{L}_{2} from queries and counterexamples. In exam-
ples 5.1 and 5.2, we present example runs of L_{T}^{*} to learn the unary predicate
PC of Example 4.1 and the binary relation $”\subseteq$, respectively.

Example 5.1 (Learning of the unary predicate PC of Example 4.1)
As mentioned above, we assume that the learner L_{T}^{*} knows the ranked

alphabet $\Sigma^{1}=(\Sigma_{0}^{1}, \Sigma_{2}^{1})$, where $\Sigma_{0}^{1}=\{e\}$ and $\Sigma_{2}^{1}=\{0,1\}$. It is easy to see
that

$L_{PC}=\{t\in T_{\Sigma^{1}}|t=e(\alpha)$ for some $\alpha\subseteq A_{2}^{*}$, and if $v\prec u$ and $t(u)=1$
then $t(v)=1.$ }

is the unknown recognizable tree language to be learned.
The learner L_{T}^{*} constructs the initial observation table OT_{1} shown in

Figure 5 (a) using membership queries for all Σ^{1}-trees with depth at most 2.
Since Oee is an invalid encoding, L_{T}^{*} automatically fills in the entry in the
row 2 of OT_{1} with 0 ’ as mentioned above. In order to fill in the entries in
rows 1 and 3, L_{T}^{*} proposes to the teacher two membership queries asking }

$\epsilon\in$

15

52

OT_{1} $ OT_{2} $ $5_{0}(e)=q_{0}$,
1 ϵ 1 1 e 1
2 $0ee$ 0 2 Oee 0

3 lee 1 3 lee 1
4 OeOee 0

(a)5 $00eee$ 0

6 $O0e\epsilon Oee$ 0

7leOee 0

8 lOeee 0 (c)
9 $10eeOee$ 0

(b)

Figure 5: The learning of the predicate $PC,$ $(a)OT_{1},$ $S=\{\epsilon\},$ $E=\{},$ (b)
$OT_{2},$ $S=\{e, 0e\epsilon\},$ $E=\{},$ (c) the conjecture M of L_{T}^{*} .

L_{PC} ?” and “
$1\epsilon\epsilon\in L_{PC}$?”, respectively. Each of these queries respectively

corresponds to asking “
\emptyset is prefix-closed ?” and “

$\{\lambda\}$ is prefix-closed ?”.
Since OT_{1} is not closed, L_{T}^{*} adds $0\epsilon e$ to S and construct the second

observation table OT_{2} shown in Figure 5 (b) by extending OT_{1} . Notice that
when L_{T}^{*} constructs OT_{2} from $OT_{1},$ L_{T}^{*} does not propose any membership
query to the teacher. This is because every term in the rows from 4 to 9
of OT_{2} has Oee as a subterm and thus they are invalid encodings. Hence,
L_{T}^{*} automatically fills in the entries in the rows from 4 to 9 with $0’$. Since
OT_{2} is a CCOT, L_{T}^{*} makes the first conjecture M presented in Figure 5 (c)
and proposes an equivalence query, The initial state of M is q_{0} and the final
state is also q_{0} . Since M is a correct dfrta for L_{PC} , the teacher replies to this
conjecture with yes. Thus, L_{T}^{*} halts and outputs M .

The total number of membership queries during this example run is 2 $($

L_{T}^{*} asked to the teacher only about rows 1 and 3 of OT_{1}). And L_{T}^{*} makes 1
correct conjecture only.

Example 5.2 (Learning of the binary relation $”\subseteq$)
We assume that the learner L_{T}^{*} knows the ranked alphabet $\Sigma^{2}=(\Sigma_{0}^{2}, \Sigma_{2}^{2})$,

where $\Sigma_{0}^{2}=\{\epsilon\}$ and $\Sigma_{2}^{2}=\{00,01,10,11\}$. Notice that in this example, e is
not a valid encoding for any pair of finite subsets of A_{2}^{*} . It can be seen that

$L_{SUB}=\{t\in T_{\Sigma^{2}}|t=e(\alpha)$ for some $\alpha\subseteq A_{2}^{*}$, and there is no node in t

16

53

labelled by 10.}
is the unknown recognizable tree language to be learned.

The learner constructs the initial observation table OT_{1} shown in Figure
6 (a) using membership queries for all Σ^{2}-trees with depth at most 2. Since
OT_{1} is not closed, L_{T}^{*} adds Olee to S and construct the second observation
table OT_{2} shown in Figure 6 (b) by extending OT_{1} . Since OT_{2} is a CCOT,
L_{T}^{*} makes the first conjecture M_{1} presented in Figure 7. The initial state of
M_{1} is q_{0} and the final state $i_{S}^{\backslash }q_{1}$.

Since M_{1} is not a correct dfrta for L_{SUB} , the teacher replies to this conjec-
ture with no and provides a counterexample. Let us assume that the teacher
provides the counterexample $01e10\epsilon e$. It is not in L_{SUB} but accepted by M_{1} .
Then, L_{T} adds the counterexample and all its subtrees to S and constructs
the third observation table OT_{3} in Figure 8 by extending OT_{2} .

This time OT_{3} is closed but is not consistent. So, L_{T}^{*} adds 11$\epsilon to E and
construct the fourth observation table OT_{4} shown in Figure 9 by extending
OT_{3} . Since OT_{4} is a CCOT, L_{T}^{*} makes the second conjecture M_{2} shown in
Figure 10. The initial state of M_{2} is q_{0} and the final state is q_{1} . Since M_{2}

is a correct dfrta for L_{SUB} , the teacher replies to this conjecture with yes.
Thus, L_{T}^{*} halts and outputs M_{2} .

The toatl number of membership queries during this example run is 130.
And L_{T}^{*} makes 1 incorrect conjecture and 1 correct conjecture.

6 Concluding Remarks

In this paper, we have shown that weak monadic second-order logical formu-
las can be learned in polynomial time using membership queries and equiv-
alence queries. Since the learner L_{T}^{*} knows the valid encodings of finite sets,
the number of membership queries used by L_{T}^{*} becomes very small in some
cases such as in Example 4.1. Though, it is still an open problem to substan-
tially reduce the number of membership queries used by L_{T}^{*} . On the other
hand, the numbers of equivalence queries used by L_{T}^{*} in Examples 5.1 and
5.2 are both quite small compared with the cases in the Shapiro’s framework
[11].

There is an interesting and important extension of our framework to be
performed. Rabin showed that the monadic second-order theory of multiple

17

54

(a)

(b)

Figure 6: The first and second observation tables, (a) $OT_{1},$ $S=\{e\},$ $E=\{},$
(b) $OT_{2},$ $S=\{e, 01ee\},$ $E=\{}.$

$\delta_{0}(\epsilon)=q_{0}$,

Figure 7: The first conjecture M_{1} of L_{T}^{*} .

18

55

Figure 8: The third observation table $OT_{3},$ $S=\{\epsilon, 01e\epsilon, 10ee, 01\epsilon 10\epsilon e\}$,
$E=\{}.$

19

56

Figure 9: The fourth observation table $OT_{4},$ $S=$ { $,$ Olee, $10e\epsilon,$ $01\epsilon 10e\epsilon$ },
$E=$ { $\,$ ll$s}.

20

$5^{r}1^{4}$

$6_{0}(\epsilon)=q_{0}$,

Figure 10: The second conjecture M_{2} of L_{T}^{*} .

successors (SMS for short) is decidable [8]. Many interesting notions in
various fields of mathematics such as topology and Boolean algebra can be
defined in SMS. So, it is to be expected that a polynomial time algorithm to
learn SMS formula may be developed. But in order to achive this, a poly-
nomial time algorithm to learn rv-tree automata is needed because Rabin’s
decidability results are based on the recognition problem of tree automata
on infinite trees. This is the subject for the further research.

Acknowledgments

The author would like to express his sincere thanks to Professor Hiroshi
Noguchi of Waseda University for his kind advice. He also thanks Professors
Takeo Yaku and Akeo Adachi of Tokyo Denki University for their valuable
suggestions.

References
[1] Angluin, D. :“Learning Regular Sets from Queries and Counterexam-

ples”, Information and Computation, Vol.75 (1987), pp.87-106.

21

58

[2] Angluin, D. :“Learning with Hints”, in Proc. of the First Workshop on
Computational Learning Theory, Morgan Kaufmann (1988).

[3] B\"uchi, J. R., and Elgot, C. C. : “Decision Problems of Weak Second
Order Arithmetics and Finite Automata”, Abstract 553-112, Notices
Amer. Math. Soc. 5 (1958), p.834.

[4] B\"uchi, J. R. :) Weak Second-Order Arithmetics and Finite Automata”,
University of Michigan, Logic of Computers Group Techinical Report,
September 1959; Z. Math. Logik Grundlagen Math. 6 (1960), pp.66-92.

[5] Doner, J. E. :“Decidability of the Weak Second Order Theory of Two
Successors”, Abstract 65T-468, Notices Amer. Math. Soc. 12 (1965),
p.819 ; erratum, ibid. 13 (1966), p.513.

[6] Doner, J. E. :“Tree Acceptors and Some of Their Applications”, JCSS,
Vol.4 (1970), pp.406-451.

[7] Elgot, C. C. :“Decision Problems of Finite Automata Design and Re-
lated Arithmetics”, Trans. Amer. Math. Soc., Vol.98 (1961), pp.21-51.

[8] Rabin, M. O. :“Decidability of Second-Order Theories and Automata
on Infinite Trees”, Trans. Amer. Math. Soc., Vo1.141 (1969), pp.1-35.

[9] Sakakibara, Y. : “Learning Context-Free Grammars from Structural
Data in Polynomial Time”, in Proc. of the First Workshop on Compu-
tational Learning Theory, Morgan Kaufmann (1988).

[10] Sakakibara, Y. :“An Efficient Learning of Context-Free Grammars for
Bottom-Up Parsers”, in Proc. of FGCS’88 (1988).

[11] Shapiro, E. : “Inductive Inference of Theories From Facts”, Research
Report 192, Yale University, Department of Computer Science (1981).

[12] Thatcher, J. W. :“Tree Automata: An Informal Survey” in Aho, A.
V., Ed., Currents in the Theory of Computing, Prentice-Hall (1973).

[13] Thatcher, J. W. and Wright, J. B. : “Generarized Finite Automata
Theory with an Application to a Decision Problem of Second-Order
Logic”, Math. Syst. Theory, Vol.2 (1968), pp.57-81.

22

59

23

