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On Learning A Class of Context-free Languages
in Polynomial Time

横森 貴
Takashi YOKOMORI
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1-5-1 Chofugaoka, Chofu, Tokyo 182, JAPAN

Abstract. The problem of learning context-free languages is studied, in which a subclass
called c-deterministic context-free languages is introduced. The class of c-deterministic
context-free languages properly contains the class of regular sets.

It is shown that the class of c-deterministic context-free languages is learnable in
polynomial time from membership queries and equivalence queries, that is, it is polynomial
time learnable from so-called minimally adequate teacher.

1 Introduction
We consider the problem of learning a class of context-free grammars. The problem
of learning a “correct” grammar for the unknown language from finite examples of the
language is known as the grammatical inference problem.

The grammatical inference problem is one of the most attractive issues in many AI
areas in that it may bring us fruitful implications in the field of machine learning such
as syntactic pattern recognition and automatic program synthsis. Most of the existing
practical methods can, however, only solve the problem for the class of regular sets and
there are a few studies for more general classes(e.g.,[2], $[5],[7],[9]$ ).

Recently, Angluin gives a polynomial time algorithm for learning regular sets from
equivalence queries and membership queries([2]).

In this paper, we present an algorithm for learning c-deterministic context-free lan-
guages from membership queries and equivalence queries (so-called “minimally adequate
teacher”) in polynomial time. Since the class of c-deterministic context-free languages
properly contains the class of regular sets, this gives a generalization of the corresponding
results on regular sets in [2].

2 Preliminaries
We assume the reader to be familiar with the rudiments of formal language theory(See,
e.g., [4]), and we only give some basic notations and definitions used in this paper.
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For a given finite alphabet $\Sigma$ , the set of all strings with finite length (including zero)
is denoted by $\Sigma^{*}$ .(An empty string is denoted by $\lambda.$ ) $lg(w)$ denotes the length of a string
$w$ . $\Sigma^{+}$ denotes $\Sigma^{*}-\{\lambda\}$ . A language $L$ over $\Sigma$ is a subset of $\Sigma^{*}$ . For a string $x$ in $\Sigma^{*}$ and
a languge $L$ over $\Sigma$ , let $x\backslash L=\{y|xy\in L\}(L/x=\{y|yx\in L\})$ . A language $x\backslash L(L/x)$ is
called left(right) derivative of $L$ with respect to $x$ . For any $w$ in $\Sigma^{*}$ , Pref $(w)=\{x|xy=w$
for some $y$ } and $Suf(w)=$ {$x|yx=w$ for some $y$ }. Let $L_{1}$ adn $L_{2}$ be languages, then
$L_{1}L_{2}=\{xy|x\in L_{1}, y\in L_{2}\}$

A context-free grammar is denoted by $G=(N, \Sigma, P, S)$ , where $N$ and $\Sigma$ are alpha-
bets of nonterminals and terminals respectively such that $N\cap\Sigma=\phi$ . $P$ is a finite set
of rules : each rule is of the form $Aarrow\alpha$ , where $A$ is a nonterminal and $\alpha$ is a string
of symbols from $(N\cup\Sigma)^{*}$ . Finally, $S$ is a special nonterminal called the start symbol.
If $Aarrow\beta$ is a rule of $P$ and $\alpha$ and $\gamma$ are any strings in $(N\cup\Sigma)^{*}$ , then we may write
$\alpha A\gamma\Rightarrow^{G}\alpha\beta\gamma$ . The notation $\Rightarrow^{G*}$ is the reflexive and transitive closure of $\Rightarrow G$ (The
subscript $G$ is abbreviated when it is clear from the context and is written $as\Rightarrow.$ ) For
$\alpha\in N^{+}$ , let $L(\alpha)=\{x\in\Sigma^{*}|\alpha\Rightarrow^{G*}x\}$ . In particular, $L(S)$ , denoted by $L(G)$ , is called
the language generated by $G$ . A language $L$ is context-free if there exists a context-free
grammar $G$ such that $L=L(G)$ .

$\backslash 1^{\gamma}e$ sometimes abbreviate context-free grammars and their languages as CFGs and
CFLs, respectively.

Since we are concern$ed$ with the learning problem of context-free grammars, without
loss of generality, we restrict our consideration to only A-free context-free grammars.

A context-free grammar $G=(N, \Sigma, P, S)$ is 2-standard form if each rule is of one of
the following forms: $Aarrow aBC,$ $Aarrow aB,$ $Aarrow a$ , where $A,$ $B,$ $C$ are nonterminals and $a$

is a terminal symbol. A $CFGG$ is reduced if (1) for any $A,$ $B\in N,$ $L(A)\neq L(B),$ (2) for
any $A\in N$ , there are derivations such that $S\Rightarrow^{*}\alpha A\beta$ and $A\Rightarrow^{*}w(w\in\Sigma^{*})$ .

In what follows, we may assume that any grammar $G$ is a $\lambda$-free, reduced $CFG$ in
2-standard form. Further, a derivation by the $relation\Rightarrow indicates$ the left-most one.

2.1 An Example

Let $G=(N, \Sigma, P, S)$ be a $CFG$ . For each $A\in N$ , let $A\Rightarrow a\alpha\Rightarrow^{*}au\in\Sigma^{*}$ , where $au$ is a
shortest terminal string derivable from $A$ . Then, a rule $Aarrow a\alpha$ is called shortest rule of
$A$ .

With a given $CFGG$ , we can associate a finite graph $C_{G}$ as follows: [step 1] For each
$Sarrow a\alpha\in P$ , connect a node $S$ with a node $\alpha$ by an arrow labelled $a$ . ( $S$ is called starting
node. If $\alpha=\lambda$ , then introduce a new special symbol called final node and connect $S$ with
it.) [step $i$ ] Let $\alpha=Au(A\in N, u\in N^{*})$ be a node created at step (i-l). Then, apply
to each cv the following procedure: If $A$ does not appear yet as the left-most nonterminal
of any node created previously, then for each $Aarrow b\beta$ , create a node $\beta u$ and connect $\alpha$

with it by an arrow labelled $b$ . Otherwise, connect $\alpha$ with the node $\beta u$ , corressponding
to the right-hand side of a shortest rule $Aarrow b\beta$ , by an arrow labelled $b$ . (If $\beta u$ is $\lambda$ , then
connect $\alpha(=A)$ with the final node.) Let $i$ be $i+1$ and repeat step $i$ until the procedure
cannot be applicable to any node.
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It is easily seen that the procedure terntinates in finte time. The graph $C_{G}$ is called
the characteristic graph of $G([10])$ . The graph $C_{G}$ contains the complete information on
the grammar $G$ , and more importantly, each nonterminal in $N$ is characterized by a finite
set of paths in $C_{G}$ . Let us see it below.

Take the following $CFG$ as an example for our discussion: $G=(\{S, A, B, C, D\},$ $\{a$ ,
$b,$ $c$} $,$

$P,$ $S$ ), where $P$ is given by

$Sarrow aAD|aD$ , $Aarrow aAB|aB$
$Darrow bCA$ , $Barrow b$ , $Carrow c$ .

Note that the language $L(G)$ is $\{a^{m}b^{m}ca^{n}b^{n}|m, n\geq 1\}$ . The characteristic graph of $G$ is
pictured in Figure 1.

By a simple calculation, we have the following equations:

$a\backslash L(S)=$ $L(A)L(D)\cup L(D)$ (1)
$ab\backslash L(S)=$ $L(C)L(A)$ (2)
$abc\backslash L(S)=$ $L(A)$ (3)
$aaab\backslash L(S)=$ $L(B)L(D)$ (4)
$L(D)/bcab=$ $\{\lambda\}$ (5)

Let $L=L(S)$ . Then, from (3)

$L(A)=abc\backslash L$

is immediately obtained. Further, from (4) and (5), it holds that

$L(B)=aaab\backslash L/bcab$ .

In the same manner,
$L(C)=ab\backslash L/ab$

$L(D)=aab\backslash L$

are obtained.
Thus, given an $L(=L(G))$ each nonterminal $X$ of $G$ is completely characterized by a

pair $(x, z)$ such that $x\in Pref(w),$ $z\in Suf(w)$ , for some $w\in L$ . That is, each nonterminal
of $G$ has its own context $(x, z)$ by which it is distinguished from others. This feature will
play a significant role in the process of learning a class of CFGs, and leads us to the
following presented in the next section.

Notes.
(1) Let $y_{X}$ be a shortest terminal string derivable from $X$ , then, for each pair $(x, z)$ such
that $L(X)=x\backslash L/z$ , a string xyxz is always in $L$ and is corresponding to a path from $S$

to the final node in $C_{G}$ .
(2) For each $X\in N$ , a pair $(x, z)$ such that $L(X)=x\backslash L/z$ is not necessarily unique. For
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example, $L(A)=a\backslash L/bcab(module\lambda)$ .

$Os$

$\swarrow^{a}$

$\swarrow^{O}aAC\searrow^{b}\otimes AB$

$\swarrow a/O^{C}\searrow_{oBc^{a}}^{b}\swarrow$

$O$

Figure 1. Characteristic Graph $C_{G}$

2.2 C-Deterministic CFGs
Let $G=(N, \Sigma, P, S)$ be a $CFG$ . A nonterminal $A$ in $N$ is context-deterministic(abb., c-
deterministic) iff there is a pair $(x, z)$ such that $S\Rightarrow^{*}xAz(x\in\Sigma^{+}, z\in\Sigma^{*})$ and $L(A)=$
$x\backslash L(G)/z$ . A $CFGG$ is c-deterministic iff each nonterminal $A$ in $N$ is c-deterministic. A
language $L$ is c-deterministic iff there exists a c-deterministic $CFGG$ such that $L=L(G)$ .

For $A\in N$ , let $d_{A}$ be a derivation $:S\Rightarrow^{*}xA\alpha\Rightarrow^{*}xy_{A}\alpha\Rightarrow^{*}xy_{A}z_{\alpha}(x,$ $y_{A}\in\Sigma^{+},$ $z_{\alpha}\in$

$\Sigma^{*},$ $\alpha\in N^{*}$ ) with the properties that (1) there is no duplicated application of an identical
rule in the derivation of $x,$ (2) $y_{A}$ is a shortest string derivable from $A$ , and (3) $z_{\alpha}$ is a
shortest string derivable from $\alpha$ .

Let $Q_{A}$ be the set of triples $(x, y_{A}, z_{\alpha})$ of all $d_{A}s.$ ( $It$ is easy to see that $Q_{A}$ is finite.)

Lemma 1 Let $G=(N, \Sigma, P, S)$ be a c-deterministic $CFG$ . Then, for any $A$ in $N_{f}$ there
exists $(x, y_{A}, z)$ in $Q_{A}$ such that $L(A)=x\backslash L(G)/z$ .

Proof. Let $L=L(G)$ . Since $G$ is c-deterministic, for each $A\in N$ , there exists a pair
$(x, z)$ such that $L(A)=x\backslash L/z$ and $S\Rightarrow^{*}xAz$ . Let $y_{A}$ be a shortest string in $L(A)$ .
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Suppose that $(x, y_{A}, z)$ is not in $Q_{A}$ , and that

$S\Rightarrow^{*}x’Az’\Rightarrow x’\beta z’\Rightarrow^{*}x’uAvz’=xAz$ , where $u,$ $v,$ $x’,$ $z’\in\Sigma^{*},$ $\beta\in(N\cup\Sigma)^{*}$ .

It is clear that $L(A)\subseteq x’\backslash L/z’$ holds, from which we have $u\backslash L(A)/v\subseteq x’u\backslash L/vz’(=$

$x\backslash L/z=L(A))$ . It is obvious that $L(A)\subseteq u\backslash L(A)/v$ . Hence, $L(A)=u\backslash L(A)/v$ holds.
This implies that for $u,$ $v$ above, there is no other derivation such that $A\Rightarrow^{*}u\alpha v$ , for sone
$\alpha(\neq A)\in N^{+}$ . Hence, if there is an application of the rule $Aarrow\beta$ during the derivation
process from $S$ to $x’Az’$ , one may replace $x’Az’$ with $x”Az$“ (such that $S\Rightarrow^{*}x’’Az’’\Rightarrow^{*}$

$x”uAvz”$ and $lg(x’z’)>lg(x’’z’’))$ so that $x”u\backslash L/vz^{;/}=L(A)$ holds.
In this manner, after applying the above procedure repeatedly, we eventually obtain a

pair $(x’, z’)$ such that, besides $L(A)=x’\backslash L/z’$ , a triple $(x’, y_{A}, z’)$ satisfies the requirements
of $d_{A}$ . $\square$

Further, as shown below, the set QA is obtained from the characteristic graph of the
grammar at issue.

Lemma 2 Let $C_{G}$ be the characteristic graph of a $CFGG=(N, \Sigma, P, S)$ . Then, without
counting self-looping, the length of a path in $C_{G}$ is less than $2|P|^{2}+|P|$ , where $|P|$ is the
cardinarity of $P$ .

Proof. From the definition of $C_{G}$ and the property of a gramm$ar$ in 2-standard form,
the length of the longest path is less than $|N|(2t+1)$ , where $|N|$ is the cardinality of $N$ ,
$t=_{A} \max_{\in N}$ { $y_{A}|y_{A}$ is a shortest string in $L(A)$ }. Since $|N|\leq|P|$ and $t\leq|P|$ , the longest
path is bounded by $2|P|^{2}+|P|$ in length. $\square$

Let $t_{G}=2|P|^{2}+|P|$ and $R_{G}=\{w\in L(G)|lg(w)\leq t_{G}\}$ . Furhter, let $w$ be in $\Sigma^{*}$ such
that $lg(w)\geq 2$ . Then, Non$(w)$ is defined as { $(x,$ $y,$ $z)|x,$ $y\in\Sigma^{+},$ $z\in\Sigma^{*}$ and $xyz=w$ }.
Finally, let $NT(G)= \bigcup_{w\in R_{G}}Non(w)$ .

Lemma 3 For any $A$ in $N$ of a c-deterministic $CFGG$, there is a triple $(x, y, z)$ in
$NT(G)$ such that $L(A)=x\backslash L(G)/z$ .

Proof. From the way of constructing $C_{G}$ , each triple $(x, y, z)$ in QA just corresponds to
a string associated with each path in $C_{G}$ . Hence, QA is a subset of $NT(G)$ . $\square$

This guarantees that the set $NT(G)$ , depending only on the size $t_{G}$ and $L(G)$ , can
provide complete information on all nonterminals of $G$ , which implies that nonterminal
membership queries are replaceable in terms of membership queries to an appropriate
subset of $NT(G)$ , as discussed below.
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3 Learning CFGs

3.1 Learning Protocols
Let $L$ be a target $CFL$ over a fixed alphabet $\Sigma$ . We assume the following types of queries
in the learning process. A membership query proposes a string $x\in\Sigma^{*}$ and asks whether
$x\in L$ or not. The answer is either yes or no.

An equivalence query proposes a grammar $G$ and asks whether $L=L(G)$ or not.
The answer is yes or $no$ , and in the latter case together with a counterexample $w$ in the
symmetric difference of $L$ and $L(G)$ . ’A counterexample $w$ is positive if it is in $L-L(G)$ ,
and negative otherwise.

The learning protocol consisting of membership queries and equivalence queries is
called minimally adequate teacher.

The purpose of the learning is to find a $CFGG=(N, \Sigma, P, S)$ such that $L=L(G)$
with the help of minimally adequate teacher.

In [1], Angluin employs a strong query called nonterminal membership queries which,
given a string $x\in\Sigma^{*}$ and a nonterminal $A$ of $G$ with unknown $s$ et of rules $P$ , can ask
whether $x\in L(A)$ or not, and the answer is yes or $no$ . The primary issue here is how
one can replace nonterminal membership queries by membership queries at the sacrifice
of some sort of restriction.

3.2 Diagnosing Rules
Let $G=(N, \Sigma, P, S)$ be a $CFG$ , where $N=\{A_{1}(=S), \ldots, A_{n}\}$ . A replacement $\sigma$ is a finite
tuple $[(y_{1}, B_{1}), \ldots, (y_{t}, B_{t})]$ , where $y_{i}\in\Sigma^{*},$ $B_{i}\in N$ . For $\beta\in(N\cup\Sigma)^{*},$ $\sigma$ is compatible with
$\beta$ iff ther$e$ exist $x_{0},$

$\ldots,$
$x_{t}\in\Sigma^{*}$ such that $\beta=x_{0}B_{1}x_{1}B_{2}\cdots B_{t}x_{t}$ . Suppose $\sigma$ is compatible

with $\beta$ . Then, an instance of $\beta$ by $\sigma$ , denoted by $\sigma[\beta]$ , is a terminal string obtained from
$\beta$ by replacing each occurrence of $B_{i}$ with a terminal string $y_{i}$ .

A rule $Aarrow\alpha$ (not neccessarily from $P$ of $G$) is incorrect for $L(G)$ iff there exists
a replacement $\sigma=[(y_{1}, B_{1}), \ldots, (y_{t}, B_{t})]$ which is compatible with $\alpha$ such that, for each
$i=1,$ $\ldots,$

$t,$ $y_{i}\in L(B_{i})$ and $\sigma[\alpha]\not\in L(A)$ . A rule is correct for $L(G)$ iff it is not incorrect
for $L(G)$ . Note that each rule of $P$ is correct for $L(G)$ .

The diagnosis procedure is essentially the same as Angluin’s one([l]) and a special case
of Shapiro’s one([6]). The input is a correct parse tree $T_{A,w}$ for a conjectured grammar $G$

such that $A$ is the label of the root, $w$ is the yield string of the tree not in L. (That is, $w$

is a negative counterexample to $L$ . The output is a rule that is incorrect for $L$ .
The diagnosis procedure considers in turn each child of the root of $T_{A,w}$ . If the child

is labelled with nonterminal $B$ and has a yield $x$ , then the procedure tests if $x$ is in $L(B)$

or not. If the answer is $no$ , then it calls itself recursively with the sub-parse tree rooted
at the child. If the answer is yes, then it goes on the next child of the $T_{A,w}$ . If all the
queries are answered yes, then the diagnosis procedure returns the rule $Aarrow\alpha$ at the top
of $T_{A,w}$ , which is incorrect for $L$ .
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3.3 Producing Candidate Rules
Let $G=(N, \Sigma, P, S)$ be a (conjectured) grammar obtained in the learning process. When-
ever a new positive counterexample $w$ is given, the set of nonterminals $N$ is updated as fol-
lows: $N$ $:=N\cup Non(w)$ . Further, construct $P_{new}=\{Aarrow a\alpha|a\in\Sigma,$ $lg(\alpha)\leq 2,$ $A\alpha\in N^{+}$ ,
and $A\alpha$ contains at least one new $e1e$ment of $N$ }. Then, let $P$ $:=P\cup P_{new}$ .

Note that through Section 3 the similar kind of argument can be found in the context
of learning simple deterministic languages in [3].

3.4 Learning Algorithm
[Algorithm $A$ ]

Input: a c-deterministic $CFLL$ over $\Sigma$ .
Output: a $CFGG$ in 2-standard normal form such that $L=L(G)$ ;

Procedure:
set $G=(\{S\}, \Sigma, P, S))$ , where $P=\phi$ ;
repeat

make an equivalence query to $G$ ;
If the answer is a positive counterexample $w$, then
introduce new nonterminals from $w$ and add them to $N$ ;
add all candidate rules to $P$ ;
else if the anwer is a negative counterexample $w$, then

diagnose $P$ of $G$ ;
remove an incorrect rule from $P$ ;

until the answer of the equivalence query is yes
output $G$ and halt.

The correctness of the algorithm A is based on the principle so-called contradiction
backtracing algorithm originally discussed in [6]. Papers [1] and [3] apply this principle in
the context of derivation process of a context-free grammar.

Important facts are 1) whenever a positive counterexample is given, at least one triple
corresponding to $a$ new nonterminal (not in the conjectured gramm$a$r) is introduced, and
2) whenever a negative counterexample is given, at least one rule incorrect for $L(G_{0})$ of
a correct grammar $G_{0}$ is removed from the conjectured grammar.

Theorem 4 Given a c-deterministic context-free language $L$ over a fixed $\Sigma_{f}$ the algorithm
A halts and outputs a context-free grammar $G$ such that $L=L(G)$ .

3.5 Time Efficiency
Suppose $G_{0}=(N_{0}, \Sigma, P_{0}, S)$ is a c-deterministic $CFG$ such that $L=L(G_{0})$ . The size of
$G_{0}$ is defined by $|N_{0}|+|P_{0}|$ .

7
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Lemma 5 For a given positive counterexample $w_{f}$ the number of elements of Non $(w)$ is
at most-$lg(w)(lg(w)-1)$ , and hence, is computable in time polynomial in $lg(w)$ .

Proof. Easy and omitted. $\square$

Lemma 6 The number of required positive counterexamples is at most $|N_{0}|$ .

Proof. From the property of the algorithm $A$ , it is not until new nonterminals are
necessary to derive a string in the target language $L$ that a positive counterexample is
given. Further, whenever a $positi_{Ve}^{\backslash }$ counterexample is given, the conjectured grammar
gains at least one new nonterminal $(x, y, z)$ corresponding to a nonterminal $A$ in $N_{0}$ , which
is assured by Lemma 3. Thus, the number of required positive counterexamples is not
greater than $|N_{0}|$ . $\square$

Lemma 7 The number of triples introduced as nonterminals by the algorithm $A$ is bounded
by $\frac{1}{2}|N_{0}|m_{p}(m_{p}-1)_{f}$ where $m_{p}$ is the maximum length of positive counterexamples.

Proof. From Lemma 5, each time a positive counterexample $w$ is given, at most
$\frac{1}{2}lg(w)(lg(w)-1)$ number of nonterminals is introduced. Hence, from Lemma 6, the total
number of nonterminals (triples) introduced in the entire process of leanrnig is bounded
by $\frac{1}{2}|N_{0}|m_{p}(m_{p}-1)$ , where $m_{p}$ is the maximum length of positive. $\square$

Theorem 8 The running time of the algorithm $A$ is bounded by a polynomial in the size
of $G_{0}$ and the maximum length of counterexamples.

Proof. The algorithm relies on three subrocedures,. $i.e.$ , the computation of candidate
rules, parsing, and diagnosis.
(a) Comutation of candidate rules: Note that a conjectured grammar $G$ is asummed to be
in 2-standard form. From Lemma 7, the total number $r_{L}(|N_{0}|, m_{p})$ of rules constructed
in the entire $pro$ cess of learning $L$ is bounded by:

$p(|N_{0}|, m_{p})\cross|\Sigma|\cross(p(|N_{0}|, m_{p})+1)^{2}$, where $p(x, y)= \frac{1}{2}xy(y-1)$ .

(b) Parsing: It is well known that there exists an algorithm which, given a $CFGG$
and a string $w$ in $L(G)$ , produces a parse tree $T_{S,w}$ in time proportional to $|G|lg(w)^{3}(e,g$ ,
[4]). Since $|G|=|N|+|P|\leq p(N_{0}, m_{p})+r_{L}(|N_{0}|, m_{p})$ , each parsing requires at most
$(p(N_{0}, m_{p})+r_{L}(|N_{0}|, m_{p}))m_{n}^{3}$ .
(c) Diagnosis: Given a parse tree $T_{S,w}$ , there are at most $lg(w)$ nonterminals appearing
in it. Hence, the diagnosis procedure makes at most $lg(w)(\leq m_{n})$ membership queries in
order to find $a$ rule incorrect for $L(G_{0})$ .

Now, there are at most $|N_{0}|$ times when positive counterexamples are provided. Each
time a negative counterexample is provided, one incorrect rule is removed from $P$ of
a conjectured grammar $G$ . This implies that the number of negative counterexamples
required is not greater than $r_{L}(|N_{0}|, m_{p})$ .
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Thus, the total time the algorithm A requires is bounded by:

$N_{0}\cross r_{L}(|N_{0}|, m_{p})+r_{L}(|N_{0}|, m_{p})\cross\{(p(N_{0}, m_{p})+r_{L}(|N_{0}|, m_{p}))m_{n}^{3}+m_{n}\}$

$\leq|G_{0}|r_{L}(|G_{0}|, m_{c})+r_{L}(|G_{0}|, m_{c})\{(p(|G_{0}|, m_{c})+r_{L}(|G_{0}|,m_{c}))m_{c}^{3}+m_{c}\}$

where $m_{c}=j\psi ax\{m_{p}, m_{n}\}$ is the maximum length of counterexamples. $\square$

3.6 Implications
Let $G=(N, \Sigma, P, S)$ be a $CFG$ . A nonterminal $A$ in $N$ is harmonic iff $S\Rightarrow^{*}uAv$

and $S\Rightarrow^{*}u’Av’$ imply $u\backslash L(G)/v=u’\backslash L(G)/v’$ . A $CFGG$ is harmonic iff so is each
nonterminal $A$ in $N$ . A language $L$ is harmonic iff there exists a harmonic $CFGG$ such
that $L=L(G)([8])$ .

Lemma 9 A harmonic linear $CFL$ is c-deterministic.

Proof. Let $L$ be a language such that $L=L(G)$ for some harmonic linear $CFG$

$G=(N,\Sigma, P, S)$ . Without loss of generality, we may assume that for each $A(\neq S)\in N$ ,
every rule with the nonterminal $A$ in the left-side is of one of the forms:

$Aarrow\alpha A\beta,$ $Aarrow\alpha’B\beta’,$ $Aarrow w$

where $A,$ $B\in N,$ $\alpha$ , of, $\beta,$ $\beta’,$ $w\in\Sigma^{*}$ , and $B$ derives no string containing $A$ . Hence, for
each $A\in N,$ $L(A)$ is infinite.

We claim that $G$ can be modified to have the property that $\forall x,y\in\Sigma^{*},$ $S\Rightarrow^{*}xAy$ iff
$S\Rightarrow^{*}xBy$ imply that $L(A)=L(B)$ .

Suppose otherwise, i.e., $\forall x,$ $y\in\Sigma^{*},$ $S\Rightarrow^{*}xAy$ iff $S\Rightarrow^{*}xBy$ and that $L(A)\neq L(B)$ .
(Note that both $L(A)$ and $L(B)$ are infinite.) It is easy to see that since $\forall x,$ $y\in\Sigma^{*}$ ,
$S\Rightarrow^{*}xAy$ iff $S\Rightarrow^{*}xBy$ , each recursive rule $Aarrow\alpha A\beta$ must be exactly corresponding
to $Barrow\alpha’B\beta’$ , i.e., $\alpha=$ of and $\beta=\beta’$ . For the same reason, it must hold a non-
recursive rule $Aarrow\alpha B\beta$ is in $P$ iff $Barrow\alpha A\beta$ is in $P$ . By introducing new nonterminal
$[A, B]$ , merge each two corresponding rules into one new rule $[A, B]arrow\alpha[A, B]\beta$ and
remove old rules. Further, for all of other non-recursive rules $Aarrow\gamma(Barrow\gamma’)$ , remove
them and add $[A, B]arrow\gamma|\gamma’$ . Then, with $[A, B]$ replace all occurrence of $A$ and $B$ in
the right-side of rules. After applying the above procedure to all pairs of nonterminals
inconsistent to the claim, the resulting grammar clearly satisfies the requiremet of the
claim. This construction preserves the equivalence of the resulting grammar to the original
one, including the harmonicity.

Hence, we have an equivalent harmonic linear grammar with the property that $\forall u,$ $v\in$

$\Sigma^{*}$ [ $S\Rightarrow^{*}uAv$ iff $S\Rightarrow^{*}uBv$ ] implies that $L(A)=L(B)$ . Thus, for $\forall x,$ $z\in\Sigma^{*}$ , if
$S\Rightarrow^{*}xAz$ , then $x\backslash L/z=L(A)$ . $\square$

Corollary 10 The class of harmonic linear CFLs is polynomial time learnable from $\min-$

imally adequate teacher.
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Note that since the class of harmonic linear CFLs properly contains the class of
regular sets, the class of c-deterministic CFLs properly contains the class of regular sets.

A $CFGG=(N, \Sigma, P, S)$ is simple deterministic(abb., $SD$ ) iff $Aarrow a\alpha$ and $Aarrow a\beta$

are in $P$ imply that $\alpha=\beta([4])$ . A nonterminal $A$ in $N$ is suffix-free iff $x$ is in $L(A)$ implies
that for all $y\in Suf(x)-\{x\}y$ is not in $L(A)$ . A $CFGG$ is suffix-free iff so is each
nonterminal $A$ in $N$ .

Lemma 11 A suffix-free $SDGG=(N, \Sigma, P, S)$ is c-deterministic.

Proof. From the property of SDGs, it holds that if $S\Rightarrow^{*}xA\alpha$ , then $L(A\alpha)=x\backslash L$ .
Since $G$ is suffix-free, $L(\alpha)$ is suffix-free. Hence, let $w$ be a string in $L(\alpha)$ , then $L(A)=$
$x\backslash L/w$ iS obtained. 口

Corollary 12 The class of suffix-free SDLs is polynomial time learnable from minimally
adequate teacher.

4 Discussions
NVe have presented an algorithm for learning a class of context-free languages from min-
imally adequate teacher, which is based on the characterization results of nonterminals
using derivatives of a target language. The class of c-deterministic CFGs has been tar-
geted, and it was shown the algorithm learns a correct grammar in polynomial time from
minimally adequate teacher, which gives a generalization of the corresponding result on
regular sets in [2].

However, it should be mentioned that the definition of a minimally adequate teacher
in this paper is slightly different from the original one by Angluin ([2]) in that the latter
assumes the class of conjectures to be the same type as target class(i.e., both classes
comprise finite-state automata and their regular sets, respectively), while the former allows
arbitrary CFGs in 2-standard form as conjectures in order to learn a subclass of CFLs
called c-deterministic. This kind of teacher is called extended minimally adequate teacher
in [3].

In [8] harmonic linear CFGs are introduced and a complete learning algorithm from
positve and negative examples is given without time analysis, which is clearly shown to
be not less than NP-complete from the problem setting. Note that the c-deterministic
language in $S$ ection 2.1 is not harmonic linear.

The paper [3] gives a polynomial time algorithm for simple deterministic CFLs from
the same learning protocol as the one in this paper. When the class of SDLs is targeted,
the algorithm in this paper works as a simpler version of the one in [3].

The class of simple deterministic CFLs is incomparable to the class of c-deterministic
or harmonic linear CFLs discussed here, and all of them properly contain the class of
regular sets.

10
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