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Abstract: This paper considers the number of gates to realize logic functions
by OR-AND-OR three-level circuits under the condition that both true and

complemented variables are available, and each gate has no fan-in and fan-out
constraints. We show that an arbitrary n-variable function can be realized by

an OR-AND-OR three-level circuit with at most 2r+1+1 gates, -where n=2r and.r
are integers. We also prove that for sufficiently large n, regardless of the

number of levels, we need at least 2r+1(1-f ) gates to realize almost all
functions of n variables by an AND-OR multi-level circuit, where & is an

. arbitrarily small positive number. We developed a heuristic algorithm to design
OR-AND-OR three-level circuits, realized various functions, and compared the
number of gates for three-level circuits with two-level ones.
For arithmetic functions of 8 variables, three-level circuits require, on the
average, 40% fewer gates than AND-OR two-level ones. For control functions of
13 to 83 variables, three-level circuits required 20% fewer gates. For randomly
generated functions of 10 variables, three-level circuits required 50% fewer
gates.

[. Introduction

In this paper, we consider the number of gates to realize arbitrary
functions by AND-OR multi-level circuits under the condition that both true and
complemented variables are available as inputs, and each gate has unlimited
fan-in and fan-out.

An arbitrary logic function can be realized by an AND-OR two-level

2n—1+1 gates are necessary and sufficient to realize a

parity function of n variables, which requires the largest number of gates in
two-level realizations. In a similar way, an arbitrary function can be realized
by multi-level circuits such as OR-AND-OR three-level circuits, AND-OR-AND-OR

circuit. In this case,
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four-level circuits, etc. Then, how many gates are necessary to realize an
arbitrary function by multi-level circuit? And, which function requires the
largest number of gates in multi-level realizations? This paper considers the
number of gates to realize arbitrary functions, and try to find the most
complex function in multi-level circuits.

First, we show that an arbitrary function of n variables (n=2r) can be

2r+1

realized by an OR-AND-OR three-level circuits by using at most +1 gates.

Second, we prove that, regardless of the number of levels, we need at least

2r+1(1—5') gates to realize almost all functions of n variables by multi-level
AND-OR circuits, where n is a sufficiently large integer, and & 1is an
arbitrarily small positive number. From these facts, we know that there is a
distinct difference between two-level circuits and three-level ones, but not
so much difference between three-level ones and multi-level ones with more than
three levels.

This paper is organized as follows:

In II, we will show that an arbitrary n-variable function (n=2r) can be

realized with an OR-AND-OR three-level circuit with at most 2r+1+ 1 gates.
In II1, we introduce the concept of almost all functions and prove that we

need at least 2r+l(l-f) gates to realize almost all functions of n variables
by multi-level AND-OR circuits.

In IV, we show the number of gates to realize various functions obtained by
computer experiments.

[1. Upper Bound on the Number of Gateé

In this section, we derive the upper bound on the number of gates to
realize an arbitrary n-variable function by OR-AND-OR three-level circuits.
Theorem 2.1: An arbitrary n-variable function (n=2r) can be realized by an

OR-AND-OR three-level circuit with at most Zr+1

(Proof) An arbitrary n-variable function is represented by

+1 gates.

a a a

_ k+1 “k+2 n e
f(xl,x2 ..... xn)—V gé(xl,xz,..,xk)xk+1 Xypg oo Xp (2.1)
where 1<k<n, and a;=0 or I (i=k+1, k+2,...,n), x?=§l, x}=xr
gg(xl’XZ""’Xk)zf(xl’XZ""'Xk’ak+1’ak+2""'an)' and
g=(ak+1,ak+2,:..,an). Note that the logical sum is taken for gnk
different combinations. ga(xl'XZ""xk) can be represented by a canonical

product-of-sums expression:
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E1 E_Z Ek
g (X xgo o uxp )= A [g,(by by, .., DIV X"V xSV Vo x T L
where g, (b .b,. ..., b,) is a binary constant, a eBK bj€B (§=1.2.... k),
and B=1{0,1}. A circuit which generates all the maxterms of the k-variable is

called a k-bit decoder. By using a k-bit decoder and 2n~k AND gates,

we can realize Zn_k functions as follows:
a a a
ga(xl,xz,...,xk) xkEIIXkE;Z"-~Xnn , where ai=0 or 1 for i=k+1,..., n.
By summing these functions by an OR gate, we have a circuit for the function
f. The designed circuit contains Zk OR gates for the k-bit decoder, Zn_k AND

gates, and one OR gate. So the total number of gates is a (n)= 2k )t SO

Let k=n/2, and we have «a (n)=2r+1+1. Hence, we have the theorem. (Q.E.D)
Example 2.1: The function shown in Fig.2.1 can be represented as

=200, 0)%3% 4V B0, 1)¥3¥a V B(1,0)%3% VY B(1, 1)*3¥y

where g(o 0) g(o 1),g(1 0)’ and g(l 1) are represented by canonical
product-of-sums expression : ,

Bo,n= ¥V xg = (V)
8(1.0)° X1 = (x;Vxy) (x; VXy), and
gquxﬁﬂ/aw=(aV%HHVQ).
Therefore, the given function is represented by
£=(xy Vixg) (x) Vxg)xgx, V(x VX xaxy V (x Vixg) (x; Vxg)xgxy
V(x Vixg) () Vxg)xsxy.
Fig. 2.2 shows the realization of this function. (End of Example).
Theorem 2.2: Let (n + log,m)/2 and (m)l/2 be integers. Then, an

arbitrary n~input m-output function can be realized by an OR-AND-OR

three-level circuit with at most (m)1/2°2(n/2)+1 + m gates.
(Proof) Consider a set of m expressions like (2.1), and use k-bit decoders.

Then, the total number of AND gates is at most m-Zn—k. We need m OR gates for
m outputs. Therefore, the total number of gates is

m-2" K oky g --—-(2.%)
Let k=(n+ logym) /2, and (2.3) becomes n(/D) /D4y
Hence, ‘the theorem. (Q.E.D.)



"111. Lower Bound on the Number of Gates

It is.well known that, among n-variable functions, the parity functions
of n variables are the most complex ones to realize in two-level circuits.
In fact, the parity functions of n variables require 2n—1+ 1 gates, and other
functions require the same numeber of gates or less. So the lower bound on the

number of gates to realize arbitrary function of n variables in two-level

circuit is Zn_1+l. Then, the problem arises how many gates are necessary to
realize an arbitrary function of n variables by multi-level circuits. To
answer this problem, we have to‘find an n-variable function rquiring the
largest number of gates in multi-level realization. Unfortunately, it is
extremely difficult to find such a function. This is partly due to the fact
that the problem to realize a particular function by a multi-level circuit
using the least number of gates is extremely difficult. So we use the concept
of almost all functions, which was used to derive the complexity of series—

parallel relay circuits [SHA 49].
Definition 3.1: A property A is said to hold for almost all functions

if the proportion of n-variable functions which do not satisfy A tends to
zero as n—. In other words, let w(n) be the number of n-variable functions

n .
which do not satisfy A . Then w(n)/Z2 —0 as n—o,

From here, we will show that we need at least 2r+1(1-E') gates to
realize almost all function of n variables, where n=2r.

We will not show that any particular function requires erl(l*f') gates,
but it is impossible for almost all functions to require less. In other words,
there exist not enough circuits to represent almost all n variable function

with less than 2r+1(l-f’) gates. To enumerate the number of meaningful circuits
only, we will define a class of AND-OR multi-level circuits which do not
contain a certain type of redundant connections.

Definition 3.2: A multi-level circuit consisting of AND and OR gates is said

to be normal if no output of any AND (OR) gate is connected to the input of
other AND {(OR) gates.

Lemma 3.1: An arbitrary AND-OR multi-level circuit can be converted into a

normal one without increasing the number of gates.

(Proof) If the output of an AND gate A is connected to an input of other AND
gate B (Fig.8.1), then delete the connection between A and B, and connect
all the input signals of A to the dinput of B in addition to the original
signals (Fig.3.2). Apply this operation to all AND gates. Apply the similar
operations to all OR gates. And, we have a normal AND-OR multi-level circuit.



105

It is clear that these operations do not increase the number of gates. (§.E.D.)
Lemma 8.2: Let g (n,m,N) be the number of different n-input m-output normal
AND-OR multi-level circuits with at most N gates. Then

p ) = ().,

(Proof) Consider normal AND-OR multi-level circuits with p levels. Assume that
all the output functions are obtained from OR gates. Suppose that p is an odd
number. In this case, the first-level gates ( ones which are farthest from the
outputs) are ORs, the second-level ones are ANDs, third-level ones are ORs,...,
the (p-1)-th ones are ANDs, and the p-th (output) ones are ORs, as shown in
Fig.3.2. Let a; be the number of i-th level gates (i=1,2,...,p).

p .
Because the total number of gates is at most N, we have X aiééN.
i=1

First, consider the number of different patterns of connections in
an OR gate in the first level. To each OR gate, either a true variable is
connected, the complement is connected , or neither of them is connected,

for each variable Xy So, three possible cases exist for each variable X

Therefore, the number of different patterns of connections in an OR gate
in the first level is 3 : :
Second, consider the number of different patterns of connections

in an AND gate in the second level. To each AND gate, either x; or ii

or -none of them is connected for each X5 Also, either an output of an

OR gate in the first level is connected or unconnected. Therefore, the
number of different patterns of connections in an AND gate in the

n a;
second level is 3 - 2 -,

: (]
Third, consider the number of different patterns of connections
in an OR gate in the third level. To-each OR gate, either X; or Yior

none of them is connected for each X Also, either an output of an AND

gate in the second level is connected or unconnected. Therefore, the
number of different patterns of connections in an OR gate in the third

N a,
level is 3 -2 °.

Lastly, consider the number of different patterns of connections in an
OR gate in the p-th level (output). To each output OR gate, either the outputs
of the AND gates in the 2nd, 4-th,..., and (p-1)-th level are connected or
unconnected, in addition to the patterns of an OR gate in the first level.
Therefore, the number of different patterns of connections in the output
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(a,+a,+...+a__,)
OR gate is 3".2 2 4 p-1

So, the numbers of different patterns of connections in the gates are :

First level gh

Second level 3n'2al

Third level 3n.5"2

Fourth level gn.p *123)
Fifth level 3“-2(az+a4)
Sixth level gn.y P2

(a,+a,+...+a__,)
(p-1)th level gh.g "1°73 p-2

(ata,+...+a__,)
p-th level 3Ny 2°°4 p-1

Therefore, the total number of different connections in the circuit is

a a, a a, a (a;+a,) a (a,+a,) ag
g(nom )= (3N TLo(gh g L) T2 (g g ) T8 (gn. g LTI T (g T2 TS

...... ~(3“oz(a2+a4+"'+ap’1))ap.

i n(a1+a2+...+ap)‘2{ala2+ agagt (a1+a3)a4+....+(a2+a4+.f.+ap_1)ap}

In the above, the expression inside of { } is simplified as follows:
ajagt agagt (ajtaglayt (ayraagt(ajtagtaglagt(agta; taglay

+..‘+(a1+33+a5+...+ap_2 )ap_1+(a2+a4+...+ap_1)ap

=(al+a3+a5+...+ap)'(a2+a4+a6+...fap_l) =N N, . where

Ni= al+a3+a5+...+ap and N2= az+a4+a6+...+ap_1

Because, N1 -N2< (NIND2/4 =N%/t,  we have x (nm W)= (3"V). 2(N°/0))
Thus, we have the lemma when p is an odd number. When p is an even number,
we can prove it in a similar way. Hence the theorem. (Q.E.D.)
Definition 3.3: Let » (n,m) be the necessary and sufficient number of

gates to realize an arbitrary n-input m-output function by a multi-level
AND-OR circuit.
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Theorem 3.1: For an arbitrary positive small number &, there exists
a positive integer n{(¥ ) satisfying the following condition:

when n2n(f€) , =» (n,m > m(l/Z)-Z(n/Z)H'(l—E).
{(Proof) The number of n-input m-output function realized by AND-OR
multi-level circuits with at most N gates does not exceed y (n, m N),
the number of normal AND-OR multi-level circuits with at most N gates.
n
There are 2m2 different n-input m-output functions.
From here, we will show that 1f N=(m) 1/2.2(n/2)+1.(1_¥)
n
then z (n,m,N)/ (2"%) <1, for sufficiently large n.
By taking the logarithm of the left hand side of the inequality, we have
n
logl # (n.m.N)/ (2™)]
<nN(log 3) + N:(log 2)/4 - m2™(log 2)
sl 2 /D (g )y (log 3) + m-2™E(1-£)% (1og 2)/4 - m-2"-(log 2)
n {(m /2.0 0/DHL (g} (log )+ (me2"(-2£ +£ D)} (log 2)
=n-2"(log 2) fn-(m) "1/ 297 (/D (10 3)/(1og 2 1(1-F) - £ (2-£))

=m-2"(log 2) [2-A(1-F)-F(2-8)1, = —=——— (3. 1)

X N . -(log 3)
“where m(l/Z).z(n/Z).(log 2)

The above expression becomes negative when

2.4 <f—§—f§§g SE+E(+ELESs ) =2E+EliE

Dropping the higher order terms Ez+’g’3+..., we have A<E. In this case, the
logarithm still remains negative. In other words, there exists n(¥&), and if
n> n(E), then not all the functions can be realized by using at most

N= m(1/2>~ Z(H/Z)H'(l-f) gates. Hence the theoren. (Q.E.D.)

Theorem 3.2: Let & be an arbitrary small positive number. In order to
realize almost all functions of n variables,

N=(m)1/2°2(n/2)+1'(1-5) gates are necessary.
(Proof) Let & be a constant such that 0< & <1, then the left hand side of

(3.1) in Theorem 3.2 tends to -« as n—w. Therefore,

n
logl u (n,m,N)/Z(m2 ) = -® as n—oo.
In other words, -

n
" (n,m, N)/Z(-mz )—>0 as n—>co,
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Thus the fractions of functions realized by N or less gates tends to zero
as n—>o ., This implies we need at least N gates to realize almost all
functions. (Q.E.D.)
Corollary 3.1:'Regardless of number of levels, AND—OR multi-level circuits

require at least 2r+1(1—f') gates to realize almost all functions of n
variables, where n=2r and & is an arbitrary small positive number.

(Proof) From Theorem 3. 2. (Q.E.D.)
Corollary 3.2: For almost all functions, there is no design method for AND-OR

multi-level circuits which produces much better circuits than the one in
Theorem 2.1. (Proof) By Theorems 2.2 and 3. 2. (Q.E.D.)

Thus, for almost all functions, it is sufficient to consider the AND-OR
circuits of levels not greater than three. Hence, three-level OR-AND-OR
circuits (and their duals) are very important multi-level circuits.

; Note that there exists some class of functions whose minimum AND-OR
multi-level realizations require many fewer gates than ones obtained by the
method in Theorem 2.1. Such a class of functions include parity functions,
partially symmetric functions and adders. 0f course, the fraction of such
functions tends to zero as n —<. Table 3.1 compares the numbers of gates to
realize various classes of functions.

From here, we will show the number of gates to realize almost all
functions by AND-OR two-level circuits.

Lemma 3.3: The number of different n-variable AND-OR two-level circuits using

at most N gate is at most 3nN .

(Proof) Consider the number of different patterns of connections in an AND

gate. To each AND gate, either a true variable is connected, the complement
is connected, or neither of them is connected for each variable. So, three

possible cases exist for each variable. Therefore, the number of different

patterns of connections in an AND gate is 3h Hence, the total number of

different patterns of connections is 3nN .
Theorem 3.3: For sufficiently large n, almost all functions of n variables

require at least (log32)~(1—-f Y2"/n gates in AND-OR two-level circuits,

where & is an arbitrarily small positive number.

(Proof) The number of n-variable function realized by AND-OR two-level circuits
with at most N gates does not exceeds the number of different n-variable AND-OR
circuits with N gates. From here, we will show that if

N=(log32)-(1—£')2n/n then the fraction of functions:requiring at most N
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: , : . ' n
gates approaches to zero as n—w. i.e., 7 =3nN/(22 ) —0.
By taking the logarithm.-of 7, we have

logy 7 = nN(log23)—2n =(log32:)(1og23)(1—§-)2“ SANEES §L

Therefore, 7 —0 as n—><. Hence, we have the theorem. (Q.E.D.)
From Theorems 2.1 and 3.3, we see that OR-AND-OR circuits require
many fewer gates than AND-OR circuits to realize almost all functions.

IV. Experimental Results

We developed an algorithm to obtain OR-AND-OR circuits with near minimum
number of gates[SAS 88]. We coded it in FORTRAN and implemented it on a Sun
3/50 workstation. We designed OR-AND-OR three-level circuits, and compared the
number of gates with AND-OR two-level ones. Table 4.1 shows the number of gates
for 9 arithmetic circuits. This results shows that the OR-AND-OR circuits
require, on the average, 40% fewer gates than AND-OR circuits. For example, to
realize WGT8 (which is also called as RD84), 259 gates are necessary for a two-
level circuit, but only 49 gétes for a three-level circuit.

We also designed 18 control circuits by OR-AND-OR three-level ones. The
original circuits are AND-OR two-level with 13 to 83 inputs, 6 to 94 outputs,
and 63 to 637 products. On the average, OR-AND-OR circuits require 20% fewer
gates than two-level AND-OR circuits. In particular, in the case of TIALU, the
three-level circuit required 57% fewer gates than two-level one. Table 4.2
shows the part of the results:

We also realized randomly generated functions of 10-variables. Table 4.3
shows average numbers of gates to realize functions with various number of
minters.

Prof. Muroga's group obtained all the optimum AND-OR multi-level circuits
for functions of four or fewer variables[CUL 79]. Their optimality means
minimization of the number of gates as the primary objective and the number of
connections as the secondary objective, regardless of the number of levels.
They obtained optimum circuits for 222 representative functions of NPN-
equivalence classes of four or fewer variables by the branch and bound method.
Their result is very interesting: Of all the representative functions, only two
representative functions have optimal circuits exclusively of four levels. No
representative functions have optimum circuits of five or more levels. In other
words, in the case of functions with four or fewer variables, most optimum

circuits are three or less levels.
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V . Conclusion and Comments

In this paper, we considered the number of gates to realize arbitrary
function by OR-AND-OR three-level circuits under the condition that fan-in and
fan-out of the gates are unlimited. We showed that there exists a distinct
difference between multi-level realizations and two-level realizations. In

two—level realization, we need 2n-1+ 1 gates to realize arbitrary n-variable

functions, while in multi-level realization, we need 2(n/2)+1(1-f') gates .

We have the following results for almost all functions:

1. OR-AND-OR circuits require many fewer gates than AND-OR two-level circuits.
However, four or more level AND-OR circuits require the same order of
gates as OR-AND-OR circuits.

2. No algorithm produces circuits with many fewer gates than one in this paper.
We developed a heuristic algorithm for OR-AND-OR three-level circuits,
designed many arithmetic and control circuits, and compared the number of gates

for two level circuits with three-level ones. In the case of the arithmetic
circuits, three-level realizations required 40% fewer gates than two-level
ones. In the case of the control circuits, three-level ones required 20% fewer
gates.

In this paper, we assume that each gate has unlimited fan-in. As an
example of circuits where this assumption holds is a NAND array shown in
Fig.5.1. This is a programmable logic devices (PLDs) commercially available
[SIG 86]. To realize a given function, first, design a three-level OR-AND-OR
circuit and then transform it into a NAND three-level circuit. The NAND three-
level circuit can be obtained by properly programming the NAND array. In this
case, the fan-in of each gate is sufficiently large

However, we cannot apply the present method to the circuits where each
gate has fan-in limitation, such as ones in gate array LSIs. Most multi-level
synthesis algorithms assume that each gate has fan-in limitation [KAR 87].

In such a case, the number of gates necessary to realize an n-variable function

is proportional to 2" /n [MUL 56].
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‘Table 3.1 Number of Gates to Realize Various
Functions of n variables
Function Class AND-OR OR-AND-OR
Arbitrary function a1y 9T+l (UB)
2T l(1-£) B)

Parity function yALRE IS k-2t+ak-1lyg
(n=k-t)

Symmetric function a1y 'k-2t+(t+l)k—1+1
(n=k-t)

n-bit Adder §-2"~3n-4 | n+5n+2

UB: Upper Bound

LB:

Lower Bound

Table 4.1 Number of Gates to Realize
Arithmetic circuits
Input Data # of gates
two- three- | B/A | CPU
level level
Name | IN | OU (4) (B) (%) SEC
ADR4 | 8 5 80 38 48 19
INC8 | 8 9 46 41 89 12
LOG8 | 8 8 136 84 62 175
MLP4 | 81 8 135 84 62 149
NRM4 | 8] 5 125 11 62 139
RDM8 | 8| 8 84 54 64 33
ROT8 | 8 5 62 48 117 24
SQR8 | 8|16 196 123 63 393
WGT8 | 8| 4 259 49 19 144
IN : Number of inputs

ou

: Number of outputs

CPU: SUN-3/50 Workstation




Table 4.2 Number of Gates to Realize Various Functons

| # of gates
Function | IN | OU | two- three- | B/A CPU
Name level | level
() (B) (%) | (sec)
INTB 15 638 239 37 3440
TIAL 14 595 | 255 43 3922
X7DN 66 | 15 553 300 LY 40117

IN : Number of Inputs

0U : Number of Outputs

CPU: SUN-3/50 Workstation

Table 4.3 Number of Gates to Realize
Randomly Generated Functons of 10 variables
# of gates
t of two- three- ;
minterms | level | level B/&
(4) (B) | (%)
128 - 81.1 64 73
256 134.8 | 65 ° 48
384 155.9 65 42
512 159. 6 65 41
640 153.5 65 42
768 130.9 65 50
896 92.4 65 70

Average of 10 functions.

_13_
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(x1,x2)
g0 01 11 10
00 1 1
01 1 1 1
(x3,x4)
11 1 1
10 1 1

Fig. 2.1 Exhgg]e 2.1

Fig. 2.2

Example 2.2
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Fig.3.2 Normal AND-OR multi-level Circuit
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Fig. 5.1 A PLD consisting of a NAND array
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