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Motif.

The motif of this article is the study of C* manifold by means of stable map-
pings.

For example, let f : F — M — P be a fibration, we know x(M) = x(F)x(P) -
and the monodromy or holonomy of f tells us some more fine properties about M.
Let f : M — R be a Morse function, then we have the Morse equality and it is
usual in topology to show something using hahdlebody structure derivéd from Morse

functions.

Here we assume the manifold M is s‘imply connected and four-dimensional and
the mapping f : M — RZ? is stable, mainly by the following reasons. First, if the
target manifold is of high-dimension, then complicated singularities appear. Second,
we want to do concrete argument, thus the trivial target is suitable and the differ-
ence of the source and the target dimension has to be small. Third, the differential

topology of four dimensional manifolds is still interesting.
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An expression of manifold.

Kushner-Levine-Porto [3] introduced the next space.
Definition.

For z,y in M, we define the relation z ~ y as follows: z ~ yif f(z) = f(y) (= a)
and they are in the same connected component of f ~1(a). We call the quotient space

of M by this relation, as the quotient space associated to f.

We use the notations:

qf:]\/IQWf-—"lW\N.

We regard that the diffeomorphism class of the pair Dy = (Wy,q(S(f))) gives
an expression of M , and we aim at studying the source mainfold by means of these

expressions.
Our program of this study is:
1 . Detect simple, in some sense, expressions of M;

2 . Derive fine properties on M, from these simple expressions.
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3. A result.

~ On the first part of our program, the author got a result, restricting the source
manifolds to a certain family of simply connected four manifolds, which is denoted
by M;j ( see [2], for the definition). That asserts, for a manifold in M;, one can

show the followings:

1 . The existence of, in some sense, simple expressions which we call irreducible

ones;
2 . The finiteness of the irreducible expressions;

3 . An inequality on the number of components of S(f) = [[ S?, which suggest
 the growth of the number of these expressions according to the growth of the

Euler characteristic.

Precisely, we can show the theorem ([2]).

THEOREM.

a) For each Euler number constant fa.mﬂy in M;, the diffeomorphism types of
D¢ = (Wy, ¢S(f)) of irreducible mappings are finite.

b) For an irreducible mapping f € W(M,R?), we have:

2h(M)+1 (if b2(M) is even)

§S(f) < { $(ba(M)+1)  (ifby(M)is odd),

where by(M) is the second Betti number of M and $S(f) is the number of
connected component of S(f) =[] S* (disjoint union).
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What can we derive from simple expressions?
Now we concern with the second part of the program. That is, what informations
can we derive from simple expressions. I will show some examples.

Example I.

If Dy = (D?,8D?), then the source manifold M is diffeomorphic to S*. This

fact is contained in the results of Furuya-Porto [1].
Example IL.([2])

Suppose that Dy is such one as drawn in figure 1.

J’ fgure 1.

First, we know from the local properties of folds, the pull back image of regula;
values a,b taken as in figure 1, is diffeomorphic to S%,T?, respectively. That is, they
are of genus 0 or 1, respectively (see [5] or [proposition 2.2 of 2]). That of c has to
be 0 or 2. But 2 is no match for the aSsumption w1 (M) = 1. This means‘ that My is
in M; and the theorerﬁ says that this is the (unique) simplest expression of Mj.

Let’s observe this expression more precisely.

Take arcs A, J = [—1, 1] which are ’transverse’ to the discriminant, and a closed
curve v, as in figure 1.

1. Set ¢~!(Ays) = Ay, then g|A; is a Morese function (see [5] or [proposition 2.2
of 2]). Thus,
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Ay = (0-handle) U (1-handle) U (2-handle)
= T (solid torus) U T (solid torus) \D*
\P

= L(p, ) (lens space) \D?,
where ¢ is the diffeomorphism from 0T, to 9T;.

We denote the isotopy class of ¢ by

[¢] = (: §> =A€SL(22,Z): {fl(aszz) — H1(8T4,Z).

2. Note that ¢~!(interior of ) is a torus bundle over an annulus and the

holonomy induced by 7 is of the form ( see [proposition 3.6 of 2):

T= (i ‘;) Ja € Z: Hy(8T,,Z) — Hy(8T3,Z).

3. By the same argument as in 1, §1(J) is obtained by gluing two solid tori
by a diffeomorphism on its boundary. That is, §(J) =T %LT for some 1.

As it is diffeomorphic to $~1(J"), where J' is an arc taken as in figure 1,

L 10 -1_ (l14+apg —ap? |
[w]-A(a 1)A _( ag? 1—apq)'
Thus ¢=1(J) & L(—ap?,1 - apq).

4. From the local propertles of cusps, ¢ 1(J)is dlﬁ'eomorphlc to 53 ( see [5] or
[proposmon 2.1 of 2]). This means —ap? = +1, hence, '

[o] = (: %ql) .
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In other words, the 1- and the 2-handle of A f is a cancelling pair. Thus we can
'reduce’ f to a stable mapping g which has the discriminant as in figure 2 ( see [2],for

the reduction). We will observe the new expression Dy.

J,

%(Hz)

g (HW)

-F??wu 2.

Take arcs Jo, J; = [-1,1] as in ﬁguie 2. We denote the source manifold M f=
M, by M, and cut M along the arcs Jy and J;. That 1s,

M=MLUMgp, Mp=MrUMp_.

5. Then by a technique of Levine [4], it is shown that these three peaces are
diffeomorphic to D*. Noticing that ¢=1(J;) is a solid torus and [¢/] is of the form

w=(1 1)

by the same argument as in 1,2, we can show that My is a D2; bundle over 52 , which

we denote by B..

>6. The boundary of B, that is, ¢~*(Jp) is diffeomorphic to S3, by the same
reason as in 4. It is known that 8B, is diffeomorphic to S® if and only if ¢ = +1.
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- Therefore,

M = B4, U (4 — ball) = C?P (or C2P).

Now we get the fact.

If Df= , then M is diffeomprphi¢ to C2P.

Together with the theorem, we have:

Fact.

Fact. |
If (M) is 1 and M is in M;, then M is diffeomorphic to C?P.
Example III.

If Dy is such as given in figure 3, like a pig nose. Then by the same argument
‘asin Example II, the source manifold My is in M; and the theorem says this is the

(unique) simplest expression of the source manifold.

Let Jo, J1 2 [—1, 1] be closed arcs that are ’transverse’ to the discriminant, v, 6

be closed curves, taken as in figure 3. Then Mjy is determined by the following data:

7
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1 . The gluing data in ¢~!(J;),z = 0,1, which are represented by two matrices
A,Bin SL(2,Z); |

2 . The holonomy data of the torus bundle q“l@) induced by «, §, which are

determined by the two integers.

Using Levine’s theorem in [4], we can know the homology of M. That is,

by(My) = 2. Hence, from the theorem of Freedman,
M; ~ C*P{C*Por C*P§C2Por S? x S%.

Conversely, these three have this expression. Of course, as we see in Example II

these data are possibly dependent, but the problem is natural and makes sense.
Problem.

1 . Determine the homeomorphism type of M which shares this expression, by

using these data.

2 . Find a diffeomorphism invariant of M.

Concluding assertion.

As we mentioned before, the author defined a family of simply connected four man-
ifolds ([2]), which is denoted by M;. For example, the manifolds which have the
expression appeared in the examples are in M;. Hence the problem stated in Exam-

ple III is generalized as follows.

PROBLEM.

Do the concrete (and elementary I }iope,) argument on M in M; which have

the ”simple” expression and study the homeomorphism type and smooth structures

of M.
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