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Motif.

The motif of this article is the study of $c\infty$ manifold by means of stable map-

pings.

For example, let $f$ : $Farrow Marrow P$ be a fibration, we know $\chi(M)=\chi(F)\chi(P)$

and the monodromy or holonomy of $f$ tells us some more fine properties about $M$ .
Let $f$ : $Marrow R$ be a Morse function, then we have the Morse equality and it is

usual in topology to show something using handlebody structure derived from Morse

functions.

Here we assume the manifold $M$ is simply connected and four-dimensional and

the mapping $f$ : $Marrow R^{2}$ is stable, mainly by the following reasons. First, if the

target manifold is of high-dimension, then complicated singularities appear. Second,

we want to do concrete argument, thus the trivial target is suitable and the differ-

ence of the source and the target dimension has to be small. Third, the differential

topology of four dimensional manifolds is still interesting.
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An expression of manifold.

Kushner-Levine-Porto [3] introduced the next space.

Definition.

For $x,$ $y$ in $\Lambda/$[, we define the relation $x\sim y$ as follows: $x\sim y$ if $f(x)=f(y)(=a)$

and they are in the same connected component of $f^{-1}(a)$ . We call the quotient space

of $M$ by this relation, as the quotient space associated to $f$ .

We use the notations:

$q_{f}$ : $Marrow W_{f}=M\backslash \sim$ .

We regard that the diffeomorphism class of the pair $D_{f}=(W_{f},q(S(f)))$ gives

an expression of $M$ , and we aim at studying the source mainfold by means of these

expressions.

Our program of this study is:

1. Detect simple, in some sense, expressions of $M$ ;

2. Derive fine properties on $M$ , from these simple expressions.
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3. A result.

On the first part of our program, the author got a result, restricting the source
manifolds to a certain family of simply connected four manifolds, which is denoted

by $\mathcal{M}_{1}$ (see [2], for the definition). That asserts, for a manifold in $\mathcal{M}_{1}$ , one can

show the followings:

1. The existence of, in some sense, simple expressions which we call irreducible

ones;

2. The finiteness of the irreducible expressions;

3. An inequality on the number of components of $S(f)=1I^{S^{1}}$ , which suggest

the growih of the number of these expressions according to the growth of the

Euler characteristic.

Precisely, we can show the theorem ([2]).

THEOREM.

a) For each $E$uler number constant family in $\mathcal{M}_{1}$ , the diffeomorphism types of

$D_{f}=(W_{f}, qS(f))$ of irreducible $m$appings are ffiite.

b) For an irreducible mapping $f\in W(M,R^{2})$ , we have:

$\# S(f)\leq\{\begin{array}{l}\frac{3}{2}b_{2}(M)+1\frac{3}{2}(b_{2}(M)+1)\end{array}$ $(ifb(M)i\epsilon even)(ifb_{2}^{2}(M)isodd)$

,

where $b_{2}(M)$ is the second Betti llumber of $M$ an$d\# S(f)$ is the num$ber$ of

connected component of $S(f)=II^{S^{1}}$ (disjoint union).
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What can we derive from simple expressions?

Now we concern with the second part of the program. That is, what informations

can we derive from simple expressions. I $wiu$ show some examples.

Example I.

If $D_{f}=(D^{2}, \partial D^{2})$ , then the source manifold $M_{f}’$ is diffeomorphic to $S^{4}$ . This

fact is contained in the results of Furuya-Porto [1].

Example II.([2])

Suppose that $D_{f}$ is such one as drawn in $fi_{o}ure1$ .

$J^{J}$ $fi_{\mathcal{P}^{\aleph}}^{\backslash }1$ .
First, we know from the local properties of folds, the pull back image of regular

values a,b taken as in figure 1, is diffeomorphic to $S^{2},T^{2}$ , respectively. That is, they

are of genus $0$ or 1, respectively (see [5] or [proposition 2.2 of 2]). That of $c$ has to

be $0$ or 2. But 2 is no match for the assumption $\pi_{1}(M)=1$ . This means that $M_{f}$ is

in $\lambda 4_{1}$ and the theorem says that this is the (unique) simplest expression of $M_{f}$ .

Let’s observe this expression more precisely.

Take arcs $\Lambda_{f},$ $J\cong[-1,1]$ which are ‘transverse’ to the discriminant, and a closed

curve $\gamma$ , as in figure 1.

1. Set $q^{-1}(\Lambda_{f})=\tilde{\Lambda}_{f}$ , then $q|\tilde{\Lambda}_{f}$ is a Morese function (see [5] or [proposition 2.2

of 2]). Thus,
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$\tilde{\Lambda}_{f}=(0- handle)\cup(1- hande)\cup$ ( $2$-handle)

$=T_{1}$ (solid $torus$) $\cup T_{2}$ (solid $torus$) $\backslash D^{3}$

$\psi$

$=L(p, q)$ (lens $space$) $\backslash D^{3}$ ,

where $\varphi$ is the diffeomorphism from $\partial T_{2}$ to $\partial T_{1}$ .

We denote the isotopy class of $\varphi$ by

$[\varphi]=(\begin{array}{ll}s pt q\end{array})=-4\in SL(2, Z)$ :
$H_{1}(\partial T_{2}, Z):arrow H_{1}(\partial T_{1}, Z)$

.

2. Note that $q^{-1}$ (interior of $\ovalbox{\tt\small REJECT}$) is a torus bundle over an annulus and the

holonomy induced by $\gamma$ is of the form (see [proposition 3.6 of 2]):

$\Gamma=(\begin{array}{ll}l 0a 1\end{array}),a\in Z$ : $H_{1}(\partial T_{2}, Z)arrow H_{1}(\partial T_{2}, Z)$ .

3. By the same argument as in 1, $\^{-1}(J)$ is obtained by gluing two solid tori

by a diffeomorphism on its boundary. That is, $\S^{-1}(J)=T\cup F^{T}$ ’ for some $\psi$ .

As it is diffeomorphic to $\^{-1}(J’)$ , where $J$ ‘ is an arc taken as in figure 1,

$[\psi]=A(\begin{array}{ll}1 0a 1\end{array})A^{-1}=(\begin{array}{ll}l+apq -ap^{2}aq^{2} 1-apq\end{array})$ .

Thus $q^{-1}(J)\cong L(-ap^{2},1-apq)$ .

4. From the local properties of cusps, $q^{-1}(J)$ is diffeomorphic to $S^{3}$ (see [5] or

[proposition 2.1 of 2]). This $means-ap^{2}=\pm 1$ , hence,

$[\varphi]=(\begin{array}{ll}s \pm lt q\end{array})$ .
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In other words, the 1- and the 2-handle of $\tilde{\Lambda}_{f}$ is a cancelling pair. Thus we can
‘reduce’ $f$ to a stable mapping $g$ which has the discriminant as in figure 2 (see $[2],for$

the reduction). We will observe the new expression $D_{f}$ .

$ $(\}\triangleleft R)$

Take arcs $J_{0},$ $J_{1}\cong[-1,1]$ as in figure 2. We denote the source manifold $M_{f}=$

$M_{g}$ by $M$, and cut $M$ along the arcs $J_{0}$ and $J_{1}$ . That is,

$M=M_{L}\cup M_{R}$ , $M_{L}=M_{L+}\cup M_{L-}$ .

5. Then by a technique of Levine [4], it is shown that these thre$e$ peaces are

diffeomorphic to $D^{4}$ . Noticing that $q^{-1}(J_{1})$ is a solid torus and $[\psi]$ is of the form

$[\psi]=(\begin{array}{ll}1 0c 1\end{array})$

by the same argument as in 1,2, we can show that $M_{L}$ is a $D^{2}$ bundle over $S^{2}$ , which

we denote by $B_{c}$ .

6. The boundary of $B_{c}$ , that is, $q^{-1}(J_{0})$ is diffeomorphi $c$ to $S^{3}$ , by the same

reason as in 4. It is known that $\partial B_{c}$ is diffeomorphic to $S^{3}$ if and only if $c=\pm 1$ .
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Therefore,

$M=B\pm 1\cup^{-}(4-ball)\cong C^{2}P$ (or $\overline{C^{2}P}$).

Now we get the fact.

Together with the theorem, we have:

Fact.

If $b_{2}(M)$ is 1 and $M$ is in $\mathcal{M}_{1}$ , then $M$ is diffeomorphic to $C^{2}P$ .

Example III.

If $D_{f}$ is such as given in figure 3, like a pig nose. Then by the same argument

as in Example II, the source manifold $AM_{f}$ is in $\mathcal{M}_{1}$ and the theorem says this is the

(unique) simplest expression of the source manifold.

$\epsilon_{\backslash ^{\backslash }}m3$ .

Let $J_{0},$ $J_{1}\cong[-1,1]$ be closed arcs that are ‘transverse’ to the discriminant, $\gamma,$
$\delta$

be closed curves, taken as in figure 3. Then $M_{f}$ is determined by the following data:
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1. The gluing data in $q^{-1}(J;),$ $i=0,1$ , which are represented by two matrices
$A,$ $B$ in $SL(2, Z)$ ;

2. The holonomy data of the torus bundle $q^{-1}\ovalbox{\tt\small REJECT}/$ ) induced by $\gamma,$
$5$ , which are

determined by the two integers.

Using Levine’s theorem in [4], we can know the homology of $M_{f}$ . That is,

$b_{2}(M_{f})=2$ . Hence, from the theorem of Freedman,

$M_{f}\approx C^{2}P\#C^{2}P$ or $C^{2}P\#\overline{C^{2}P}$ or $S^{2}\cross S^{2}$ .

Conversely, these three have this expression. Of course, as we see in $E\cdot xanl$-ple II,

these data are possibly dependent, but the problem is natural and makes sense.

Problem.

1. Determine the homeomorphism type of $M$ which shares this expression, by

using these data.

2. Find a diffeomorphism invariant of $M$.

Concluding assertion.

As we mentioned before, the author defined a family of simply connected four man-

ifolds ([2]), which is denoted by $\mathcal{M}_{1}$ . For example, the manifolds which have the
$\iota$

expression appeared in the examples are in $\mathcal{M}_{1}$ . Hence the problem stated in Exam-

ple III is generalized as follows.

PROBLEM.

Do the concrete (and elementary I hope,) argument on $M$ in $\mathcal{M}_{1}$ which have

th$e$ “simpl$e$
’ expression and study the homeomorphism type and smooth structures

of $M$ .
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