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1. Introduction

Inrthe prgsent‘paper wershall be concerned with a binomial
expansion in noncommiufative indeterminates under certain ¢Qmmutation
rules (2.1), which we study using a Versionrof 1aftice bath method in
combinatorics (cf. [2] ).

In Section 2 we first set .up the notation and definitions; in
particulér,-the bijective correspondence between the>1attice‘paths
and the noncommutative monomials (Proposition 2.1) is the key
observation to the proof of the maiﬁ identity (2.3) of this section,
which is the noncémmutative binomial expansion to positive integef

powers under the commutation rules (2.1). -“The complete hbmogénéous

symmetric polynomials hp_i(uo, ul, e, ui) appear-as a.set of
generic binomial coefficients ( (2.3), (2.6) ). The specialization
ui 1= qlu0 (i € N) gives the q-binomial coefficients and the

g-Chu-Vandermonde convolution (Example 2.4, (ii) ).
Section 3 deals with the general power version of (2.3). We.

combine the usual general power binomial expansion with (2.3) to
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obtain the definition (3.3) of hw—i(l + Vv ., 1o+ Vi)‘ with w

0 ’
and v's mutually commuting indeterminates, which has a
justification using the determinantal expression for hp—i(uO’ u,

..,‘ui) - (Remark 3.1). The correspohding general power version of

(2.8) etc. are presented.

2. Noncommutative binomialieXpansion to pdsitive integer powers
Let u, (i elN := {0, 1, 2, ... } ) be mutually commuting

indeterminates and X an indetermihate with' commutation rules

uiuj = uJ.ui (i, j € N),

Xu; = u X (i € N). : L (2.1)

i+l
We considef the set :E‘ of all noncommutative polynomial expressions
Se.xl (£, € A)
1 i e
l N
where the summation is finite and A denotes the commutative . .
polynomial -algebra in ui (i € N) over the rational :integer.ring

Z, i.e.,

u.l.

A= U Zlu,, Up, wees Uy

ieN
By (2.1) we see that E 1is a ring.
From E we take the expression
+ x)p

(uo

which has an éxpansion of the form

b,
> £.x (f, € A).
i=0

In the following we will show that



w

fi = hp—i(uO’ Uy, s ui)
where hj(uo, Ups vees uk) is the j-th compLéte‘homogeneéﬁs
symmetric polynomial in ’ho; ul,'{}., uk'“with generating series
j_ & 1
jgmhj(uo, Up, -ees u )t = ilTO(l - ut) 7,
t Dbeing an indeterminate commuting’with u's.

Cohsider the lattice points L :=:N2 c Rz on the plane. A path
of L 1is defined to be a sequence s = (SO’ Sys e sp) of poinfs
in L such that (i) Sy = (o, O)k and (ii) if H = (a, b), then
S;,1 1is either (a + 1, b) (a horizontal step) or (a, b + 1) (a
vertical step). p 1is the Leﬁgth of s gﬁ(SO’ Sys s sp).

Let Pp be the set of all paths of . LL of length p. and let s

= (so, Sy s sp) € Pp. s 1is identified with the ordered p
steps whose 1i-th step is from Si—l to Si- If the 1i-th step is
horizontal (resp. vertical), then we assign U, (resp. x); thus we
obtain a monomial Sg in E. For example, the monomial
2 3.2 _ 2. 3.
uO Xuo X uox = u0 ul u3x € E
corresponds to a path belonging to PlO'
Propoéition 2.1. With the notation above, we have.
S s, = (u. + x)P. : (2.2)
s€pP E 0
p
Proof. For s € Pp, we have SE = S Euo or sE = s EX with s

€ Pp the converse also holds. Thus We:see that-
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S s, = 2 s'_-(u, + X)
, E . E 0
€ s.'€pP
Sva p-1
Since S Sp = U, * X, induction gives (2.2).
SEP
1
Proposition 2.2. =~ We have
p _ % i .
(u0 + X) = .; hp—i(uO’ Uys e ui)x . (2.3)
v 1i=0 A : -
Proof. Putting
(u, + x)¥ = 3 f.x (f. € A),
S0 . i i
. i=0 . .
we see by (2.1) and (2.2) that
£x' = 3 VSE;
s€P_ (1)
- D
whére: Pp(i) := { s € Pp | s has ‘i vertical steps };  in other
words, Pp(i) ‘is the set of:all -paths s = (SO’"Sl’ ..,~sp) with
Sy = (p - i, i). For s € Pp(i), we have
S, = u JOxu Jlxu sz ‘u Jlilxu-Jl
E ™~ 70 0 0 0 0’
J J J Js Ji
_ 0 1 2, .. i-1 i1
= Uy Uy U :Qi*l u, X0 (2,4),‘
withi“
jO + jl A ji =p - 1, jk 20 (k =0, 1, ..., i); (2.5)
conversely, for such integers jo, jl, c ey ji’ (2.4) equals Sk

for a uniqué s € Pp(i). Hence



I J j. . Je s
i 0 1 - i1
£ e T

where the sum EC is taken under the condition (2.5), so that by the

definition of h's,
i _ i
fiX = hp_i(uo, Ups oo ui)x ,

which completes thevproof.

Proposition 2.2 gives a noncommutative binomial expansion under
the commutation rules (2.1). Comparing the coefficients of like
powers of x of both sides of

(g + 0P = (g + 0P (g + 07

we obtain

Proposition 2.3. We have

10 cce uy) r—i+j(uj’ cee ui) (2.86)

for p, r, i € N.

Proof. The left-hand side of (2.6) is the coefficient of xi ‘in

(u, + x)P*'T;  expanding (u,. + x)p(uO + x)¥ by Proposition 2.2 and

0 0
noting (2.1), we see that the right-hand side of (2.6) equals the

coefficient of x' in (uy + x)p(u0 + x)T. (See also (3.8).)

u.,) are

Propositions 2.2 and 2.3 show that h_ . (u,., u,, ..., X
: S p-i* 0 1 S |



considered a set of generic binomial coefficients and (2.6) is a

noncommutative version of the Chu-Vandermonde convolution

SRERAG[AR]

Example 2.4. (i) The specialization u, =1 (i € N) does

1

not contradict (2.1); in this case, (2.3) reduces to the usual

binomial expansion

. P ) . p s
1+x)P =3 hp—i(l’ .., yxt = 3 (g)xl.
i=0 , B i=0 ™
(ii) The specialization ui 1= qlu0 (i € N) with q an

indeterminate commuting with both uO and x 1is cbnsistent with

(2.1); in this caSe the commutation rules reduce to

Xu = qux
with u := ud. Proposition 2.3 gives
i
hp+r_i(1, 9, ..., Q)
- Sh_a Ion @l o L ab;
- 4 P"j ) qv e oy q I'—i+jq ’ q ’ L] q ’
j=0
this can be rewritten
o + r}.. _ L pl1 [ r 7T J(r-i+j) : =
R RN B PR ’ (27
‘ 'q “J=0 q R ; . . :
where [?] are the gq-binomial coefficients
He W a-dbha-d™hHevaa - o
since [?] equals hp—i(l’ q, ;.., ql) (see [3, pp. 18—19] ).
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(2.7) is the q-Chu-Vandermonde convolution (cf. [1, pp.469] ). If

we put q := 1, then we recover the usual binomial coefficients.

3. General power expansion
Let _Vi (i € N) be mutually commuting indeterminates and x

an indeterminate with the same commutation rules as (2.1):

v'ivj = vy (i, j € Ny,

Xv, =V

i 141X (i»e N). : ‘(3.1)

-We consider the set ﬁw of all noncommutative powerseries expressions

S fix (f; € ﬁw)
ieN , ‘
where ﬁw .denotes the commutative powerseries algebra in Vi. (i €.

N) over the polynomial algebra ®@[w] with an indeterminate w

commuting with all the‘other indeterminates, i.e.,

A J
A, = { ?CJV | Cj € Q[w] }

where j = (jo, jl, Can) (ji € N) are multi-indices such that all

but finite ji are zero, and the‘Summation > 1is taken over them.
J
By (3.1) we see that ﬁw is a ring.
From éw we take ((1 + VO) + )V = (1 o+ (vO + x))Y which is -
defined to be equal to
) W)(VO + x)P. | (3.2)
peN : ' ‘ : :
By Proposition 2.2 we compute:

(32)-2“’)§h ( 1
. = o2N 2 p-i VO, vl, ceey VL)X



Qo

< [ WY. o . 1
= 1§N pgi(p)hp_i(vo, Vi e Vi)}X
_ [ w : i
= 1§N ij(i'+ j) j(VO, Vi e ji)]x .

Referring back to Proposition 2.2, we put

hw—i(l * Voo cee, 1+ Vi)

. W A - ST e

= jgN(i N j)hj(vo, ce., VL) €A (3.3)
thus we can write
Woo Sho.(1+v

(1 + v +>x

o b. - i s :
0 L, 1+ Vi)X (3.4)

which is considered general power noncommutative binomial expansion

under the commutation rules (3.1).

Remark 3.1. There is a justificatidn for the definition

(3.3): we have the identity

1 .
- J
hy g (Ugs «oos uy) = E RCTEETL - (8.5)

I=Y o<gk<i
K]

the right-hand side of which follows from the‘determinantal

expression for uhp_i(uo, ehey ui), i.e.,
X, +i-k . . .
det (u, k )/det(ujl_k) (3.8)
where Ors j, k <£1i and X0 =p - i, lk =0 (1 £k £1i); cf. [3)

pp. 23-26]. Replacing uj by 1 + vy and p - by w' in the

right-hand side of (3.5), we have



% (1 + Vj)w
. © m (1 +v, - (1 + v.))
I=0 ock<i J _ k
k=j:
5 (%) 3 i
- r) .« m (v vy)
reN“"J=0 gy J K
k#j
_ w
- rzm(r)hr—l(VO' ’ Vl)
W
- rgi[r]hr—l(VO’ ’ Vl)
W j’ ) : -
) jgm(i L Jhytvge e v, (8.7

since it follows ffom (3.6) that

h v,) =0 (0<r<i-1). (3.8)

r-10or 000 Yy

(3.7) is exactly the right-hand side of (3.3).

Proposition 3.2. We have
he o, i1+ vy, N Vi)
i R
= jthw_j(l + Vi .y 1o+ Vj)hz—i+j(l Vg e Lo Vi)
(i € N) (3.9)
in Aw - where Aw z is defined‘by replacing  Qlwl by Qlw, z] in
A with another indeterminate z comauting with

the definition of -

all the other indeterminates.

Proof. By the definition (3.2) we have
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(1 + v, + X)W+Z = (1 + v, + X)W(1‘+ Vo * x)Z (3.10)

0 0

is defined by replacing AW- by A in the

in éw,z’ where ﬁ w.2

w,Z
definition of éw' By (3.4) the left-hand side of (3.10) is equal to

2 h (1 + v

i o
_ , 1o+ v )xTL ‘ (3.11)
ieN w+zZ-1i 0 i ‘ .

By (3.4), (3.3), and (3.1) the right-hand siae of (3.10) is equal to

j. k
jzwhw_j(l Ve eees 1o+ vj)x kgwhz_k(l Ve eees 1H VX
2 %
= h (1 + v,, s 1+ VL)
ieN|j=o0 "I 0 J
i
'hz—i+j(1 MAA TR 1 + Vi) X (3.1?)

Comparing the coefficients of xt in (3.11) and (3.12), we obtain (3.

9).

The identity (3.4) and Proposition 3.2 show that hw—i(l * Voo
., 1 + Vi) are considered a set of generic general power binomialv
coefficients, and that (3.9) is a noncommutative version of the

polynomial,Chu-Vandermonde convolution

(w : Z) _ J%o@) [1 z j) € Qlw, zl.

Remark 3.3. - - .The specialization w:= p € N reduces (3.4) to
(2.3): substituting w := p in the right-hand side of (3.3), we havew
Z'(. p .)h.(v s e, VL)
jeN i+ js73j> 0 | i

5;1()



P-1 p
=’j§o[1 AP LU
D
_ p
- jfi(a)hj—l(VO' L
D . , , ; _ 7
= jgo[j)hj_i(vo, R Vi) (by (3.8))
. J
p i v .
= 3 (‘3’) S ——— (by (3.5))
=0 k=0 0<r<i K r
r=k
i , (1 + Vk))p
= 2 T+ v - @+ v
— " -
k=0 0<r<i k . r
r#k
= hp—i(l * Ve oeee, 1o Vi) (byj€3.5));
thus, substituting vj 1= uj -1 _(j € N) (which contradicts

neither ' the commutation rules (2.1) ﬁor (3.1)), we are ‘back to (2.3).

Example 3.4. (1) The specialization v, =0 (i € N)  does
not contradict (3.1); in this case, (3.4) reduces to the usual
general power binomial expansidn

i

(1 + x)" = igNhW_i(l, cee, 1)X -
= 3 2(.“’.) 0, ..., ot
ieN|jeN™ T I/ J R
= 3 (W)xi.
ieN l' » ,
(ii) The specialization S (1 + r)i(l + vo) -1 with r an

indeterminate commuting with all the other indeterminates is
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consistent with (3.1); in this case the commutation rules reduce to

x(1 + v) = (1 + r)(1 + v)x with v :=VVO¢V'PrOpoéition 3.2 gives
Bygei(l * Ve L+ 0)(A+ V), Lo, 1+ ot v
i .
= Shy (1 +v, (L+1r)(1+v), ..., (1 +1)(1+v))-
Jj=0 .‘] . . _'
b, e @ ey, et )

(i € N). ©(3:13)

By Remark 3.1 we have

h, ((1+v, A+r)@+v), ..., 1+l +wv)
3 (@rrya v
o m (e - aasnHa st
" 0<k<i |
k<]
i , w,J ‘ .
- (1 +r)7) ) . W1
- 3 : —- 1+ ¥ (3.14)
o (e - e 0 |
0<k<i
k]

since the powerseries identity
(1 +3@+vn¥=(a+oMia+n?

holds for commuting indeterminates r, v, and w; for justification,

see [2, pp. 4-7]. Putting

1 - 5 (1 + )"
i ‘ . J k,’
1+r - j=0 m ((1L + r)’ - (1 +1r))
0<k<i
k=j

we have from (3.13) and (3.14)>that
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i . J i-3J ’
1+r j=0 1+r 1+r
which is a general power generalization of (2.7). We will show that
w w-1 w-i+1
{W] (1 -a+r)yH)@d - @1 +r) ). (1 - (1 +r) ).
e a-a+nbha-a+«nthea-asr
(3.15)

it suffices to prove that, for commutative indeterminates t and q,

(1 -t -tgdhH---a - tqg ~**h
(1-dha-odhHea -
i J
Jj=0 W (g - q)
O0<k<i
k=j
since the substitution t := (1 + r)w and q := 1 + r into (3.18)

yields (3.15). Both sides of (3.16) belong to Q(g)[t] and (3.18)
with t := qp (p € N) is the identity [?] = hp_i(l vy Ay e

q
ql); see Example 2.4, (ii) and Remark 3.1. We thus have (3.186) in
Q(g)[t]. (3.15) is a general power version of (2.8). (3.15) with

specialization r := 0 recovers the usual general power binomial

coefficient CS
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