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§1 Introduction.

Let Q(t) be a bounded domain in RN

(N=2 or 3) with smooth
boundary T (t) for each t€[0,T], T be any positive number.

Consider the following Oberbeck-Boussinesq equations in the

noncylindrical domain Q@ = U Q(t)x{t} with lateral boundary
0<t<T )
I = U T(t)x{t}:
0<t<T
u - vAu + (u-V)u = - 3% + {1- n(6-d)}g (x,t) € Q,
(1)1) divu-=0 (x,t) € Q,
et_ KAG + (u'V)G = O ) (X,t) EQ9
(1.2) u(x,t) = a(x,t), 6(x,t) = B(x,t) (x,t) €T,
(1.3) wu(x,0) = uo(X), 8(x,0) = BO(X) X € Q(0),
N 58 1 2 N
where (u-v) = 3 ud %, Unknown functions u=(u ,u”,-:«,u ),
Jj=1 J

p and @6 are the solenoidal velocity, pressure and
temperature of the fluid which occupies Q respectively; o, 8,
uo, 90 are given data and g 1is the body force field (say

gravity); constants v, p, k¥, n, d represent Kinematic

viscosity, density ,thermal conductivity, volume expansion



coefficient and some datum point of the temperature of the fluid
respectively, (see Joseph [6]). In what follows, the special
case v = ¢k =1 will be treated for the sake of simplicity.

The purpose of the present paper is to investigate the
existence of local and global solutions and their regularity.
This kind of problem has been studied by several authors.

As for the case where Q 1is a cylindrical domain, QOX[O,T],
Kirchgassner and Kielhofer [7] and Chidaglia [4] constructed
local and global strong solutions in some Sobolev spaes.
Recently, Morimoto [8] discussed the existence of weak solutions
of the equation with the boundary condition for 8 replaced by a
discontinuous Neumann-Dirichlet condition, and Hishida [5]

the eiistence of strong solutions in the prLq space. The
problem in noncylindrical domains was studied by Oeda [9], where
the existence of weak and strong solutions is discussed.

As far as the existence of strong solutions in Lz—framework
is céncerned, our results ameliorate those above even for the
case where Q 1is cylindrical. Our method of proofs relies on the
theory of perturbation for time-dependent subdifferential
operators based on nonlinear interpolation theory, developed in
Otani [10], which is different from those of papers cited above.

Our main results are stated in the next section and their

proofs are given in § 3.
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§2 Main Results.

In order to formulate our results, we here fix some notations.
We denote by HS(Q) the sobolev space of order s in the Lebesgue
space H(f) = L2(Q) with norm ||, and set

Co(@=fu=(u’, .-, w1 wecT(@), (j=1,-+.N),div u =0},

H(Q)=(1(@))N  with norm I-1,

HS (@)= 1% (@)Y with norm I-1__,
H

1,my il
HG(Q)—H (Q)nHO(Q),
HO(Q): the completion of C:(Q) under the H(Q)-norm,
PQ: the orthogonal projection from H(f) onto MG(Q),

A(Q)= -P,A :Stokes operator with domain D(A(Q))= HZ(Q)nﬂi(Q),

Q
A*(Q): the fractional power of A(Q) of order pu , whose
domain is characterized by Fujita and Morimoto [2] and

Fujiwara [3]. We also use the notations:

lull = lul
p LP

: T T *
2 = 2 2 = 2
lulg o - max Ioﬂu(t)ﬂ dt, 1613 o = max Iole(t)l at,

0o<t<T 0<t<T
lull, © = sup llu(t)h, 18], - = sup [0(t)],
't 0<t<T L 0gt<T
t t
flull2 ., = sup f lu(s)li?2ds , |02 . = sup f l6(s)|2ds.
MT <<t de-1 MT  jcterdt-1

We assume that Q is smooth and o and 8 can be

extended to Q 1in the following sense:
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(A.Q) There exists a level preserving C®-diffeomorphism ¢

from Q onto Qox[O,T] for some bounded domain QO in RN.

(A.at) There exists a vector function u in C!(Q) such that
u €L”(0,T;H(Q(1)))NLe (0, T;H(Q(t))); U ,au €L2(0,T;H(Q(t))),

divu=01in Q@ and u=a on T

(A.B) There exists a function ® in C!(Q) such that 8 €

LO(0,T;HI(Q(t))), @t,VQ € H(Q) and @ =8 on T

(A.g) g has the potential G € L=(0,T;W ' ®(Q(t)))
i.e., g = vG. ( When g 1is the gravity, this condition is

always satisfied.)

Let B be a bounded domain in RN such that the closure of Q
is contained in BXx[O,T]. We mean by C(I;X(Q(t))) the set of
all functions v on Q such that v(-:-,t) belongs to X(Q(t))
for all t€l and the zero extension Vv of v to Bx[0,T] is
an X(B)-valued continuous function onr I , where 1 1is an
~interval in [0,T] and X(Q) is a function space defined on
Q such as H(Q), HO(Q),etc. Now our main results are stated as

'follows:
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Theorem I (Global existence for N=2) Let (A.¢t), (A.8) and (A.g)
be satisfied, and let wu_- u(-,0) € D(A¥(Q(0))) with ne(0,%4) and
'90- 0(-,0) € H(Q(0)). Then (1.1)-(1.3) has a unique solution

(u,8) satisfying

u-u GC([O,T]:HC(Q(t))) N C((O,T];Hé(Q(t))),
(#.u.n) F-u $-u
t u,, t Au € L?2(0,T;H(Q(t))).

L

8 - 8 € C([0,T];H(Q(t))),
(#.9)
t?2 @

. t% A0 € H(Q).

Theorem I (Local existence for N=3) Let (A.Q),(A.a) and (A.8)

_ i _
be satisfied, and let u_- u(-,0) € D(A4(Q(0))) and 90— 6(-,0)

€ H(Q(0)). Then there exists a positive number TO depending on

1 _ - - —
HA4(Q(O))(uO— u(-,0))Il and IGO- 0(+-,0)] ( and also on u and @ )
such that (1.1)-(1.3) has a unique solution (u,8) on [O’To]

satisfying (#.u.1/4) and (#.0) with T replaced by To'

Theorem I (Global existence for N=3) Let the same assumptions
in Theorem I be satisfied. Then there exists a (sufficiently

small) positive number r_ depending on leol’lgtIM,T’IAglM,T and

— 4 - -
2 i 4 - . N
[1v812ly ¢ such that if HA%(Q(0))(u = ul+,0) 1, Hugly o lAuly o,

“VH"M,T’“u"M,T’"g"m,T < r,, then (1.1)-(1.3) has a unique solution

(u,8) on [0,T] satisfying (#.u.1/4) and (#.6).
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§.3. Proofs of Theorems

3.1 Reduction to Abstract Equations.

In this subsection we are going to show that (1Ql)—(l.3)
can be reduced to abstract equations in MG(B) and H(B) as in

[10]and [11]. To this end, we put

0T (W) = @i(w) + IT(w) u € H(B),

N

o - IBIVUIQdX ueH! (B)
1 _

@ ueH_ (B)\H} (B),

Kl(t)={ueHo(B) |l u=0 a.e. x€EB\Q(t) }

t 0 u € K;(t),
I1(u) =
+ ® u € HO(B)\Ki(t),

05(0) = @,(8) + IS(8) 0 € H(B),

) ,

5 fBlvel2dx BEHé(B),
0,(8)=

+ ® 0€H(B)\H/ (B),

Ky (t)={0€H(B) | @ = 0 a.e. x€B\Q(t) }
t 0 0 € Ky(T),
I5(8) =
+ o B € H(B)\K;(t).

t t . . :
Then ¢; and ¢; are lower semicontinuous convex functions

and their subdifferentials are characterized as follows:

8¢?(u)={f€Ho(B)| P A(Q(t))ula(t)} with domain

ace)flace)=
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t,_
D(8¢y)={ueH_(B) | ulq(t)

€H? (Q())AHL (Q(£)) s ulp g gy= O

hence HS&%(u)H=HA(Q(t))uI where 8@? denotes the minimal

Q(t)"’
. t
section of 3¢;.

ew§(9)={heH(B)| h| - AB| with domain

Qt)” act)?

t, ' _
D(895)={0€H(B) | 8]y () €H?(QE))NHI(Q(E)), Bly g g)=O)

ot i
hence 18¢5(8) =1 ABlQ(t)H.

Furthermore we'put

A?iaw? ’ Ag=9@g )

B (w)=Pg{ (u-v)us+ (u-v)u+(u-v)a},

¢ _

By(u,8)=(u-v)@+(u-v)

Fiy(t)=Pg{-0 +Al-(3-9)i-nBg},

FQ(u:t)= FQ(t)— (U‘V)é, Fz(t)= _ét+Aé-(ﬁ'V)és

and consider thé folldwing abstract equations in MO(B) and H(B);

02 uo— u(‘,O),

| { -8,- BT (4,0 Fo(f.t) € alb,
(3.2) B - .
0(0)= 8 = 8_- 8(-,0).
Here it is understood that all the functions defined only on Q(t)

(such as ﬁo,@o,ﬁ,u_,etc) are extended to B by zero. If (3.1)-(3.2)

has a solution (ﬁ,@) satisfying ;
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{l e c(o,TI;H_(B)) n C((0,T1:H!(B)),
(3.3) e ﬁt, el BV () e L2(0,T;H,(B)),

fi(t)e D(8gY) a.e. te[0,T],
€ C([0,TI;H(B)) n C((0,T1;H}(B)),
(3.4) | 2 @t, ¢2 BY(0,8) € L2(0,T;H(B)),
8(t) € D(8gS) a.e. te[0,T], |
Then it is easy to see that (u,6)=(ﬁlq(t)+ﬁ,@lq(t)+§) gives a

solution of (1.1)-(1.3) satisfying (#,u,u) and (#,0). So, in the
following, we are going to construct solutions of (3.1)-(3.2)

satisfying (3.3)-(3.4).

3.2 Local Existence.

In what follows, we denote ﬁ’@’ﬁo’@o by u,e,uo,eo again. For each

R>0 and S€(0,T] set

={heC([0,S];H(B)); Ihl_ o <R }.

KR,S
Then, for sufficiently small S, we can show the following facts
which assure the existence of local solution (u,8) of (3.1) -(3.2)

satisfying (3.3)-(3.4).

(Fact.I) For any 0€K there exists a unique solution u=u9 of (3.1)

R,S’

with @ replaced by 8 satisfying (3.3).

(Fact.I) There exists a unique solution @=@u of (3.2) with f#

replaced Ug satisfying (3.4). So we can define the operator % by

: 0§ - u, — @
6 u,
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(Fact.l) # is a contraction from KR,S into KR,S’

Proof of Fact.I. By (A.o) and (A.B), it is clear that Fl(t)— PBnt €

L2(O,S;HO(B)). Let us note

C vl lIlwwl3 < C HVHHVHH1HVWHHVWHH1 N=2,
(3.5) I(v-9)wl? < : X
: C Iviglivwlglowll < C HvﬂHlﬂwHHIHVwHHI N=3,
where we used the inequality lullf < C HuHHuHH1 for N=2. Therefore,
for any £>0, there exists a constant C8 such that
¢ C(nuu+1){suA?uu2+cs(HVuu4+uﬁu§1+uﬁu§2+nﬁu4uﬁn§1)} N=2
(3.6) 1By (u) %< ot - -
glAy (W) h2+C_(lvull®+llullg+llull,) N=3
€ H H
where A? denotes the minimal section of A?. Then the same argument

as in the proof of Theorem 5.1 in [10] assures that there exists a

. 1
(sufficiently small) number S depending on HA4(Q(O))uOH such that
(3.1) has a unique solution u = u9 satisfying (3.3) with T
replaced by S. Furthermore u enjoys the following more minute
estimates:

1. 1 ,

t2 MjAtu(t) neL2(0,s), tZ *Ivu(t)1eLd(0,s) ¥qe[2,»] if N-2,

(3.7) 4o 5
t¥IATu(t) 1€L2(0,8), t¥Ivu(t) IELJ(0,S) Vqe[2,=] if N=3,

where L: = L° and LE(O,S)= Lq(O,S;t_ldt) for q€[2,=).

Proof of Fact H. By much the same verification as for (3.5), we get

‘ s C VIV Ivnllvnly, — if N=2,
(3.8) |(v-¥)nl2<
, C uvuﬁllvn||vn|H1 if N=3.
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Then, by virtue of (A.a),(A.8) and (3.7), we deduce-

(3.9)  t%2 F,(u,t) € L2(Q). for Vse[ 3,11,

(3.10) 1BY(u,0)12 < L1ake12 + c o(0)-a(t),

(e 12070 () 2+ 0T (E) 15, (N=2)

with a(t)= { } € L1(0,S).

HVu(t)u4+uﬁ(t)u§1 (N=3),

Since (Bg(u,e),G)L2= O,>the same argument as in the proof of
Theorem ¥ in [10] assures that for any GOED(wg), there exist two

strong solutions n,98€ £:={9€W1’2(O;S;H(B)); AB | €L2(0,S;H(Q(t)))}

Q(t)
of the following equations

(3.11) n, + Afn + Bf(u,n) 3 0, n(0)= 6,

t t t
(3.12), 0% + Az0%+ B3(u,0%) 3 5_(t)F3(u,t), 0%(0)= 0,

where ae(t)= 0 for 0<t<g and aa(t)= 1 for t>g.
Then w®= n - 98 satisfies

(3.13)  wS + Afw® + BI(u,w®) > 58(t)F§(u,t). w®(0)= 0,

g g€

Multiplying (3.13) by w° and g8= - wt+Bg(u;w8)+58(t)Fg(u,t)eAgw8,

we obtain

t .
(3.14) max |wS(t) |2+ f lvw®(t) 12ds < (f |IF,(u,s)lds)? V¥te[O0,S],
0<s<t 0 ‘ 0 .

(3.15) & ol (wE(1))+1g5(1) 12

< m{1g8(t) 1ef B (©) %+ @5 wWE(£)) 1+ (1B (u,w8) 1+1F, (u, ©) 1) 168 (t) 1,

...lo -
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where we used the fact that there exists a constant m such that

i A
(3.16) 1995(0(£))- (£2,550()) 5, < m{Ig2195(0(£))Z+g5(0(1))),

for all 0e€%, ggeawg(ﬁ(t)) and a.e. t€[0,S], (for a proof see

Lemma 3.6 of [11]). Then ,by (3.10) and (3.15), we get for y€[0,1]

(3.17) %Etng(w8)+ 1t¥1g812
< cla(t)+1)tYeSwE)+t? IF,(u, t) 12+vtY Lo (w8).

Hence it follows from (3.14),(3.17) with y=1 and Gronwall's

inequality that
t,_ & t t
te, (w7 (t)) < H(t):= C{ I slF,(u,s)|?ds + (I IF,(u,s)lds)?}.
0 0

By using (3.9) and Hardy's inequality, we can show that
gTia H(t)eL!(0,S) for u€[0,8]. Consequently we have
S _ t &
(3.18) I t M ¢9,(w”(t))dt < C (independent of g) Vue[O,%].
0
Thus (3.17) withl Y=1-u and (3.18) give
t, g S =
(3.19) sup tYos(wE(t))+ f t¥18(t) 12dt < € Vyelsd,1].
0Lt<S 0
Since n€¢, (3.14) and (3.19) imply
£ Y t,.& S y g
(3.20) sup {1687(t) 1+ tie,(087(t))}+ I tTlg5(t)12dt < C Vyeld,11,
0<LtxS 0

where g% = —6%+ Bg(u,98)+ ae(t)Fg(u,t) € AEGS.

Furthermore, ih view of (3.19),(3.9) and (3.10), we obtain

_11_
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S .
(3.21) f tylei(t)lzdt < C Vvyeld,1].
0

Then it easily follows from (3.20) and (3{21) that {Gg(t)} forms

£>0
a precompact set in H(B) for each t€[0,S] and is equicontinuous
in C([0,S];H(B)). Hence, by Ascoli's theorem, we can choose a

€
sequence g which tends to O as n =« such that 6 " converges

to B in C([0,S];H(B)) and the standard argument assures that @

is a.solution of (3.12)0, i.e. (3.12)8 with 58 replaced by 1.
For any 0_eH(B), take egen(wg) such that 6. - 0_ in H(B)

as n -» and let 8" be the solution of (3.12)_ with 6"(0)= 0

o
n_ g

Then w = @ - n

satisfies

(3.22) L Ag W o+ Bg(u,w) 3 0, w(0)-= Qg— 92.

By the same verifications for (3.14) and (3.19) with y=1, we get

.S
(3.23) sup Iw(t)l2 + f lvw(t) 12t < 107~ o2
0<£t«S 0 '

’

S | |
(3.24) sup tlvw(t)2 + f tlg,(t)12at < cl1o0- o)
0Lt<S 0

where g,= - L Bg(u,w)eAgw. Then it is easy to show that o=

converges to the unique solution 8 of (3.12)0.

Proof of Fact [I. Let 916 KR g (i=1,2), ui be the solutions of

(3.1) with @ = 9i and let ¢i be the solutions of (3.2) with {i= u; -

Then 8 = 8- 6,, U = uy- u, and ¥ = ¥i- ¥, satisfy

(3.25) U + ATU + Po{(u;-v)U +(U-V)u,+(U-v)U +(U-9)T} 3 Pyngd, U(0)= 0,

- 12 -
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(3.26) ¥ .+ ALY +(U-9)y,+(uy V¥ +(@-V)¥ +(U-7)8 = 0, ¥(0)= 0.
In parallel with (3.5), we note

’ ' Cllull jliwl sllovil< CHuH&HwH%HuﬂgluwH§1HVVH
(3.27) |I(U'V)V w dx| < 1 1 '
B ' Clluligliwliglivvi< CHuHHIHWHﬁlﬂwHQHVVH

Then multiplicationvof (3.25) by U and (3.2?) give
(3.28) %;HU(t)Hzf IvU(t) 12< CIU(t) 2a(t) +Inl2ngﬂi TI@(t)lz,

{ 2("Vu2(t)H+Hﬁ(t)"H1)2 + 1 N=2,
where a(t) =

20Ivuz (6) I+IU(E) 1) 4 + 1 N=3.
Hence, since a€L!(0,S) by (3.7), we deduce

: S
(3.29) IUCE)N2Z o + f IVUCt) 12dt < Clnl2lgh? 18] -S.
m’s 0 m,T m’s

Moreover, multiplying (3.25) by g;= —Ut— PB{(ul-v)U +(U-V)u,+

(u-v)U +(U-9)u - ngB} € A?U and using (3.5), we obtain

|D-

1
2

o

SIVU(E) 12+ Slg, (£)17< COITUI2+In120gl2 1812+ R(t)),

where R(t) = R;(u;)+ Ry(u) + Ro(u,y)+ Ryo(u),
R;(v)= "VHQHVHﬁ1"VUH2, Ry (V)= "VHH1"VHHQHUHHVUH if N=2,
Ri(v)= HV“ﬁ1HVUH2. Ro(v)= IIVIIH1IIVIIH2HVUH2 if N=3.

Hence, for the case N=3, by virtue of (A.w®),(3.7) and Gronwall's

inequality, we easily obtain

(3.80) IVUNIZ o < C 1812 S

S S

...13_



179

As for the case N=2, since, by (3.29),

Ro(v(t)) < HV(t)H§1HVU(t)H2+ CHV(t)H§2°t'|@Ii t?

we deduce from (3.7) that

(3.31) IVUNZ 2u

2 B
g < CIBIZ o8

S , O0pux % .

On the other hand, multiplication of (3.26) by ¥ yields

T %E|W(ty|2+|vw(t)|2s NUNG 19y 1116+ IUN 1981 1%,

< F19¥12+ CIUNIVUNCI9¢, 12+]1v812).

Since |vy,1,|v81€L2(0,S), it follows from (3.29),(3.30) and(3.31)

that

112

1
{c 1812 -s2"H  N=2,
L < ’
o, S

C 1812 -8 N=3.

.S
Thus it is clear that ¥ 1is a contraction for a sufficiently small S.

3.3. Global Existence.

3.3.1. The case N=2.

Multiplying (3.1) by u and (3.2) by 8 and using (3.27), we have
(3.32) % %{Hu(t)ﬂ2+HVU(t)H2s CHuHHVuHHVﬁH +flulf (WF () I+lngBll),

< Flival2+uli2(Clival 2+1)+IF 1 (£) 12+ In12Ngl? TI6|2,

1 _
(3.33) % %¥|e(t)|2+|ve(t)|24 CHuH%HVuH2|V9IIV9I+ IFo(t) 1ol
< $1ve12+ Llvull2+ Cllull21v@l4+1012+|F,(t)|2.

Adding together these inequalities, we easily deduce that there

- 14 -
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exists a number CT depending only on IGOI,HuOH,Q,u, and T but not

on S such that

S
2
(3.34) 101, g+lul g+ fonu(t)n at < Cy

By mutiplication of (3.1) by tg;(t)= t(- u_- B?(u)+ Fy(t)- PBnGg)e

t

t Afu(t) and estimate (3.6), we obtain

3 SE(thvul?)+ thg 02 g 12+ Ct(IvulZ+1nl20gh2 o1612+1F; (€)12)

+ C(Huﬂ+l)t(HVuH4+HﬁH§1+HﬁH§Q+HﬁH4HﬁH§1),
Hence, by (3.34) and Gronwall's inequality, we get

(3.35) sup tllvu(t)ll?2z < C

0<t<S T

Thus these a priori bounds (3.34) and (3.35) together with the above
local existence result assures that u, 8 can be continued globally

to [0,T] as solutions of (3.1) and (3.2).

3.3.2. The case N=3. Put KO= sup (lvall/lul, Ivel/161), K; =
sup (livull/lullg, 1v61/161g), KO= 1/{1- exp(- K§/4)} and take [vull

and ligh_ T sufficiently small so that

(3.36) |vul? < Kg K§/4,

-3, . t - 1
Ki"Inl? sup(| 1vO(s)I*ds)?legl, . < 1/2.
o<t<Tt-1 ’

-2

K2
(3.37) 32 KO KO

Then, by the éame verification as for (3.32) and (3.33), we obtain

$ Lorunzenvanze k7 Frvanfranfivins (F 1+ in g, o 161) Hul

< $hvul2s 4K CHval4nul?e K2Iul2/16+ 8K 2(IF I2+1n120glZ 11612),

- 15 —
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hence

d_ 2, K2 2 -2 2 (20 ol 2 2
(3.38) glu(t)h?+ KZlu(t)N?/4 < 16K “(NF W2+InlZlgly 1617),

and similarly

d

(3.39) S£10(t) 12+ K210(¢) |2< K73 Hullival 1v0 ]2+ K;ZIFQ(t)lQ.

Then, from (3.38) and (3.39), we derive
- - 2 .
2 2 2 2 2 2 2
(3.40) "u"m,S+ %HVuHM,S < llu li?+ 16 K K ("F1“M’S+|n' "g"m,T|9'm,s),
(3.41) 1012 < 10 12+ K {K;2Null_ lvull, 1198121, + K 2IF,12 .}
: ©, S o o'1 ©,S M,S M,S o 2im, 1’

Hence, by virtue of (3.37), we obtain an a priori upper bound for

el S depending on IBOI,KO,Ki,IFQI but not on T.

M,T

Furthermore, by (3.40), we see that Huum S and livull can be

M,S
arbitrarily small if HuOH,HFlnM T and |Inllegl T are taken small
enough. Then the standard argument for Navier-Stokes equation can

prove the statement of Theorem II.
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