Fano Polytopes and Gorenstein Polytopes

Atsushi NOMA 野間 淳 早大理工

Introduction

Given a normal projective variety X over a field k with $H^0(X, \mathfrak{O}_X)=k$ and an ample $\mathbb{Q}-divisor$ D, namely rational coefficient Weil divisor, we consider a normal graded ring R(X,D) defined by $R(X,D)=\oplus_{n\geq 0}H^0(X,\mathfrak{O}_X(nD))T^n$ (T an indeterminate), where by $\mathfrak{O}_X(nD)$ we denote the sheaves $\Gamma(U,\mathfrak{O}_X(nD))=\{f\in K(X); \operatorname{div}_U(f)+nD|_{U}\geq 0\}$ for each open set U of X. These rings have been introduced by Demazure [De], to show that a normal graded domain over a field k is obtained in this way. For a Cohen-Macaulay graded ring R(X,D), Watanabe [Wa] has given a necessary and sufficient condition for the Gorenstein property, in terms of an ample \mathbb{Q} -divisor D and a canonical divisor K_X on X. Therefore, it is natural to ask what kind of normal projective variety X has an ample \mathbb{Q} -divisor D such that R(X,D) is Gorenstein.

This problem for ample Cartier divisors D has been treated by Goto and Watanabe [GW] and it has been shown that R(X,D) is Gorenstein if and only if there exists an ample Cartier divisor D such that $H^1(X,\mathcal{O}_X(nD))=0$ for $0<i<\dim X$ and for all $n\in\mathbb{Z}$ and $\mathcal{O}_X(aD)$ is isomorphic to the canonical sheaf ω_X on X for some integer a. However, as far as I know, there is not much known as yet about the answer to the problem for ample Q-divisors, beyond the criterion of Watanabe [Wa]. Our purpose here is to give an answer to this problem in the case that X are normal projective torus embeddings, by

constructing R(X,D) explicitly for T-stable ample \mathbb{Q} -divisors D on X, namely ample \mathbb{Q} -divisors which are stable under the torus action.

The first main result is a technical one, whose precise statement is given in (1.5). Roughly speaking, for a projective torus embedding X and a T-stable ample Q-divisor D, we construct R(X,D) as a numerical semigroup ring from the data of the fan and the support function associated to X and D. To this end, we firstly relate the pairs of r-dimensional projective torus embeddings and T-stable ample Q-divisors on them with the r-dimensional rational convex polytopes P in \mathbb{R}^r , according to Oda [Od2, chapter2]. Consequently, when we define a graded ring R(P) over a field k for a rational convex polytope P of dimension r in \mathbb{R}^r by $R(P) = \sum_{n \ge 0} (\sum ke(m))T^n$ $(m \in nP \cap \mathbb{Z}^r)$. T an indeterminate), it turns out that there is a natural isomorphism from R(P) to a graded ring R(X(P),D(P)) for the T-stable ample Q-divisor D(P) on the normal projective torus embedding X(P) associated to P.

This result provides us with some consequences, as well as the second main result, namely a vanishing theorem for T-stable ample \mathbb{Q} -divisors on normal projective torus embeddings (1.6), and an enumeration problem of integral points in rational convex polytopes (1.7).

The second main result is theorem (2.2), which is a criterion for a normal graded numerical semigroup ring R(P) to be Gorenstein, in terms of a rational polytope P or the projective torus embedding X(P) with the T-stable ample Q-divisor D(P). As immediate consequences, we have two results which provide us with an answer to our problems:

Corollary 2.5. Let X be a normal projective torus embedding. Then

there exists an ample Cartier divisor D such that R(X,D) is $\label{eq:cartier} \text{Gorenstein if and only if the canonical sheaf } \omega_X \text{ on X is isomorphic} \\ \text{to an invertible sheaf } \mathfrak{O}_X(\text{-aD}) \text{ for some } a {\in} \mathbb{N}.$

Theorem 2.6. Every normal projective torus embedding X over a field k has a T-stable ample \mathbb{Q} -divisor D such that R(X,D) is Gorenstein.

From two results above, for example, it turns out that minimal rational surfaces whose anticanonical divisors are not ample have ample Q-divisors D such that R(X,D) are Gorenstein but do not have such ample (integral) divisors, because every minimal rational surface is a normal projective torus embedding (c.f.[Od1, Theorem 8.2]). But, in general, the situation for our problem would be still obscure.

In another direction, by theorem (2.2) together with a theorem of Stanley [St1, (4.4)], we recover results of Hibi [Hi1,2]. Our proof here makes clear why the condition (c2) in (2.2) is needed, in terms of Demazure's construction.

I should like to thank Professor Takayuki Hibi for giving a lecture at Tsuda College in October 1989, from which this material stems. Also, I should like to thank Professor Kei-ichi Watanabe for valuable suggestions and kind advice.

§ 0. Preliminaries.

(0.1). [a] denotes the greatest integer not greater than a \in R. [a] denotes -[-a] for a \in R.

(0.2). For notion of torus embeddings, we refer the reader to [0d2]. Let T be an r-dimensional algebraic torus over a field k. Let M,N be the group of characters and one-parameter subgroups, respectively. Set $M_{\mathbb{R}}=M\otimes\mathbb{R}$ and $N_{\mathbb{R}}=N\otimes\mathbb{R}$. Let < , $>:M_{\mathbb{R}}\times N_{\mathbb{R}}\longrightarrow\mathbb{R}$ represent the natural non-degenerate pairing. For a complete fan Δ of N, $\Delta(i)$ denotes the i-dimensional cones in Δ . A one-dimensional cone $\rho \in \Delta(1)$ is generated by a unique integral primitive vector $n(\rho)$. We denote by $SF(N,\Delta)$ the additive group consisting of Δ -linear support functions (see [Od2,p66] for the definition). Set $SF(N,\Delta,\mathbb{Q})=SF(N,\Delta)\otimes\mathbb{Q}$. Its elements are also called Δ -linear support functions. Then we have two injections $M \longrightarrow SF(N, \Delta)$ sending m to <m, >, and $SF(N, \Delta) \longrightarrow \mathbb{Z}^{\Delta(1)}$ sending h to $(h(n(\rho)))$. Let X be a normal complete torus embedding $\boldsymbol{T}_{N}\text{emb}\left(\Delta\right).$ By $\text{TDiv}(\boldsymbol{X})$, $\text{TCDiv}(\boldsymbol{X})$ and $\text{PDiv}(\boldsymbol{X})$ we denote the groups of T-stable Weil divisors, T-stable Cartier divisors and principal divisors on X. The one-dimensional cones ρ in $\Delta(1)$ are in a one-to-one correspondence with the irreducible T-stable closed subvarieties $V(\rho)$ of codimension one in X. Therefore the map $\mathbb{Z}^{\Delta(1)} \longrightarrow \mathrm{TDiv}(X) \text{ sending g to } \mathrm{D}_{\mathbf{g}} = -\sum_{\rho} \mathrm{g}_{\rho} \cdot \mathrm{V}(\rho) \ (\rho \in \Delta(1)) \text{ is a bijection,}$ and induces two isomorphisms of groups, $SF(N,\Delta) \longrightarrow TDiv(X)$ and $M\longrightarrow PDiv(X)\cap TCDiv(X)$. As a result, we have two commutative diagrams:

§ 1. Rational Polytopes and Projective Torus Embeddings.

In the present section, we shall describe the relation between

Q-divisors on a normal complete torus embedding and support functions.

And we shall give a relationship between rational polytopes and

normal projective torus embeddings with T-stable ample Q-divisors.

Lemma 1.1. Let $X=T_N emb(\Delta)$ be an r-dimensional complete torus embedding over a field k. For $g\in \mathbb{Q}^{\Delta(1)}$, the set $\square_g=\{m\in M_\mathbb{R}; \langle m,n(\rho)\rangle \geq g_\rho$ for all $\rho\in\Delta(1)\}$ is a (possibly empty) convex polytope in $M_\mathbb{R}$. The set $H^0(X,\mathcal{O}_X(D_g))$ of global sections of the divisorial \mathcal{O}_X -module $\mathcal{O}_X(D_g)$ is a finite dimensional k-vector space with $\{e(m); m\in M\cap \square_g\}$ as a basis. Moreover $m\in int(\square_g)$ if and only if each coefficient a_ρ of a T-stable Weil divisor $V(\rho)$ in the \mathbb{Q} -divisor $\mathrm{div}(e(m))+D_g=\sum_{\rho}a_\rho V(\rho)$ $(\rho\in\Delta(1))$ is a positive rational number.

Proof. The first part is the same as in the case of $g \in \mathbb{Z}^{\Delta(1)}$. Since $n(\rho)$ is a primitive vector and the pairing <, > is non-degenerate, we have $\square_g \cap \mathbb{M} = \square_{[g]} \cap \mathbb{M}$, where [g] denotes the integral vector $(\lceil g_1 \rceil, \ldots, \lceil g_{\#(\Delta(1))} \rceil)$. On the other hand, we have $\emptyset_X(D_g) = \emptyset_X(D_{[g]})$ by definition. Hence we may assume that $g \in \mathbb{Z}^{\Delta(1)}$. In this case, the assertion follows from [TE,p41,theorem] (c.f. $[0d2,lemma\ 2.3]$). The rest is obvious. Q.E.D.

Recall that a Δ -linear support function $h\in SF(N,\Delta,\mathbb{Q})$ is said to be strictly upper convex with respect to Δ if h is upper convex, namely $h(n)+h(n')\leq h(n+n')$ for all $n,n'\in \mathbb{N}_{\mathbb{R}}$, and Δ is the coarsest among the fans Δ' in N for which h is Δ' -linear.

Lemma 1.2. Let $X=T_N^{\text{emb}}(\Delta)$ be an r-dimensional complete torus embedding over a field k and $h\in SF(N,\Delta,\mathbb{Q})$. Then D_h is ample, that is,

 $bD_{\bf h}$ is an ample Cartier divisor for some positive integer b, if and only if h is strictly upper convex with respect to $\Delta.$

Proof. See [Od2, corollary 2.14]. Q.E.D.

Proposition 1.3. Let P be a rational r-polytope in $\mathsf{M}_R = \mathsf{R}^r$, namely, r-dimensional convex polytope in M_R whose vertices have rational coordinates. Then there exists a unique finite complete fan Δ_P in N such that support function $\mathsf{h}_P : \mathsf{N}_R \longrightarrow \mathbb{R}$ for P defined by $\mathsf{h}_P(\mathsf{n}) = \inf \{ <\mathsf{m}, \mathsf{n} > ; \mathsf{m} \in P \}$ $(\mathsf{n} \in \mathsf{N}_R)$ is a strictly upper convex Δ_P -linear support function with respect to Δ_P . We denote the corresponding r-dimensional projective torus embedding $\mathsf{T}_N = \mathsf{emb}(\Delta_P)$ and the ample T-stable Q-divisor $\mathsf{D}_{\mathsf{h}_P}$ by $\mathsf{X}(\mathsf{P})$ and $\mathsf{D}_{\mathsf{h}_P}$. Conversely, every pair of a normal projective torus embedding and a T-stable ample Q-divisor on it is obtained from a rational r-polytope in M_R in this way.

Proof. The first part follows form [Od2, A.18 & A.19]. Then, by (1.2), D(P) is a T-stable ample Q-divisor on X(P). Conversely, given a nomal projective torus embedding X with a T-stable ample Q-divisor D, there exist a complete fan Δ and a Δ -linear support function h which is strictly upper convex with respect to Δ . Set $\Box_h = \{u \in M_R; \langle u, n(\rho) \rangle \geq h(n(\rho)) \text{ for all } \rho \in \Delta(1) \}$. By the construction and [Od2, A.18 & A.19], we have $X = X(\Box_h)$ and $D = D(\Box_h)$. Q.E.D.

Remark 1.4. In (1.3), D(P) is a Cartier divisor if and only if P is integral. D(P) is a Weil divisor if and only if P is facet-reticular, that is, each supporting hyperplane carried by a facet (face of the

maximal dimension) of P contains an element of M.

Proof. Since $\Box_{nh_P} = nP$ and $D(nP) = D_{nh_P}$ for all $n \in \mathbb{N}$, we have $H^0(X(P), \mathcal{O}_{X(P)}(nD(P))) = \sum_m ke(m) \ (m \in nP \cap M)$ by (1.1). This implies $R(P) \simeq R(X(P), D(P))$. The rest follows from a standard argument in the theory of Demazure's construction (c.f.[Wa,(2.1)]). Q.E.D.

Corollary 1.6. For an r-dimensional normal projective torus embedding $X=T_N^{-1}emb(\Delta)$ over a field k and a strict upper convex $\Delta^{-1}emb(\Delta)$ function $h\in SF(N,\Delta,\mathbb{Q})$ with respect to Δ , we have:

(a)
$$\dim_{\mathbf{k}} H^0(\mathbf{X}, \mathcal{O}_{\mathbf{X}}(\mathbf{nD}_{\mathbf{h}})) = \begin{pmatrix} \#(\mathbf{n} \square_{\mathbf{h}} \cap M) & \text{if } \mathbf{n} \ge 0 \\ 0 & \text{if } \mathbf{n} < 0; \end{pmatrix}$$

(b) $\dim_{\mathbf{k}} H^{\mathbf{i}}(X, \mathcal{O}_{X}(nD_{\mathbf{h}})) = 0$ for $0 < \mathbf{i} < \mathbf{r}$ and all $n \in \mathbb{Z}$;

(c)
$$\dim_{\mathbf{k}} H^{\mathbf{r}}(X, \mathcal{O}_{\mathbf{X}}(nD_{\mathbf{h}})) = \begin{pmatrix} 0 & \text{if } n \ge 0 \\ \#(\operatorname{int}(n\Box_{\mathbf{h}}) \cap M) & \text{if } n < 0, \end{pmatrix}$$

where $\#(n\square_h\cap M)$ is the number of the set $n\square_h\cap M$ of lattice points in the rational convex polytope $n\square_h$, and $int(n\square_h)$ denotes the interior of the convex polytope $n\square_h$.

 $Proof.(a): This follows from (1.1). (b): Since R(X,D_h) is a normal$

numerical semigroup ring by (1.3) and (1.5), R(X,D_h) is normal and Cohen-Macaulay by a theorem of Hochster [Ho]. Therefore, this follows from corollary (2.2) in [Wa]. (c):By Serre duality (c.f.[Wa,(2.7)]), we have $\operatorname{Hom}_k(\operatorname{H}^r(X,\mathcal{O}_X(\operatorname{nD}_h)),k) \cong \operatorname{H}^0(X,\mathcal{O}_X(-[\operatorname{nD}_h]+K_X))$, where K_X denotes a canonical divisor on X. Since $\operatorname{K}_X=-\sum_{\rho} V(\rho)$ ($\rho\in\Delta(1)$) and n_{ρ} is a primitive vector for each $\rho\in\Delta(1)$, this follows from (1.1). Q.E.D.

Remark 1.7. Let P be a rational r-polytope in \mathbb{R}^r and $m=\min\{i\in\mathbb{N};i>0$ and iP is integral}. By (1.3), (1.5) and (1.6), we have $\#(nP\cap\mathbb{Z}^r)=\chi(X(P),\emptyset_{X(P)}(nD(P)))$ for $n\ge 0$ and $\#(int((-n)P)\cap\mathbb{Z}^r)=(-1)^r\chi\Big(X(P),\emptyset_{X(P)}(nD(P))\Big)$ for n<0, where $\chi\Big(X(P),\emptyset_{X(P)}(nD(P))\Big)$ denotes $\sum_{j=0}^r(-1)^j\mathrm{dim}_k\mathrm{H}^j(X(P),\emptyset(nD(P)))$. By a result due to Snapper and Kleiman, for every $n\in\mathbb{Z}$, there exists a polynomial $P_n(\lambda)$ with coefficients in \mathbb{Q} such that $\chi\Big(X(P),\emptyset_{X(P)}((n+m\lambda)D(P))\Big)=P_n(\lambda)$. Thus we recover the reciprocity theorem and see that Ehrhart quasi-polynomial is indeed a quasi-polynomial.

§ 2. Criteria for Gorenstein Property.

First, we prove the following lemma:

Lemma 2.1. Let Δ be a complete fan in N and h be a strictly upper convex Δ -linear support function in $SF(N,\Delta,\mathbb{Q})$ with respect to Δ . Set $\Box_h = \{u \in M_\mathbb{R}; \langle u, n(\rho) \rangle \geq h(n(\rho)) \}$ for each $\rho \in \Delta(1) \}$. Suppose that h has negative values except at the origin or, equivalently, \Box_h contains the origin in its interior. Then the set of vertices of the polar

 $convex \ polyhedral \ set \ (\square_h)^O := \{v \in \mathbb{N}_{\mathbb{R}}; \langle u, v \rangle \geq -1 \ for \ all \ u \in \square_h \} \ for \ \square_h \ is \{-(1/h(n(\rho))n(\rho); \rho \in \Delta(1)\}.$

Proof. By [Od2,A.19], there exists a bijection from $\Delta(1)$ to the set $\mathcal{F}^{r-1}(\square_h)$ of (r-1)-dimensional faces of \square_h sending $\rho \in \Delta(1)$ to $\mathbb{Q}_{\rho} = \{u \in \square_h; \langle u, n(\rho) \rangle = h(n(\rho)) \}$. Also, by [Od2,A.17], there exists a bijection from $\mathcal{F}^{r-1}(\square_h)$ to the set of vertices of $(\square_h)^O$ sending an (r-1)-dimensional face Q to $\mathbb{Q}^* = \{v \in (\square_h)^O; \langle u, v \rangle = -1 \text{ for all } v \in \mathbb{Q} \}$. Then we observe that $(\mathbb{Q}_{\rho})^*$ is $-(1/h(n(\rho)))n(\rho)$. Q.E.D.

- Theorem 2.2. For a rational r-polytope P in $M_{\mathbb{R}}=\mathbb{R}^r$ with $M=\mathbb{Z}^r$ and a positive integer δ , the following are equivalent:
- (a) The semigroup ring $R(P) = \bigoplus_{n \geq 0} \{\sum_m ke(m)\}T^n \pmod{m \in nP \cap M}$ over a field k is a Gorenstein ring with $a(R(P)) = -\delta$, where a(R(P)) is defined by $-\min\{m \in \mathbb{Z}; (K_{R(P)})_m \neq 0 \text{ for the canonical module } K_{R(P)} \text{ of } R(P)\}$. (For details concerning $a(\cdot)$, see [GW]).
- (b) The normal projective torus embedding $X(P) = T_N emb(\Delta_P)$ over a field k, and the ample \mathbb{Q} -divisor $D(P) = \sum_{\rho} (p_{\rho}/q_{\rho}) V(\rho)$ ($\rho \in \Delta_P(1)$, $q_{\rho} > 0$, p_{ρ} and q_{ρ} are coprime) satisfy the following:
- (b1) There exist a positive integer r_{ρ} for each $\rho \in \Delta_{P}(1)$ and a character $m \in M$ such that $\delta D(P) + div(e(m)) = \sum_{\rho} (1/r_{\rho})V(\rho)$ ($\rho \in \Delta_{P}(1)$);
 - (b2) δ and q_0 are coprime for each $\rho \in \Delta_p(1)$.
 - (c) P satisfies the following:
- (c1) There exists a character m∈M such that the polar polyhedral set $(\delta P-m)^O := \{v \in N_R; \langle u,v \rangle \geq -1 \text{ for all } u \in \delta P-m \}$ for $\delta P-m = \{\delta p-m \in M_R; p \in P\}$ is an integral r-polytope, namely, an r-polytope whose vertices have integral coordinates;
 - (c2) The convex hull \tilde{P} of the set $P \times \{0\} \cup \{(0, ..., 0, 1/\delta)\}$ in

 $M_{\mathbb{R}} \times \mathbb{R}$ is facet-reticular (c.f. (1.4)).

Proof. (a) <=>(b): By (1.5), R(P) is isomorphic to R(X(P),D(P)) and, therefore, R(X(P),D(P)) is Cohen-Macaulay by a theorem of Hochster[Ho]. Since a canonical divisor $K_{X(P)}$ on X(P) is $-\sum_{\rho} V(\rho)$ $(\rho \varepsilon \Delta_{\mathbf{p}}(1))$ (see for example [TE,theorem 9,III.d]), it follows from a criterion of Watanabe [Wa, (2.9)] that R(P) is a Gorenstein ring with $a(R(P)) = -\delta$ if and only if there exists a character meM such that $\delta D(P) + \operatorname{div}(\mathfrak{e}(m)) = \sum_{\rho} (1/q_{\rho}) \cdot V(\rho) \ (\rho \in \Delta_{P}(1)). \ \text{Note that a semi-inversant}$ rational function $f \in K(X(P))^*$ corresponds to some character mem. We assume that (a) holds. By the preceding remark, we have the relation above and, therefore, (b1) holds. Rewriting the relation, we have $\operatorname{div}(\mathbf{e}(\mathbf{m})) = \sum_{\rho} \{(1 - \delta \mathbf{p}_{\rho}) / \mathbf{q}_{\rho}\} V(\rho) \ (\rho \in \Delta_{\mathbf{p}}(1)). \text{ Hence } (1 - \delta \mathbf{p}_{\rho}) / \mathbf{q}_{\rho} \text{ is an }$ integer and, therefore, δ and \textbf{q}_{ρ} are coprime for each $\rho \in \Delta_{\textbf{p}}(1)$. Conversely, we assume that (b) holds. By the preceding remark, we claim that $r_{\rho} = q_{\rho}$ for each $\rho \in \Delta_{P}(1)$. Since r_{ρ} is a factor of q_{ρ} , $b_{\rho} := (q_{\rho}/r_{\rho})$ is a positive integer. Then, by (b1), $(b_{\rho} - \delta p_{\rho})/(r_{\rho}b_{p})$ is an integer and, therefore, \textbf{b}_{ρ} is a factor of δ or $\textbf{p}_{\rho}.$ Hence we have $b_{\rho}=1$ for each $\rho \in \Delta_{p}(1)$, as required, because neither δ nor p_{ρ} has any common factor with q_{ρ} .

(c1)=>(b1): Set $g=\delta h_p$ -meSF(N, Δ_p ,Q). Since g is strictly upper convex with respect to Δ_p and Oeint(δP -m), it follows from (2.1) that the

vertices set of $(\delta P-m)^O$ is $\{-(1/g(n(\rho)))n(p); \rho \in \Delta_P(1)\}$. Hence, by assumption, $-(1/g(n(\rho)))n(p)$ is an integral vector. Since $n(\rho)$ is a primitive vector and $g \in SF(N, \Delta_P, \mathbb{Q})$ is negative-valued, $r_{\rho} := -1/(g(n(\rho))) \text{ is a positive integer for each } \rho \in \Delta_P(1) \text{ and } \delta D(P) + \text{div}(e(m)) = D_g = \sum_{\rho} (1/r_{\rho})V(\rho).$ (b2)<=>(c2): Since a supporting hyperplane carried by a facet of P corresponding to $\rho \in \Delta_P(1)$ is $H_{\rho} = \{u \in M_R; \langle u, n(\rho) \rangle = h_P(n(\rho))\}$, a supporting hyperplane carried by a facet of P is of the form $\widetilde{H}_{\rho} := \{(u,x) \in M_R \times \mathbb{R}; \delta x + (1/h_P(n(\rho))) \langle u, n(\rho) \rangle = 1\} \text{ or } \{(u,0) \in M_R \times \mathbb{R}\}. \text{ Since } h_P(n(\rho)) = -(p_{\rho}/q_{\rho}) \text{ and } n(\rho) \text{ is a primitive vector, } \delta \text{ and } q_{\rho} \text{ are coprime if and only if } \widetilde{H}_{\rho} \cap M \times \mathbb{Z} \text{ is non-empty.}$

Remark 2.3.1. Under the condition (b) in the theorem, suppose that there exist an integer $\delta' \leq \delta$, a character $m' \in M$ and a positive integer a_{ρ} for each $\rho \in \Delta_{P}(1)$ such that $\delta' D + \operatorname{div}(e(m')) = \sum_{\rho} (a_{\rho}/q_{\rho}) \cdot V(\rho)$ ($\rho \in \Delta_{P}(1)$). Then we have $\delta' = \delta$, m' = m and $a_{\rho} = 1$ for each $\rho \in \Delta_{P}(1)$. In other words, we have $\#(\mathbb{Z}^{r} \cap \operatorname{int}(nP)) = 0$ for each $0 \leq n < \delta$ and $\#(\mathbb{Z}^{r} \cap \operatorname{int}(\delta P)) = 1$. In fact, we observe that $(\delta' - \delta)D + \operatorname{div}(e(m' - m)) = \sum_{\rho} (a_{\rho} - 1)/q_{\rho} \cdot V(\rho)$ ($\rho \in \Delta_{P}(1)$). But D is an ample \mathbb{Q} -Cartier divisor. So we have $\delta' = \delta$, $a_{\rho} = 1$ for each $\rho \in \Delta_{P}(1)$, and m' = m.

Remark 2.3.2. Combining the equivalence between (a) and (c) in (2.2) and a theorem of Stanley [St1, theorem 4.4], we recover theorem of Hibi [Hi1,2]. Our proof makes clear why the condition (c2) in (2.2) is needed, in terms of Demazure's construction. Indeed, let R(X,D) be a Cohen-Macaulay graded ring obtained from a normal projective variety X and an ample \mathbb{Q} -divisor $D=\sum_V (p_V/q_V)V$ (V runs through irreducible subvarieties of codimension 1, $q_V>0$ and p_V,q_V are coprime

for each V). Then it follows form [Wa,(2.9)] that R(X,D) is Gorenstein if the Veronese subring R(X,D) $^{(d)}$ of order d is Gorenstein for a integer d such that a $\equiv 0 \pmod{d}$ and that d and q_V are coprime for each V.

Corollary 2.4. For a rational r-polytope P in $M_{\mathbb{R}}=\mathbb{R}^{r}$ with $M=\mathbb{Z}^{r}$ and an integer δ , the following are equivalent:

- (a) P is integral and there exists a character m \in M such that the polar polyhedral set $(\delta P-m)^O$ for $\delta P-m$ is an integral r-polytope;
- (b) The Q-divisor D(P) on the normal projective torus embedding $X(P) \ \text{over a field k is an ample Cartier divisor. And the invertible }$ sheaf $\emptyset_X(-\delta D(P))$ is isomorphic to the canonical sheaf $\omega_{X(P)}$.

Proof. It follows from (1.4) and (2.2) that (a) holds if and only if D(P) is a Cartier divisor and there exists a character meM such that $\delta D(P) + \text{div}(e(m)) = \sum_{\rho} V(\rho) \ (\rho \in \Delta_P(1)). \text{ Since a canonical divisor } K_{X(P)} \text{ on } X(P) \text{ is } -\sum_{\rho} V(\rho) \ (\rho \in \Delta_P(1)), \ (a) \text{ is equivalent to (b). Q.E.D.}$

Since every Cartier divisor on a normal complete torus embedding is linearly equivalent to a T-stable Cartier divisor (c.f.[Od1, (6.1)]), we have:

Corollary 2.5. Let X be a normal projective torus embedding. Then there exists an ample Cartier divisor D such that R(X,D) is Gorenstein if and only if the canonical sheaf ω_X on X is isomorphic to an invertible sheaf $\mathcal{O}_X(-aD)$ for some $a\in\mathbb{N}$.

Theorem 2.6. Every normal projective torus embedding X over a field k

has a T-stable ample Q-divisor D such that R(X,D) is Gorenstein.

Proof. By assumption, we may assume that $X=T_N emb(\Delta)$ has a T-stable ample Cartier divisor D of the form $D=\sum_{\rho}a_{\rho}V(\rho)$, $a_{\rho}>0$ $(\rho\in\Delta(1))$. Set $c=L.C.M.\{a_{\rho};\rho\in\Delta(1)\}$. By (1.3), we may assume that (X,(1/c)D) corresponds to a rational polytope P in M_R . Then, by (1.5) and (2.2), R(X,(1/c)D) is a Gorenstein ring with a(R(X,(1/c)D)=-1, as required.

References

- [De] M.Demazure, Anneaux gradués normaux, in Séminaire

 Demazure-Giruad-Teissier, Singularités des surfaces, Ecole

 Polytechnique, (1979).
- [Ew] G.Ewald, On the classification of toric Fano varieties,

 Discrete Comput. Geom. 3 (1988), 49-54.
- [GW] S.Goto and K.-i.Watanabe, On graded rings, I, J.Math.Soc.Japan 30 (1978), 179-213.
- [Hi1] T.Hibi, Dual polytopes of rational convex polytopes, preprint.
- [Hi2] T.Hibi, A combinatorial self-reciprocity theorem for Ehrhart quasi-polynomials of rational convex polytopes, preprint.
- [Ho] M.Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, *Ann. of Math.* 96 (1972), 318-337.
- [TE] G.Kempf, F.Knudsen, D.Mumford and B.Saint-Donat, "Toroidal embeddings I," Lecture Notes in Math. Vol.339, Springer, Berlin/New York, 1973.
- [Od1] T.Oda, "Lectures on Torus Embeddings and Applications," Tata

- Inst. Fund. Res. Lectures on Math. and Phys., Bombay, 1978.
- [Od2] T.Oda, "Convex Bodies and Algebraic Geometry," Ergeb. Math. Grenzgeb.(3), Vol.15, Springer, Berlin/New York, 1988.
- [St1] R.P.Stanley, Hilbert functions of graded algebras, Adv. in Math. 28 (1978), 57-83.
- [St2] R.P.Stanley, "Enumerative Combinatorics, Volume I," Wadsworth,
 Monterey, Calif., 1986.
- [Wa] K.-i.Watanabe, Some remarks concerning Demazure's construction of normal graded rings, Nagoya Math. J. 83 (1981), 203-211.