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Fano Polytopes and Gorenstein Polytopes
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Introduction

Given a normal projective variety X over a field k with
HO(X,OX)=k and an ample Q-divisor D, namely rational coefficient Weil
divisor, we consider a-normal graded ring R(X,D) defined by

R(X,D)=®n20HO(X,0X(nD))Tn (T an indeterminate), where by OX(nD) we
denote the sheaves F(U,@X(nD))={feK(X); diVU(f)+nD|ﬁ20} for each open
set U of X. These rings have been introduced by Demazure [De], to
show that a normal graded domain over a field k is obtained in this
way. For a Cohen-Macaulay graded ring R(X,D), Watanabe [Wa] has given
a necessary and sufficient condition for the Gorenstein property, in
terms of an ample Q-divisor D and a canonical divisor KX on X.
Therefore, it is natural to ask what kind of normal projective
variety X has an ample Q-divisor D such that R(X,D) is Gorenstein.

This problem for ample Cartier divisors D has been treated by
Goto and Watanabe [GW] and it has been shown that R(X,D) is
Gorenstein if and only if there exists an ample Cartier divisor D
such that Hi(X,OX(nD))=O for 0<i<dimX and for all n€Z and OX(aD) is

isomorphic to the canonical sheaf o, on X for some integer a.

X
However, as far as I know, there is not much known as yet about the
answer to the problem for ample Q-divisors, beyond the criterion of
Watanabe [Wa]. Our purpose here is to give an answer to this problem

in the case that X are noermal projective torus embeddings, by
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constructing R(X,D) explicitly for T-stable ample @-divisors D on X,
namely ample Q-divisors which are stable under the torus action.

The first main result is a technical one, whose precise
statement is given in (1.5). Roughly speaking, for a projective torus
embedding X and a T-stable ample Q-divisor D, we construct R(X,D) as
a numerical semigroup ring from the data of the fan and the support
function associated to X and D. To this end, we firstly relate the
pairs of r-dimensional projective torus embeddings and T-stable ample
Qi-divisors on them with the r-dimensional rational convex polytopes P
in Rr, according to Oda [0d2, chapter2]. Consequently, when we define
a graded ring R(P) over a field k for a rational convex polytope P of
dimension r in RY by R(P)=ngo(2 ke (m))T" (menPan, T an
indeterminate), it turns out that there is a natural isomorphism from
R(P) to a graded ring R(X(P),D(P)) for the T-stable ample Q-divisor
D(P) on the normal projective torué embeddihg X(P) associated to P.

This result provides us with some consequences, as well as the
second main result, namely a vanishing theorem for T-stable ample
Q-divisors on normal projective torus embeddings (1.6), and an
enumeration problem of integral points in rational convex polytopes
(1.7).

The second main result is theorem (2.2), which is a criterion
for a normal graded numerical semigroup ring R(P) to be Gorenstein,
in terms of a rational polytope P or the projective torus embedding
X(P) with the T-stable ample Q}-divisor D(P). As immediate
consequences, we have two results which provide us’with an answer to

our problems:

“Corollary 2.5. Let X be a normal projective torus embedding. Then
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there exists an ample Cartier divisor D such that R(X,D) is
Gorenstein if and only if the canonical sheaf 0y on X ig isomorphic

to an invertible sheaf OX(—aD) for some a€eN.

Theorem 2.6. Every normal projective torus embedding X over a field k

has a T-stable ample Q-divisor D such that R(X,D) is Gorenstein.

From two results above, for example, it turns out that minimal
rational surfaces whose anticanonical divisors are not ample have
ample Q-divisors D such that R(X,D) are Gorenstein but do not have
such ample (integral) divisors, because every minimal rational
surface is a normal projective torus embedding (c.f.[0dl, Theorem
8.2]). But, in general, the situation for our problem would be still
obscure.

In another direction, by theorem (2.2) together with a theorem
of Stanley [Stl, (4.4)], we recover results of Hibi [Hil,2]. Our
proof here makes clear why the condition (c2) in (2.2) is needed, in
terms of Demazure's construction.

I should 1like to thank Professor Takayuki Hibi for giving a
lecture at Tsuda College in October 1989, from which this material
stems. Also, I should 1like to thank Professor Kei-ichi Watanabe for

valuable suggestions and kind advice.

§ 0. Preliminaries.

(0.1). [a] denotes the greatest integer not greater than a€R. raj

denotes -[-a] for a€R.
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(0.2). For notion of torus embeddings, we refer the reader to [0d2].
Let T be an r-dimensional algebraic torus over a field k. Let M,N be
the group of characters and one-parameter subgroups, respectively.

Set Mpj=Me&R and'N =N®R. Let < , >:MyxXN,——R represent the natural
R 7 R 7 R™R

non;degenerate pairing. For a complete fan A of N, A(i) denotes the
i-dimensional cones in A. A one—dimensional cone p€A(l) is generated
by a unique integral primitive vector n(p). We denote by SF(N,A) the
additive group consisting of A-linear support functions (see |

[0d2,p66] for the definition). Set SF(N,A,R)=SF(N,A)®D. Its
Y

élements are also called A-linear support functions. Then we have two
injections M—SF(N,A) sending m to <m; >, and SF(N,A)——*ZA(l)
sending h to (h(n(p))). Let X be a normal complete tofus embedding
TNemb(A). By TDiv(X), TCDiv(X) and PDiv(X) we denote the groups of
T-stable Weil divisors, T-stable Caftier divisors and principal
divisors on X. The one-dimensional cones p in A(l) are in a
one-to-one correspondence with the irreducible T-stable closédv
subvarieties V(p) of codimension one in X. Therefore the map

721 _,1piv(X) sending g to D =-3,8,°V(p) (p€A(1)) is a bijection,

g
and induces two isomorphisms of groups, SF(N,A)—TDiv(X) and

M—PDiv(X)NTCDiv(X). As a result, we have two commutative diagrams:

M — SF(N,a) — 780D SF(N,a, Q) — @&(1)
d d 4 : d 1
PDiv(X)NTCDiv(X) — TCDiv(X) — TDiv(X) TCDiv(X,Q) — TDiv(X,Q).

§ 1. Rational Polytopes and Projective Torus Embeddings.

In the present section, we shall describe the relation between
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Q-divisors on a normal complete torus embedding and support functions.
And we shall glive a relationship between rational polytopes and

normal projective torus embeddings with T-stable ample Q-divisors.

Lemma 1.1. Let X=TNemb(A) be an r-dimensional complete torus

QA(l)

embedding over a field k. For g€ , the set ug={mEMR;<m,n(p)>2g

p
for all pe€A(1l)} is a (possibly empty) convex polytope in MR' The set
HO(X,OX(Dg)) of global sections of the divisorial Oy—module GX(Dg) i8
a finite dimensional k-vector space with {e(m);meMnug} as a basis.
Moreover meint(ug) if and only if each coefficient a, of a T-stable

Weil divisor V(p) in the Q-divisor div(e(m))+Dg=2papV(p) (peEa(l)) is

a positive rational number.

Proof. The first part is the same as in the case of gEZA(lz Since
n(p) is a primitive vector and the pairing < , > is non-degenerate,

we have ngnM=n NM, where [g] denotes the integral vector

rgl
(rg11,...,rg#(A(1))1). On the other hand,(w? have OX(Dg)=eX(ng
Al

1) by

definition. Hence we may assume that ge€Z In this case, the
assertion follows from [TE,p4l,theorem] (c.f.[0d2,1lemma 2.3]). The

rest is obvious. Q.E.D.

Recall that a A-linear support function he€SF(N,A,8) is said to
be strictly upper conver with respect to A if h is upper convex,
namely h(n)+h(n')<h(n+n') for all n,n'eNR, and A is the coarsest

among the fans A' in N for which h 1is A'—linéar.

Lemma 1.2. Let X=TNemb(A) be an r-dimensional complete torus

embedding over a field k' and heSF(N,A,R). Then Dh igs ample, that is,

-5 =
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th is an ample Cartier divisor for some positive integer b, if and

only if h is striectly upper convexr with respect to A.
Proof. See [0d2,corollary 2.14]. Q.E.D.

Proposition 1.3. Let P be a rdtionat r-polytope in MR=Rr, namely,
r-dimensional convexr polytope in MIR whose vertices have rational
coordinates. Then there exists a uniqué finite complete fan A, in N
such that support function hP:NR——+R for P defined by
hP(n)=inf{<m,n>;meP} (neNR) i8 a strictly upper convex Ap~linear
support function with respect to bp - We denote the corresponding
r-dimensional projective torus embedding TNemb(AP),and the ample

T-stable B-divisor Dh by X(P) and Dh . Conversely, every pair of a
P P

normal projective torus embedding and a T-stable ample Q-divisor on

it is obtairned from a rational r-polytope in MR in this way.

Proof. The first part follows form [0d2, A.18 & A.19]. Then, by
(1.2), D(P) is a T-stable ample Q-divisor on X(P).’Converseiy, given
a nomal projective torus embedding X with a T-stable ample Q-divisor
D, there exist a complete fan A and a A-linear support function h
which is strictly upper convex with respect to A. Set
nh={ueMR;<u.n(p)>2h(n(p)) for all p€A(1)}. By the construction and

[od2, A.18 & A.19], we have X=X(Dh) and D=D(Dh). Q.E.D.

Remark 1.4. In (1.3), D(P) is a Cartier divisor if and only if P is
integral. D(P) is a Weil divisor if and only if P is facet-reticular,

that is, each supporting hyperplane carried by a facet (face of the
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maximal dimension) of P contains an element of M.

Proposition 1.5. Let P be a rational r-polytope in Mp. Then the
graded semigroup rinng(P):=ngo{2mke(m)}Tn {menPnNM) owver a field k
i8 isomorphic to the graded ring R(X(P),D(P)) associated to the
projective torus embedding X(P) over k and the ample Q-divisor D(P),
as graded k—algebras. Consequently, Proj(R(P)) is isomorphic to X(P)
and the sheaf 0(n)=R(P)(n)~ on Proj(R(P)) corresponds via this

isomorphism to @X(P)(nD(P)) for all neZ.

Proof. Since O =nP and D(nP)=D for all neéN, we have
~nhP nhP

HO(X(P),@X(P)(nD(P)))=2mke(m) (menPAM) by (1.1). This implies
R(P)~R(X(P),D(P)). The rest follows from a standard argument in the

theory of Demazure's construction (c.f.[Wa,(2.1)1). Q.E.D.

Corollary 1.6. For an r-dimensional normal projective torus embedding
X=TNemb(A) over a field k and a striect upper convex A-linear support

funetion heSF(N,A,Q) with respect to A, we have:

) 0 ) #(nnhnM) if n=0
(a) dlmkH (X,OX(nDh))— :
0 if n<0;
(b) dimkHl(X,OX(nDh))= 0 for O<i<r and all ne€Z;

r 0 if n=0
(c) dimkH (X,OX(nDh))= (
#(int(nuh)nM) if n<o0,
where #(nnhnM) is the number of the set nnhnM of lattice points in
the rational conver polytope nuh. and 1nt(nuh) denotes the interior

of the convex polytope nuh.

Proof.(a):This follows from (1.1). (b):Since R(X,Dh) is a normal
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numerical semigroup ring by (1.3) and (1.5), R(X,Dh) is normal and
Cohen-Macaulay by a theorem of Hochster [Ho]. Therefore, this follows
from corollary (2.2) in [Wa]. (c):By Serre duality (c.f.[Wa,(2.7)1),

X
canonical divisor on X. Since KX=—2pV(p) (pe€Aa(1)) and np is a

v r 0
we have Homk(H (X,@X(nDh)),k)_H (X,OX(—[nDh]+Kx)), where K, denotes a
primitive vector for each pea(1l), this follows from (1.1). Q.E.D.

Remark 1.7. Let P be a rational r-polytope in R" and m=min{i€N;i>0
and iP is integral}. By (1.3), (1.5) and (1.8), we have
#(nPan)=x(X(P),GX(P)(nD(P))) for n>0 and
#(int((-n)P)an)=(—1)rx(X(P),GX(P)(nD(P))) for n<0, where
x(X(p),oX(P)(nD(P))] denotes 57_o(-1)Jdim ) (x(P),0(nD(P))). By a
result due to Snapper and Kleiman, for every n€Z, there exists a
polynomial Pn(x) with coefficients in @ such that
x(X(P),OX(P)((n+mA)b(P)))=Pn(A). Thus we recover the reciprocity
theorem and see that Ehrhart quasi-polynomial is indeed a

quasi-polynomial.

§ 2. Criteria for Gorenstein Property.
First, we prove the following lemma:

Lemma 2.1. Let A be a complete fan in N and h be a strictly upper
conver A-limear support function in SF(N,A,R) with respebt to A. Set
nh={uEMR;<u,n(p)>zh(n(p)) for each p€A(1)}. Suppose that h has
negative values except at the origih or, equivalently, 0, contains

the origin in its interior. Then the set of vertices of the polar
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| conver polyhedral set (Dh)°:={v€NR;<u,v>z—1 for all uenh} for o, i8

{-(1/h(n(p))n(p);p€a(1)}.

Proof. By [0d2,A.19], there exists a bijection from A(1l) to the set
?r_l(uh) of (r-1)-dimensional faces of Dh sending p€A(l) to
Qp={ueuh;<u,n(p)>=h(n(p))}. Also, by [0d2,A.17], there exists a
bijection from ?r—l(uh) to the set of vertices of (nh)0 sending an
(r-1)-dimensional face Q to Q*={ve(uh)6;<u,v>=—1 for all veQ}. Then

we observe that (Qp)* is -(1/h(n(p)))n(p). Q.E.D.

Theorem 2.2. For a rational r—polytope P in MR#Rr with M=2' and a
positive integer &, the following are equivalent:

(a) The semigroup ring R(P)=ngo{2mke(m)}Tn((menPnM) over a field
k ig a Gorenstein ring with a(R(P))=-8, where a(R(P)) is defined by
—min{mGZ;(KR(P))m#O for the canonical module KR(P) of R(P)}. (For
details concerning a(-), see [GW]).

(b) The normal projective torus embedding X(P)=TNemb(AP) over a
field k, and the ample Q-divisor D(P)=Zp(pp/qp)V(p) (p€ap (1), q >0,

p
p_ and a, are coprime) satisfy the following:

p

(bl) There exist a positive integer r, for each p€A,(1) and
a character meM such that 6D(P)+div(e(m))=Zp(1/rp)V(p) (p€AR(1));

(b2) & and;qp are coprime for each peAP(l).

(c) P satisfies the following:

(cl) There exists a character méM such that the polar
polyhedral set (6P—m)°:={veNR;<u,v>z—1 for all u€séP-m} for
5P-m={6p-m€MR;peP} i8 an integral r-polytope, namely, an r-polytope

whose vertices have integral coordinates;

(c2) The convex hull P of the set Px{0}u{(0,...,0,1/8)} in

-9 -
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MRXR is facet-reticular (e.f. (1.4)).

Proof. (a)<=>(b): By (1.5), R(P) is isomorphic to R(X(P),D(P)) and,
therefore, R(X(P),D(P)) is Cohen-Macaulay by a theofem of \
Hochster[Ho]. Since a canonical divisor Ky ) on X(P) is —EOV(p)
(pEAP(l)) (see for example [TE,theorem 9,I1I1.d]), it follows from a
criterion of Watanabe [Wa,(2.9)] that R(P) is a Gorenstein ring with
a(R(P))=-8& if and only if there exists a character mé€M such that
5D(P)+div(e(m))=2p(1/qp)-V(p) (pEAP(l)). Note that a semi-inveriant
rational function feK(X(P))" corresponds to some character meM. We
assume that (a) holds. By the preceding remark, we have the relation
above and, therefore, (bl) holds. Rewriting the relation, we have
div(e(m))=2 {(1-8p;)/q,}V(p) (p€Ap(1)). Hence (1-8p;)/q, is an
integer and, therefore, 8 and qp are coprime for each peAP(l).
Conversely, we assume that (b) holds. By the preceding remark, we
claim that—rp=qp for each pEAP(l). Since rp is a factor of qp,
bp:=(qp/rp) is a positive integer. Then, by (bl), (bp—&pp)/(rpbp) is
an integer and, therefore, bp is a factor of & or pp. Hence we have
bp=1 for each pEAP(l), as required, because neither 8 nor pp has any

common factor with qp.

(bl)=>(cl): Set g=6hP—mESF(N,AP,®). Since Dg=6D(P)+diV(e(m)) and Dg
is ample, g is strictly upper convex and g(n(p))=—(1/rp) for each
pEAP(l). Therefore, by (2.1), the set of vertices of the polar convex
polyhedral set (Dg)O is {—(1/g(n(p)))n(p):pGAP(l)}={rpn(p);pGAP(l)}.
On the‘other hand, ng=5P—m by definition. Therefore (8P—m)o is an
integral convex polytope.

(cl1)=>(bl): Set g=6hP—meSF(N,A§,®). Since g is strictly upper convex

with respect to &p and O€int(8P-m), it follows from (2.1) that the

- 10 -
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vertices set of (5P-m)o is {—(1/g(n(p)))n(p);peAP(l)}. Hence, by
assumption, -(1/g(n(p)))n(p) is an integral vector. Since n(p) is a
primitive vector and geSF(N,AP.Q) is negative-valued,
rp:=—1/(g(n(p)))is a positive integer for each pEAP(l) and
6D(P)+div(e(m))=Dg=2p(l/rp)V(p).

(b2)<=>(c2): Since a supporting hyperplane carried by a facet of P
corresponding to pEAP(l) is Hp={ueMR;<u,n(p)>=hP(n(p))}, a supporting
hyperplane carried by a facet of P is of the form
ﬁp:={(u,x)eMRxR;5x+(1/hP(n(p)))<u,n(p)>=1} or {(u,O)eMRxR}. Since
hP(n(p))=—(pp/qp) and n(p) is a primitive vector, & and qp are

coprime if and only if ﬁpnMxZ is non-empty. Q.E.D.

Remark 2.3.1. Under the condition (b) in the theorem, suppose that
there exist an integer §'<é, a character m'€éM and a positive integer
a, for each peAP(l) such that 6'D+d1v(e(m'))=29(ap/qp)'V(p) (OEAP(l)).
Then we have 8'=8 , m'=m and ap=1 for each pEAP(l). In other words,

we have #(Z'nint(nP))=0 for each 0<n<$ and #(Z'nint(sP))=1. In fact,
we observe that (6'—5)D+d1v(e(m'—m))=§p(ap—1)/qp-V(p) (pEAP(l)). But
D is an ample Q-Cartier divisor. So we have §'=8, ap=1 for each

peAP(l), and m'=m.

Remark 2.3.2. Combining the equivalence between (a) and (c) in (2.2)
and a theorem of Stanley [Stl, theorem 4.4], we recover theorem of
Hibi [Hil1,2]. Our proof makes clear why the condition (c¢2) in (2.2)
is needed, in terms of Demazure's construction. Indeed, let R(X,D) be
a Cohen-Macaulay graded ring obtained from a normal projective
variety X and an ample Q-divisor D=2V(pv/qV)V (V runs through

irreducible subvarieties of codimension 1, qV>O and pV,qV are coprime

- 11 -
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for each V). Then it follows form [Wa,(2.9)] that R(X,D) is
)(d)

Gorenstein if the Veronese subring R(X,D of order d is Gorenstein
for a integer d such that a=0(mod d) and that 4 and qV are coprime

for each V.

Corollary 2.4. For a rational r—polytope P in MR=IRr with M=2" and an
integer 8, the following are equivalent. |
| (a) P is integral and there exists a character meM such that the
polar polyhedral set (8P-m)® for 8P-m is an integral r-polytope;

(b) The Q-divisor D(P) on the mormal projective torus embedding
X(P) over a field k is an ample Cartier divisor. And the invertible

sheaf OX(—SD(P)) i8 igomorphic to the canonical sheaf ®x(p)

Proof. It follows from (1.4) andr(2.2) that (a) holds if and only if
D(P) is a Cartier divisor and there exists a character méM such that

6D(P)+div(e(m))=ZpV(p) (pEAP(l)). Since a canonical divisor K

X(P) on

X(P) is —ZpV(p) (pGAP(l)), (a)ris equivalent to (b). Q.E.D.

Since every Cartier divisor on a normal complete torus embedding
is linearly equivalent to a T-stable Cartier divisor (c.f.[0d1,

(6.1)]), we have:

Corollary 2.5. Let X be a normal projective torus embedding. Then
there exists an ample Cartier divisor D such that R(X,D) is
Gorenstein 1f and only if the canonical sheaf Oy On X 18 isomorphic

to an invertible sheaf OX(—aD) for some aeN.

Theorem 2.6. Every normal projective torus embedding X over a field k

- 12 -
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has a T-stable ample Q-divisor D such that R(X,D) is Gorenstein.

Proof.

By assumption, we may assume that X=TNemb(A) has a T-stable

ample Cartier divisor D of the form D=§papV(p), ap>0 (peEA(1l)). Set

c=L.C.M.{ap;pEA(1)}. By (1.3), we may assume that (X,(l/c)D)

corresponds to a rational polytope P in MR' Then, by (1.5) and (2.2),

R(X,(1/c)D) is a Gorenstein ring with a(R(X,(1/c)D)=-1, as required.
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