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A GENERALIZATION OF THE SECRETARY PROBLEM
WITH UNCERTAIN EMPLOYMENT

FRREZEERE £ & X Tl (Mitsushi tamaki)

ABSTRACT. The secretary problem with uncertain employ-
ment, as Smith (1975) called it, is here generalized.

n rankable candidates appear in random order. Only
their relative ranks are observed. As each candidate
appears, we must decide either to give an offer or not.
When an offer is given, the candidate accepts it with
a fixed probability p(0<p<£l). We continue observasions
until an offer is accepted or the final candidate is
interviewed. Our objective is to examine a strategy
which maximizes the probability of employing the most
preferred available candidate.

1. INTRODUCTION. We first review the classical secretary
problembz n candidates appear one by one in random order with all
n! permutations equally likely. We are able at any time to rank
the candidates that have so far appeared according to some
preference order. As each candidate appears we must decide either
to choose or disregard that candidate with the objective of
maximizing the probability of choosing the best (most preferred)
candidate. It is assumed that each candidate accepts an offer of
employment with certainty and that the disregarded candidate
cannot be recalled later. ‘

To make tﬁe problem more realistic, many authors have
attempted to relax the assumptions imposed on the classical
secretary problem. One modification is to incorporate flexibility
in recalling a previously disregarded candidate. Works along this
line are due to Rose (1984 a,b), Smith and Deely (1975), and Yang
{1974) (see also Petruccelli 1982, and Tamaki 1986, considered in
the full information version). Another modification of interest

is to allow the candidate the right of refuse an offer of
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acceptance. Smith (1975) considered the problem in which the
candidate only accepts an offer wifh a known fixed probability,
under the criterion of maximizing the probability of choosing the
best candidate.

Though Smith's problem is simple and tractable as a first
step, it is unrealistic in that it seeks the overall best rather
than seeking the’best among those who will accept an offer. This
lack of realism motivates our problem. Let us call a candidate
who accepts an offer abajjabje . and say that our trial is a
success if we can choose the best available candidate. As in Smitl
each candidate here is assumed to be available with probability
p(0<p<1l), independent of the rank of that candidate and the
arrangement of the other candidates. Then our problem can be
described as finding a strategy of maximizing the probability of
success, based on both the relative ranks and the availabilities

observed so far.

2. THE OPTIMAL STRATEGY. Imagine a situation where r candidate:
for a position have so far appeared and unsuccessful (unacceptabl:
offers have been made to k of them, 1<k<r<n (the k=0 case is
considered later). This situation is represented by
(r;il,iz,...,ik), where the Jsnformation pattern (il,iz,...,ik)
represents the relative ranks (among the first r candidates) of
these candidates who have declined offers, arranged in the
ascending order, i.e., 1§il<12<...<ik§r. For example, state
(4;1,3) is the situation where unsuccessful offers have been made
to two candidates, who are the best and the third best among the

first four candidates. Further, denote by (r+1;i | il’iz”"’ik)'

2!"'llk)l
we have just observed that the (r+1)St candidate is the ith best

1<igr+1, a situation where, after leaving state (r;il,i

among those that have so far appeared. 1In this situation we must
decide either to make an offer or not.

Let vr(il,i .,ik) be the probability of success, assuming

2'°
we proceed optimally after leaving state (r;il,iz,...,ik). Also
. 3 . . s 3 -
let sr+1(1| 11,12,...,1k)(cr+1(1i 11,12,...,1k)) be the
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corresponding probability when we make an offer to (when we
decline to make an offer to) the current candidate in state
(r+1;1 | il,iz,...,ik) and proceed optimally thereafter. Since,
from the same probability condition on the availability, the
information pattern at hand hés no infuluence on estimating the

future arrival of the remaining candidates we,easily find that

the transition from state (r;il,iz,...,ik) into state
(r+1;1 | il,iz,...,ik) occurs with probability 1/(r+1), independent
of i and of the information pattern (il,iz,...,ik). We thus have

for 1<k<r and 1<r<n-1

(1) vr(11,12,...,1k)
-1 r+i
- s . .
(r+1) ;2 max { Sr+1(1’ 11,12,...,1k),
i=1
cr+1(1l 11,12,...,1k)} .
with the boundary condition vn(il,iz,...,ik)so, 1<k<n
Tq derive the recurrence relation of sr+1(1[ 11,12,...,1k),
define gr+1(i| il,iz,...,ik) as the conditional probability that

the (r+1)St candidate is in fact the most preferred available

candidate, given that this candidate has accepted the offer made

in state (r+1;i| i;,i,,...,i ). It is easily shown that
gr+1(1| 11,12,...,1k) depends on the information pattern
(il,jz,..;,ik) only through the reference number j, the number of
candidates who have received offers and who are more preferred to
the current candidate ((r+1)St candidate). More specifically

J =max| s, 0 £ s £ k : is < i},
where iO is interpreted as 0. Hence, we can denote
gr+1(1| 11,12,...,1k) by gr+1(1,3).

If the candidate rejects the offer given in state
(r+1;1i | 11,12,...,1k), the information pattern (11,12,...,1k) is

changed by incrementing iS by one for s>j+1 and then adding i as

the (j+1)St component (when j=k, this change is interpreted as

only adding i as the (k+1)St component). Thus,
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(2) sr+1(1| 11,12,...,1k)
pgr+1(1,0) +qu (1 i 1,41, 0L i +1)

for 1<i<i, and j=0

1

= pgr+1(1,3) + qu+1(11,12,...,1j,1,1j+1+1,...,1k+1)
and 1<j<k

i .<iLi.
for IJ 1“13+1

pg (i, k) + gv

r+1 re1ligrdgre-eidysd)

for ik<i§r+1 and j=k,

where g=1-p.

Simiraly if we do not make an offer to the candidate, the

information pattern is changed by incrementing is by one for szj+1

(when j=k, no change occurs in the information pattern). = Thus,
(3) Cr+1(1| 11,12,...,1k)
vr+1(11+1,12+1,...,1k+1)
for lgigil and j=0
= Vr%l(ll’lz’f"’1j'1j+1+1"'"lk+1)
for 1;‘.<1§;LJ.+1 and 1<j<k
Vr+1(11'12""'1k) for 1k{1gr+1 and j=k.

To describe the evolution of the process cdmpletely, we must
add situation (r;¢), where no offer has been made to any of the
first r candidates, 1<r<n, and where ¢ is the null set. Also
denote by (r+1;i | ¢) the situation, where after leaving state
(r;4$) we have observed that the (r+1)St candidate is the ith best
among those that have so far appeared, 1<i<r+1. Associated with
these situations are the optimal value functions vr(¢),

sr+1(i} ¢$), and cr+1(i| ¢), which satisfy, for 0<r<n,

r+1l
(4) v.(g) = (r+1) filmax{ Sprplil @)ic (11 8)}
where
(5) Spp1(il @) =pg,. (1,0) + qv, (i)
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and
(6) cr+1(il ¢) = Vr+1(¢)'

The boundary condition is vn(¢)£o.

Once gr(i,j) for 0<j<igr and 1<r<n are given, Equations
(1)-(6) can be solved recursively to yield the optimal strategy
and the probability of success v*=vo(¢).

Assume that we make an offer in state (r;i | il’iZ""'ik)

with the reference number j and that the rth candidate accepts it.
Then the probability that this candidate is the ch best among all

is calculated as

(1) p(olr.4) = (41 (‘r‘:f)/(‘l}) i< s nori,

which is clearly independent of the information pattern
(il,iz,...,ik)(e.g., see DeGroot 1970 or Lindley 1961). On the
other hand, given that the (absolute) rank of the candidate is g,
the conditional probability that this candidate is the best
available is qQ~1_j, since there are g¢-1 better candidates and
only j of them have been already ascertained to be unavailable.

This leads to the following lemna.

LEMMA 1.1. For 0<£j<ifr and 1<r<n,

n-r+i o-i-1
(8) g.(i.3) = = a7 poir.i).
0=1

Though gr(i,j) can be calculated directly from this lemnma,

it is convenient to use the recurrence relation given in the next

lemma in order to establish the monotonicity properties of gr(i,j).

"LEMMA 1.2. gr(i,j) satisfies, for 0<j<igr and 1<r<n,

(9) g9.(1,3) = (r+1)"1{ qig_, (i+1,j+1)+(r+1-i)g_, (i.5))

with the boundary condition gn(i,j)=q1_3n1 for 0<j<ign.

Proof. Simply denote by (r;i,j) the situation (r;i | il,iz,...,ik)

with the reference number j and assume that an offer is given in
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(r;i,j) and the rth candidate accepts it. Then this candidate car

be viewed from three different aspects at time r+1 depending on

the quality and the availability of the (r+1)St candidate. That
is
st . . th
1. If the (r+1) candidate is less preferred to the r ', then
the rth candidate can be regarded as chosen in (r+1;i,j).
2. If the (r+1)St candidate is more preferred to the rth and

unavailable, then the rth

candidate can be regarded as chosen
in (r+1;i+1,j+1).

3. If the (r+1)St candidate is more preferred to the rth and
available, then the chosen candidate cannot be the most
preferred candidate.

Since these three cases occur with probability (r+1-i)/(r+1),

qi/(r+1), and pi/(r+1), respectively, Equation (9) follows.

It is not difficult to show (9) by direct substitution from
(8) . |

Let, for 2< r< n, Ar= v(1i,3)
Br= { (i,3) 0<j<i-1, 1<£igr-1 }, then we can prove the following
lemma by exploiting Lemma 1.2.

0<£j<i-2, 2£i<r },and

LEMMA 1.3. For 2<r<n,

(1) g.(i,3) s g.(i,j+1), for (i,])

(ii) gr(i,j) > gr(i+1,j+1), for (i,Jj)

(ii1) g.(1.,3) 2 g,.(i+1,]3), for (1,])

(iv) 9.(i.J) 2 g._,(i,3), for (i,j)

Proof. Note that‘(iv) follows from (ii) since, from (9),
9,(1.3) = g,._,(3.3) = (i/r){ g.(i,J) — qg.(i+1,j+1)}

We prove (i)-(iii) by induction on r. For r=n, the results are

straightforward from gn(i.j)=q

for r=m+1.

(i)

Then,

hypothesis that,

for each i,

gm+1

i-j-1

Assume that (i)-(iv) hold

The result is immediate from (9) and the induction

(i,j) is nondecreasing in j.
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(ii) From (9)
Ip(1.3) — g, (i+1,3+1)

= (m+1) 710 g, (1.3) - agy,, (i+1,3+1))

m+1
+ (m-i){ g  ,(1.3) - g, (i+1,5+1)}
+q(i+1){ g, (i+1,5+1) - g (i+2,5+2)}]

Thus the result follows from the induction hypothesis for (ii).

(iii) Similarly, from (9)

gm(lt.j) - gm(i+1lJ)

= (1) N4 gy, (.3) - agy, (i+1,5+1))

+ (m=i){ gy, (1,3) = g, (i+1,5)}

(i+1,j+1)

m+1

+ g(i+1){ i+2,j+1) 4]

Im+1 - gm+1(

Thus the result follows from the induction hypothesis for (ii) and
(iii).

The following lemma is important for the characterization of
the optimal strategy. -

LEMMA 1.4. Vr(il'iZ""’ik) is nonincreasing in each argument.

Proof. Define for 1tk

v B i g i) = v (i i i, i i)
177277k s TR S B S £ N ¢
- Vr(ll""’1t~1’1t+1’1t+1""’lk)'
when 1t+1~1t>1 (1k+1 is interpreted as r+1).
Then we need to prove
(t) ~ -4 S >

(10) V. (11,12,...,1k) > 0
for all r, k, and information pattern (il,izf...,ik).
Proof is by induction on r. For r=n, (10) is trivial. Assune
that (10) holds for r=m+l1. Let i£=1t+1' It then follows from (1)
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(t),. . .
Vo (11,12,...,1k)
-1 m+1
= il i i i i i
{m+1) fil[ max { Sm+1(1' 11""'1t—1';t'1t+1""'1k)’
cm+1(1i 11""’1t—1’1t’1t+1’""lk)}
- 1 i 1 it oq i
max { sm+1(1| 11""’lt—l'lt’1t+1"°"1k)'
C . Sy s .
Cppp (3T s endy gedpr Ty qre e dp)}]

Hence, in order to establish (10) for r=m, it suffices to show

that, for each i,

(11) sm+1(i[ il""'it—l’it'it+1'""ik)

- sm+1(i| il""'it~1‘i%’it+1'""ik) =20
and
(12) cm+1(i[ il""’it—l'it'it+1’""ik)

T Cppr(E Ay a3 A g ndy) 20

Straightforward calculation from (2) implies that the left side of
(11) is

(t+1) . s .
CCARDERS ¢ PYRRERS VS VE SUPE S VIR S S Y
for 1 <i<i and 0<s<t,
s s+1
Pl 9y (1:t) — g, (1.t-1))
(t+1) . L .
+ { LR ' ¥ Y}
{ AV Vpep (g igediig 4+ ip+1)
T LN U T IO S S i +1))
m+1 1’ i o "Tt+1 etttk
.
for i if
(), . L -
qu+1(1‘1.-.-,13,1,1S+1+1,...,1k+1)
it <cicd . ‘
for 1%1 . 1S<1=15+1, and t<s<k.

The induction hypothesis and Lemma 1.3 (i) proves (11). Similarly,
from (3), the left side of (12) becomes
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(t)

vm+1(il,...,is,is+1+1,...,ik+1)
for i#i!, is<i§is+1, and 0<s<k,
{ (t),. . .
vm+1(11""lt'1t+1+1""’1k+1)
TINASTE PURUUSE SEUUE CO% VDR PRRROE NES
for i=i{.

This, combined with the induction hypothesis, proves (12). Thus
the proof is complete.

The following theorem is the main result of this paper.

THEOREM 1.5. Assume that we are in state (r;i | il,i .. a1

e ).
2 k
Then there exists, depending on both r and the information pattern

(il'iZ”"'ik)' an integer dr(il,iz,...,ik) in {0,1,...,r }, such

that the optimal policy is to make an offer to the rth candidate

if and only if igdr(il,iz,...,ik), where
dr(11,12,...,1k)
= max{ i : Sr(ll 11,12,...,1k) 2 cr(lj 11,12,...,1k)}

with max(¢)=0.

The equality dr(il,iz,...,ik)=0 corresponds to declining an offer
to the rth candidate, regardless of the value of i. When in state
(r;i| ¢). there exists an integer dr(¢) such that the above
statement holds with dr(il'iZ""’ik) replaced by dr(¢), where

do(¢) =max{ i : s, (i|4)2c (il4))

Proof. It suffices to show that sr(il il,iz,...,ik) is
nonincreasing in i, while cr(i[ il'iz”"'ik) is nondecreasing in
i.

Consider two consecutive intervals (i t] and (i

7 1 3
t—1'1 t'tt41

It follows from (2), Lemma 1.3 (iii), and Lemma 1.4 that

sr(i| il,iz,...,ik) is nonincreasing on each interval. Moreover
we see from (2), and Lemma 1.3 (ii) that



sr(ltl 11,12,...,1k) - Sr(1t+1| 11,12,...,1k)
= i) 7 — — ] ]
= 0.
Thus sr(ll 11,12,...,1k) is nonincreasing.

On the other hand, (3) shows that cr(il il'iZ""'ik) is
constant on each interval. Also we have, as an immediate
consequence of Lemma 1.4,

cr(1t+11 11,12,...,1k) - Cr(lt[ 11,12,...,1k)
N & < . . .
= V. (11""'1t’1t+1+1"'"1k+1)
> 0.
Thus cr(i[ il’iZ" .,ik) is nondecreasing in i. The same

reasoning applies to (5)-(6) in a similar manner.
Table ] presents, for given n and p, the numerical values of
dr(il'iz""’ik) for each r and the possible information pattern

(il'iz""'ik)' Evidently, dn(11,1 .,1k)5n. Take, for exampl

2"
the case n=4 and p=0.5. Since d1(¢)=1, we make an offer to the

ISt candidate and terminate the trial if this candidate accepts

the offer. Otherwise, we continue by observing the 2nd candidate
Thus, in the latter case, we must decide whether to make an offer
to the 2"% candidate based on d,(1), not on d,(¢). That is, only
d2(1) serves as the basis for decision making, which is why

d2(¢) is excluded from Table T

Table ] gives V* as a function of n and p, and Figure 1
illustrates the behavior of v*. This figure suggests that, as n
goes to infinity, v* approaches some limit, which is decreasing i
p.

It is of interest to investigate whether optimal policies
contain threshold policies : a policy is said to be rank—(time-)
isotone if there exists number dr(il,iz,...,ik)(r*(i;il,iz,...,ik

such that the optimal decision in (r;i | il’i .,ik) is to give

g1

. LI - 3
2,...,1k)(rgr (1,11,12,...,1k)).
Theorem 1.5 shows that there exists a rank-isotone optimal policy

an offer if and only if igdr(il,i

10
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Table T

Effective decision numbers for some values of n (the 1St

integer correponds to p=0.5, and the an corresponds to p=0.9)

Decision number

d1(¢) 11 10 10 00 00 00 00

d, (¢) -1 -1 11 10 10 10
d, (1) ' 2 - 2- —-= —-= -= ==

d3(¢) -1 21 11 11 11
d3(1) - 2
dy(1,2) 3- - - -- -- -

N

-

N
!

[y
|

[y
l

d,(4)
d,(1)
d4,(2)

d4(1,2)

w W W W
N
N
sy
N
—
N
o

dg ()

dg (1)
dg(2)
d5(1,2)
d5(1,2,3)

B> W W W
|
|
|
|
|

[
w
|
w
|

dg ()

dg (1)
dg(2)
d6(1,2)
d6(1'2'3)
d6(1,2,3,4)

N

g G > oW W
w W
=W W N

d, ()

d, (1)

d,(2)

dg(1,2)
d,(1,3)
d,(2,3)
d,(1,2,3)
d,(1,2,3,4)
d,(1,2,3,4,5)

(o) IS N ¢ BN S ~ S ]
|

11
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We failed to prove time-isotonicity of the policy given in Theorem
1.5 but Table ] suggests that this policy satisfies time-
isotonicity since dr(il,iz,...,ik) is nondecreasing in r.

It is difficult to analyze the properties of the decision

number dr(il'i .,ik). Table ] suggests that the decision

number is nondicreasing in each argument of the information

pattern among the class of the effective decision numbers.

However, this is not true among the class of all decision numbers ;

e.g., d3(1)=2, d3(2)=1 for n=4 and p=0.9. We present several

conjectures concerning the decision number in light of our

computational experience (Table T)

1. Assume that it is optimal to make an offer to the rth
candidate and that the offer is not accepted. Then it is qlso
optimal to make an offer to the (r+1)St candidate if this

candidate is more preferred to the rth.

2. The number dr(il,iz,...,ik) satisfies the inequality
dr(11,12,...,1k)
< dr(ll""'ls'la’ls+1"“’1k) if ls<1a<ls+1f

3. The number dr(il,iz,...,ik) is nonincreasing in n and p.
Before concluding this paper, we present further properties

of vr(11,12,...,1k).

LEMMA 1.6. Let (i ,i,,...,i,) be the information pattern with
1S+1—1s>1 for some s{0<s<k), where i, and i,4q are interpreted
as 0 and r+1. Then, for integer i, i <i<i ,
s s+1
(13) ) Vr(ll, "ls’ls+1f"°'1k) < Vr(ll,...,ls,l,ls+1,...,lk).
(When s=0 or s=k, interprete (13) as Vr(ll,...,lk)gvr(l,ll, 'lk)
. C Ve . . .
or vr(ll,...,1k):vr(11,...,1k,1).)
When the information pattern is ¢ , vr(¢)gvr(i), 1<£ikr.
Proof. Proof is by induction on r, in the same manner as in Lemna

1.4.

12
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Lemma 1.6 states that Vr(') does not decrease, given
additional information. As an immediate consequence of Lemma 1.6,

we have the following result.

LEMMA 1.7. Assume that we are in state (r;i | il,iz;. .,ik) with
the reference number j. Then it is optimal to make an offer to

the rth candidate if '

(14) g.(i,3) 2 vr(ll....,lj,1,1j+1+1,...,1k+1).

(When j=0 or j=k, interprete (14) as gr(i,o)gvr(i,i1+1,...,ik+1)
) i = i i e, 1 i). '

or g (i,k)zv (1 .1,, pipei)e)

The above statement also holds in state (r;i | ¢) with (14)

replaced by gr(i,O)gvr(i).

Proof. It is optimal to make an offer to the rth candidate in
state (r;i | il,iz,...,ik) if and only if
sr(1} 11,12,...,1k)gcr(1| 11'12f""1k)' which is, from (2)-(3),
equivalent to
(15) p{ g.(i.]j) - Vr(ll’""1j'1j+1+1""'1k+1)}

= i i i. eeo, 1

> Vr(ll,...nlj,13+1+1, ,;k+1)

- vr(ll,...,1j,1,1j+1+1,...,1k+1).

- The right side of (15) is nonpositive from Lemma 1.6, so (14)

implies (15). The latter part follows similarly.

LEMMA 1.8. Let (il,iz,...,ik) be the information pattern with
ls+1—ls>1 and 1t+1—1t>1 for some s and t(0<s<t<k). Then, for
integers i, and iy 1s<1a<1s+1and 1t<1b<1t+1'
vr(ll'""ls’la'ls+1”"’1t’1t+1'""lk)
> v (11'”"ls'ls+1'""lt'lb’1t+1'""lk)
Proof. Since the information pattern
(11,...,ls,ls+1,...,lt,lb,1t+1,...,lk) can be transformed into
(11'""ls'la’ls+1""'1t'1t+1""'1k) by letting ig,171,

ls+2»18+1'..°'1t91t—1'and Jbaltsucce531vely, the result follows

from the repeated use of Lemma 1.4.

13
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Table [

*
Probability of success v for some values of n and p

o
0.1 0.3 0.5 0.7 0.9
1 0.10000 0.30000 0.50000 0.70000 0.90000
2 0.18500 0.46500 0.62500 0.66500 0.58500
3 0.25683 0.54450 0.60417 0.52383 0.51300
4 0.31713 0.57113 0.53646 0.50493 0.47835
5 0.36732 0.56617 0.50729 0.48226 0.44163
6 0.40868 0.54338 0.49879 0.46006 0.43592
7 0.44234 0.52898 0.48697 0.44664 0.42666
8 0.46930 0.51216 0.47336 0.44127 0.41384
9 0.49043 0.50924 0.46158 0.43405 0.4124¢6
0.50652 0.50563 0.45851 0.42537 0.40817
0.51825 0.50048 0.45500 0.42402 0.40168
0.52622 0.49496 0.45030 0.42073 0.40133
0.53097 0.48970 0.44523 0.41692 0.3989¢6
0.5329¢6 - 0.48471 0.44207 0.41408 0.398542
Figure 1
v*
L 0] - A
0. 95, =l
T
\ - "_
0. 80 \ i
0. 75 =7
0. 70 hEN |D: g
0. 65 |
0. 60
0. 55 |
0,500 ° |
0. 45 |
0. 40, |
0. 33 !
0.30 " L |
0. 25 P |
0. 20 ye |
0.15 |
0. 10 'n
0. 05 |

14
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