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Operator Theoretical Approach to Selberg Inequality

久保 京子

Kyoko Kubo

\S 0. Introduction.

In any first course of functional analysis, every student will learn the

Schwarz’ inequality. The inequality is so fundamental that there are several

variants and generalizations. Among them, Bessel’s generalization of the

Schwarz’ inequality is essential in studying the geometry of Hilbert spaces.

In fact, Bessel’s inequality concerns the dimensions of Hilbert spaces, or the

cardinality of orthonormal systems.

It is often pointed out in the course of functional analysis that the or-

thogonality is convenient in comparison with other spaces like Banach spaces.

And the orthogondity is essential in studying harmonic analysis, which con-

cerns the decomposition of any oscillation into harmonic ones $\exp in\theta$ . These

harmonic ones are mutually orthogonal, while non harmonic ones $\exp i\lambda_{n}\theta$

not.

On the other hand, the analytic number theorists have been a user of

the geometry of Hilbert space and they developed the theory of almost or-
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thonormal systems to study sieve method. R.P. Boas [2] and R. Bellman [1]

are the pioneers of those studies. Their inequalities include Bessel’s one. The

most useful of these is the inequality Selberg found:

THEOREM $S$ (cf. [3]). If $x_{1},$ $x_{2},$ $\ldots$ , $x_{n}$ , and $x$ are non zero vectors in

an inner product space, then

$\sum_{*=1}^{n}\frac{|<x|ae_{i}>|^{2}}{\sum_{j=1}^{n}|<x_{i}|x_{j}>|}\leq||ae||^{2}$ .

Recall that Bessel’s inequality is a special case of Selberg’s inequality.

When $ae_{1},$ $x_{2},$ $\ldots,$ $x_{n}$ form an orthonormal system, Selberg’s inequality is re-

duced to

$\sum_{:}^{n_{=1}}|<x|x_{i}>|^{2}$ .

In this talk at 1988-RIMS meeting on operator theory, another proof

of this inequality was given and several generalizations are discussed. So in

the present talk, two more generalizations will be announced. In \S 2, those

inequalities are applied to Wirtinger type inequality. In the last section, a

continuous analogy of Bombieri’s estimate $wiU$ be discussed. The detail$s$ are

published later in other place.

\S 1. Generalizations.

Since Selberg’s inequality was developed as an inequality for almost

orthonormal system with Bessel’s one in mind, it is natural to consider the
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inequality for infinite almost orthonormal systems. At first, one obtains the

countably infinite case as the limit of the monotone increasing sequence

$\sum_{i=1}^{n}\frac{|<x|x_{i}>|^{2}}{\sum_{j=1}^{\infty}|<x_{i}|x_{j}>|}\leq||x||^{2}$ .

THEOREM 1. If $x_{1},$ $x_{2},$ $\ldots$ , $x_{n},$ $\ldots$ , and $x$ are non zero vectors in an

inner product space, then

$\sum_{i=1}^{\infty}\frac{|<x|x_{i}>|^{2}}{\sum_{i=1}^{\infty}|<x_{i}|x_{j}>|}\leq||x||^{2}$ .

The convergence of vector sequence in an inner product space can gener-

alized to the concept of summable system of vectors. As Halmos [4] pointed

out, the concept of the summabilty is more of a notational convenience than

a great generalization of the more elementary concept of infinite series. His

point-out still alive for Selberg type inequality for non orthonormal uncount-

able systems. But in any way, the finite case can be generalized to uncount-

able case in the sense of summability:

THEOREM 2. If $\{x_{\iota}\}_{\iota\in J}$ , and $x$ are non zero vectors in an inner product

space, then

$\sum_{\iota\in J}\frac{|<x|x_{\iota}>|^{2}}{\sum_{\kappa\in J}|<x_{\iota}|x_{\hslash}>|}\leq||x||^{2}$ .

It is an elementary exercise that if $x,$ $y$ form an orthonormal pair, then

their distance is exactly $\sqrt{2}$. Thus there are no continuous functions whose
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values are orthonormal vectors in $’\kappa$ on a topological space, say $[0,1]$ . How-

ever, Selberg’s inequality needs no orthonormality. Thus one may generalize

the inequality for continuous functions on some topological space.

THEOREM 3. Let $\mu$ be a regular Borel measure on a compact Hausdorff

space $X$ $and/\mathcal{H}$ be an inner product space. If a never vanishing function

$x(\cdot)$ : $Xarrow H$

is continuous, then

$\int_{X}\frac{|<x|x(t)>|^{2}}{\int_{X}|<x(t)|x(s)>|d\mu(s)}d\mu(t)\leq||x||^{2}$ .

REMARK. A function

$x(\cdot)$ : $Xarrow H$

is said to be never ranishing iff

$\forall t\in X$ ; $z(t)\neq 0$ .

The conditions of this theorem are direct analogies of THEOREM S.

\S 2. Application 1.

There are some applications of THEOREM 3. At first, an inequality of

Wirtinger’s type $wiU$ be discussed.
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Let $X=[0,2\pi]$ with the usual topology and the normalized Lebesgue

measure $dt/2\pi$ . A $\ell^{2}$-valued never vanishing function is defined by

$x(t)=( \frac{exp(int)}{n}I$ $(t\in[0,2\pi])$

because

$\sum_{n=1}^{\infty}|\frac{exp(int)}{n}|^{2}=\sum_{n=1}^{\infty}\frac{1}{n^{2}}=\frac{\pi^{2}}{6}<+\infty$.

Suppose that $(\xi_{n})_{n=1}^{\infty}\in t^{2}$ satisfies further that

$(n\xi_{n})_{n=1}^{\infty}\in\ell^{2}$ .

The $H^{2}(T)$-function with Fourier coefficient $\xi_{n}$ will be denoted by $f$ :

$f(t)= \sum_{n=1}^{\infty}\xi_{n}\exp(int)$ (in $L^{2}$ –sense).

Then by applying THEOREM 3 to $x=(n\zeta_{n})_{n=1}^{\infty}\in t^{2}$ , one has

$\int_{0}^{2\pi}|<x(t)|x(s)>|ds/2\pi$

$= \int_{0}^{2\pi}|\sum_{n=1}^{\infty}\frac{1}{n^{2}}exp(int)\overline{exp(ins)}|ds/2\pi$

$= \int_{0}^{2\pi}|\sum_{\mathfrak{n}=1}^{\infty}\frac{1}{n^{2}}\exp(in(t-s))|ds/2\pi$ ,

and

$|<x|x(t)>|^{2}=| \sum_{n=1}^{\infty}n\xi_{n}\cdot\frac{exp(int)}{n}|^{2}=|\sum_{n=1}^{\infty}\xi_{n}\exp(int)|^{2}=|f(t)|^{2}$ .

Thus

$\int_{0}^{2\pi}\frac{|f(t)|^{2}}{\int_{0}^{2\pi}|\sum_{n}^{\infty_{=1}}\frac{1}{n^{2}}\exp(in(t-s))|ds/2\pi}dt/2\pi\leq\sum_{n=1}^{\infty}n^{2}|\xi_{n}|^{2}$

$= \int_{0}^{2\pi}|f^{t}(t)|^{2}dt/2\pi$ .
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Since the normalized measure $ds/2\pi$ is translation invariant, one has the

following inequality.

THEOREM 4. If $f,$ $f’\in L^{2}$ , then

$\int_{0}^{2\pi}|f(t)|^{2}dt/2\pi\leq(\int_{0}^{2\pi}|\sum_{n=1}^{\infty}\frac{1}{n^{2}}e^{:}nt|dt/2\pi)(\int_{0}^{2\pi}|f’(t)|^{2}dt/2\pi)$ .

\S 3. AppIication 2.

In this section, a continuous analogy of Bombieri’s inequality will be

given.

In Bombieri’s text [3], the following estimate of truncated $t^{2}$ -norm of

truncated Fourier series is given:

THEOREM B. Let $x_{1},$ $x_{2},$ $\ldots,$ $x_{R}$ is a sequence of real numbers of mod-

ulus 1, that satisfies

$\min\{dist(x_{i}-x_{j}, Z) : 1\leq i\neq j\leq R\}\geq\delta>0$ ,

and $N\in Z$ , with $N\geq 0$ . Then for any $a_{-N},$ $a_{-N+1},$ $\ldots,$ $a_{N-1},$ $a_{N}\in C_{l}$

$\sum_{j=1}^{R}|\sum_{n=-N}^{N}a_{n}\exp(2\pi inx_{j})|^{2}\leq(2N+\frac{2}{\delta})\sum_{n=-N}^{N}|a_{n}|^{2}$ .

The core of his proof is Selberg’s inequality in an inner product space.

Thus the truncated $L^{2}$-norm of truncat $ed$ Fourier transform will be estimated

in terms of $L^{2}$-norm of the original function.
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THEOREM 5. Let $T,$ $L,$ $R\in R$ be positive real numbers satisfy $ingT+$

$L\leq R.$ If $f$ is a square integrable function on the real line $R$ with support

$supp(f)\subset[-T, T]$ , then

$\int_{-R}^{R}|\int_{-T}^{T}f(s)e^{i}{}^{t}ds|^{2}dt\leq 8\sqrt{\frac{2T+L}{L}}\int_{-T}^{T}|f(t)|^{2}dt$ .

PROOF. Let

$X=[-R, R],$ $d\mu$ : Lebesgue measure on $[-R, R],$ $H=L^{2}(X)$ ,

in THEOREM 3. And the constant vector $x$ in sc Theorem 3 is the restriction

of $f$ onto $X=[-R, R]$ . And the never vanishing function $x(\cdot)$ in THEOREM

3 will be chosen in the following manner:

$\phi_{\ell}(s)$ $:=\{\begin{array}{l}exp(-its)if|s|\leq T0^{\frac{l}{L}}((T+L-|s|))^{l/2}exp(-it\epsilon)ifT<|s|\leq T.+LifT+L<|s|\end{array}$

And

$\forall t\in X$ ; $z(t)$ $:=\phi_{\ell}\in L^{2}(X)=:?t$ .

The numerator of the inequality in THEOREM 3 is given by

$|<x|x(t)>|^{2}=| \int_{-R}^{R}f(\epsilon)\overline{\phi_{\ell}(s)}ds|^{2}$

$=| \int_{-T}^{T}f(s)\overline{\phi_{t}(s)}ds|2 =| \int_{-T}^{\tau}f(s)\exp(its)ds|^{2}$

The right hand side of the inequality in THEOREM 3 is given by

$||x||^{2}=||f||^{2}= \int_{-T}^{T}|f(t)|^{2}dt$ .
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The denominator of the inequality is left. For each $t,$ $u\in X$ , one has

$<x(t)|x(u)>$

$=<\phi_{\ell}|\phi_{u}>$

$\int_{=\frac{1}{L}}-\tau^{+_{-\tau^{\phi_{t}(s)\overline{\phi(s)}ds}}}\tau L\int_{-T-L}^{-L}^{=}(T+^{u}L-|s|)e^{i(u-\ell)\iota}ds$

$+ \int_{-T}^{\tau}e^{*(u-t)}ds$

$+ \frac{1}{L}\int_{T^{T+L}}(T+L-|s|)e^{i(u-\ell)\iota}ds$

$= \frac{1}{L}\{\int_{-(\tau+L)}^{T+L}(T+L-|\ell|)^{:(\tau\iota-t)}ed\epsilon-\int_{-}\tau_{\tau^{(T-|S|)^{:(u-t)}}}eds\}$ .

To avoid a redundancy, one has only to calculate the following:

$\int_{-M}^{M}(M-|s|)e^{ia}ds$

$= \int_{-M}^{0}(M-|\ell|)e:a\cdot d\epsilon+\int_{0}^{M}(M-|\epsilon|)e^{ia}d\epsilon$

$= \int_{M^{0}}(M-t)e^{-:}a(-1)dt+\int_{0}^{M}(M-s)e^{ia}ds$

$= \int_{0}^{M}(M-t)e^{-iat}dt+\int_{0}^{M}(M-t)e:atdt$

$=2 \int_{0}^{M}(M-t)\cos$ atdt

$=2 \{[\frac{M}{a}\sin at]_{0}^{M}-[\frac{t\sin at}{a}+\frac{\cos at}{a^{2}}]_{0}^{M}\}$

$=2 \{\frac{1}{a^{2}}-\frac{\cos aM}{a^{2}}\}$

$=( \frac{\sin\frac{a}{2}M}{(\frac{a}{2})})^{2}$
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Thu$s$ one has further that

$<x(t)|x(u)>$

$=<\phi_{\ell}|\phi_{u}>$

$= \frac{1}{L}\{(\frac{\sin\frac{u-t}{2}(T+L)}{(\frac{u-\ell}{2})})^{2}-(\frac{\sin\frac{u-\ell}{2}T}{(\frac{u-\ell}{2})})^{2}\}$ .

Recalling the graph of the function

$\frac{\sin t}{t}$

the integrand of the denominator has a bound even in the neighborhood of

zero:

$|< \phi_{t}|\phi_{u}>|=\frac{1}{L}|(\frac{\sin\frac{u-t}{2}(T+L)}{(\frac{u-t}{2})})^{2}-(\frac{\sin\frac{u-t}{2}T}{(\frac{u-\ell}{2})})^{2}|$

$\leq\frac{(T+L)^{2}-T^{2}}{L}=\frac{2TL+L^{2}}{L}=:K$.

It has another bound if $u\neq t$ :

$|<\phi_{\ell}|\phi_{u}>|$

$= \frac{1}{L}|(\frac{\sin\frac{u-\ell}{2}(T+L)}{(\frac{u-t}{2})})^{2}-(\frac{\sin\frac{u-\ell}{2}T}{(\frac{u-t}{2})}I^{2}|$

$= \frac{4}{L(u-t)^{2}}|(\sin\frac{u-t}{2}(T+L))^{2}-(\sin\frac{u-t}{2}T)^{2}|$

$\leq\frac{4}{L(u-t)^{2}}$

The next step is to obtain the integral of $|<x(t)|x(u)>|$ over
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$u\in[-R, R]$ . By a translation $r:=u-t$ , the integral is given by

$\int_{-R}^{R}|<\phi_{\ell}|\phi_{u}>|du$

$= \frac{1}{L}\int_{-R}^{R}|(\frac{\sin\frac{u-t}{2}(T+L)}{(\frac{u-t}{2})})^{2}-(\frac{\sin\frac{u-\ell}{2}T}{(\frac{u-\ell}{2}]})^{2}|du$

$= \frac{1}{L}\int_{-R-t}^{R-\ell}|(\frac{\sin_{\overline{2}}’(T+L)}{(_{\overline{2}}’)})^{2}-(\frac{sin.\frac{}{2}T}{(\frac{}{2})}I^{2}|dr$

$= \frac{1}{L}(\int_{-R-t}^{-\epsilon}+\int_{-\epsilon}^{\epsilon}+\int_{\epsilon}^{R-t})|(\frac{\sin\frac{\prime}{2}(T+L)}{(\frac{\tau}{2})})^{2}-(\frac{\sin\frac{}{2},T}{(\frac{\tau}{2})})^{2}|dr$

$\leq(\int_{-R-t}^{-\epsilon}+\int_{\epsilon}^{R-t}()\frac{4}{Lr^{2}}dr+\int_{-\epsilon}^{\epsilon}\frac{2TL+L^{2}}{L}dr$

$= \frac{4}{L}[\frac{-1}{r}]_{-R-\ell^{+\frac{4}{L}}}^{-\epsilon}[\frac{-1}{r}]_{\epsilon}^{R-\ell}+2\epsilon\frac{2TL+L^{2}}{L}$

$= \frac{4}{L}(\frac{2}{\epsilon}-(\frac{1}{R-t}+\frac{1}{R+t}))+2\epsilon\frac{2TL+L^{2}}{L}$

$\leq 8\sqrt{\frac{2T+L}{L}}$ ,

by choosing

$\epsilon=\frac{2}{\sqrt{2TL+L^{2}}}$

From THEOREM 3, one obtains that

$\int_{-R}^{R}\frac{|\int_{-T}^{T}f(\epsilon)e^{i\ell t}d\epsilon|^{2}}{8\sqrt{\frac{2T+L}{L}}}\leq||f||^{2}=\int_{-T}^{T}|f(t)|^{2}dt$ ,

which is the desired result.

Q.E.D.
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