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ENTROPY for CANONICAL SHIFTS

Marie CHODA

Department of Mathematics, Osaka Kyoiku University

\S 1. Introduction.

The notion of the entropy fox *-automorphisms of finite von Neumann algebras is intro-

duced by Connes and $St\emptyset rmer$ ([3]). In the previous paper [2], we defined the entropy for

$*$ -endomorphisms of finite von Neumann algebras as an extended version of it. It is possi-

ble to define the entropy for a general completely positive linear map a using results in [4]

by a similar method to one for $*$-endomorphisms. However, the formula of the definition

of the entropy for ev implies that the entropy is apt to be $zeIO$ if $\alpha^{k}$ converges to $\alpha$ when

$k$ tends to infinity. The conditional expectation is a trivial example of such a map $\alpha$ . For

that reason, the interesting completely positive map a for us to discuss the entropy are

those which have the property that $\alpha^{A}$ goes away from rv as $k$ tends to infinity.

In this paper, we shall study such a class of $*$-endomorphisms of injective finite von

Neumann algebra.$s$ .

In \S 3, we shall introduce, for a $*$-endomorphism $\sigma$ of an injective finite von Neumann

algebra $A$ , the notion of an n-shift on the tower $(A_{j})_{j}$ of finite dimensional von Neumann

subalgebras of $A$ which generates $A$ and we $0$ btain the formula of the entropy $H(\sigma)$ for an

n-shift $\sigma$ .

In the work [8] on the classification for subfectors of the hyperfinite type $Ih$-factor,

Ocneanu introduced a special kind of endomorphism which is called the canonical shift
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on the tower of relative commutants. The $*$ -endomorphism $K^{\cdot}1S$ a generalization of the

$co$ multiplication for Hopf algebras and also considered as the canonical $i$’hift on the $silll\iota g$

algebras. In a part, $\Gamma$ has similar properties to the canonical endomorphism of an inclusion

of infinite von Neumann algebras due to Longo [7].

The canonical shift $\Gamma$ naturally induces a 2-shift for the injective finite von $\backslash _{A}\tau_{eumann}$

algebra $A$ which generated by the tower $(A_{j})_{i}$ of relative commutants and the entropy

$H(\Gamma)$ is determined by the following :

$H( \Gamma)=\lim_{karrow\infty}\frac{H(A_{2k})}{k}$ .

For $a^{*}$-endomorphism $\sigma$ of a von Neumann algebra $A$ , the entropy $H(\sigma)$ is a conjugacy

invariant, that is, if there is an isomorphism $\theta$ of $A$ onto a von Neumann algebra $B$ such

that $\theta\sigma=\phi\theta$ for $a^{*}$-endoinorphism $\phi$ of $B$ , then $H(\sigma)=H(\phi)$ . On the other hand, two

conjugate $*$ -endomorphisms $\sigma$ and $\phi$ of $A$ give two conjuga{e von Neumann subalgebras

$\sigma(A)$ and $\phi(A)$ under automorphisms of $A$ .

In [9], Pimsner and Popa introduced two conjugacy invariants for von Neumann subal-

gebras. One is the relative entropy $H(A|B)$ for a von Neumann subalgebra $B$ of a finite

von Neumann algebra $A$ , which is defined an extended veIsion of one for finite dimensional

algebras due to $Connes- St\emptyset rmer[3]$ . The other is the constant $\lambda(A, B)$
} which plays a

role hke the index for subfactors due to Jones [6]. In fact in the cas $e$ of factors $B\subset A$ ,

$\lambda(A, B)^{-1}$ is Jones index $[A:B]$ .

We shall investigate relations among those invariants.

In \S 4, we restrict our attension to finite dimensional von Neumann algebras. We need

those results later The Jones index for a subfactor $N$ of a finite factor $M$ is given as

$1/\tau(e)$ for the projection $e$ of $L^{2}(M)$ onto $L^{2}(N)$ where $\tau$ is the trace on the basic extension

algebra of N C $M$ . In the case of finite dimensional von Neumann algebras, we shall show

that the constant $\lambda(, )^{-1}$ coinsides with Jones index in such a sense.
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In \S 5, it is obtained that in general the following relation holds for an n-shift $\sigma$ :

$H(A|\sigma(A))\leq 2H(\sigma)$ .

A condition that the equality holds is also given.

In \S 6, we shall obtain the relation between $H(\sigma)$ and the constant $\lambda(A, \sigma(A))$ . We shall

define a locally standard tower for an increasing sequence $(A_{j})_{j}$ of finite dimensional von

Neumann algebras. The tower $(A_{j})_{j}$ of relative commutants for the inclusion of finite

factors $N\subset$ fui satisfies this condition. If a $*$ -endomorphism $\sigma$ of $A$ is an n-shift on a

locally standard tower which generates $A$ , then we have the following:

$H(A|\sigma(A))\leq 2H(\sigma)\leq\log\lambda(A, \sigma(A))^{-1}$ .

In \S 7, we shaJl apply the above results to the canonical shift $\Gamma$ for the tower of relative

commutants. Let N C $M$ be type $II_{1}$-factors with the finite index. ConsideIing the

tower $(M_{j})_{j}$ of factors obtained by iterating Jones basic construction from $N\subset M$ , it is

obtained the increasing sequence $(A_{j})_{j}$ of finite dimensiond von Neumann algebras, where

$A_{j}=M’\cap M_{j}$ . The *-endomorphism $\Gamma$ is defined on the algebra $\bigcup_{j}A_{j}$ as a mapping such

that $\Gamma(M_{k}’\cap M_{j})=M_{k+2}^{l}\cap M_{j+2}$ for all $k\leq j$ . First, we remark that $\Gamma$ is extended to the

trace preserving *-endomorphism of a finite von Neumann algebra $A=\cup;(A_{j})^{l/}$ . Then $\Gamma$

has an ergodic property that

$\bigcap_{k}\Gamma^{k}(A)=C1$

and satisfies the $co$nditions of Definition for a $2- s$ hift, except only one. In order that $\Gamma$

satisfies all conditions for 2-shifts, a condition for the inclusion $NCM$ is necessary. For

example, in the case where $N’\cap M=C1,$ $\Gamma$ is a 2-shift and the following relation holds :

$H(A|\Gamma(A))\leq 2H(\Gamma)\leq 2\log[M : N]$ .

Furthermore, if the inclusion N C $M$ has finite depth ([8], [12]), then we have :

$H(M|N)=H(\Gamma)=\log[M : N]^{-1}$ .
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In \S 8, we shall discuss conditions for $a^{*}$-endomoiphism $\sigma$ of a factor $M$ to be extended to

an automorphism $\theta$ of a factor containing $M$ so that $H(\sigma)=H(\theta)$ . If the inclusion N C $M$

has finite depth, then $\Gamma$ is extended to an ergodic $*$ -automorphism $\Theta$ which satisfies the

following :

$H(M|N)=H(\Theta)=H(\Gamma)=\log[M\cdot N]^{-1}$ .

\S 2. Preliminaries.

In this section, we shall fix the notations and terminologies frequently used in {his paper.

Throughout this section, $M$ will be a finite von Neumann algebra with a fixed normal

faithful trace $\tau,$ $\tau(1)=1$ . The inner product $<x,$ $y>=\tau(xy^{*})$ gives $M$ as a vector space

the structure of a pre-Hilbert space. Let $||x||=\tau(x^{*}x)^{1/2}$ and $L^{2}(M, \tau)$ the Hilbert space

completion of $M$ . Then $M$ acts on $L^{2}(M, \tau)$ by the left multiplication. The canonical

conjugation on $L^{2}(M_{2}\tau)$ is denoted by $J=J_{M}$ . It is the conjugate unitary map induced

by the involution $onM$ . For a von Neumann subalgebra $N$ of $M$ , let $e_{N}$ be the orthogonal

projection of $L^{2}(M, \tau)$ onto $L^{2}(N, \tau)$ . Then the restriction $E_{N}$ of $e_{N}$ to $M$ is the faithful

normal conditional expectation of $M$ onto $N$ .
The letter $\eta$ designates the function on $[0, \infty$ ) defined by $\eta(t)=-tlogt$ . For each $k$ , we

let $S_{k}$ be the set of all families $(x_{i_{1},i_{2,\ldots,k}}.)_{i_{J}\in N}$ of positive elements of $M$ , zero except for

a finite number of indices and satisfying

$\sum_{i_{1},\ldots,i_{J},i_{k}}\ldots x_{i_{1},\ldots,i_{k}}=1$
.

For $x\in S_{k},$ $j\in 1,2,$
$\ldots,$

$k$ and $j_{j}\in N$ , put

$x_{i}^{j_{1}}= \sum_{i_{j}1\cdots,-1:_{J+1},\ldots,i_{k}}x_{i_{1},i_{2},\ldots,:_{k}}$
.

Let $N_{1},$ $N_{2},$
$\ldots,$

$N_{k}$ be finite dimensional von Neumann subalgebras of $M$ . Then

$H(N_{1}, \ldots, N_{k})=s_{up_{x\in S_{k}}[\sum_{i_{1^{1}k}}x_{1_{1_{J}}\ldots\iota_{k}}}\eta\tau()-\sum_{J*}\sum_{j}\tau\eta E_{N_{j}}(x_{i}^{j_{j}})]$
.
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Let $\sigma$ be a $\tau$ -pIeserving $*$-endomorphism of $M$ and $N$ a finite dimensional von Neumann

subalgebra of $M$ , then

$H(N, \sigma)=\lim_{karrow\infty}\frac{1}{k}H(N\rangle\sigma(N), \ldots, \sigma^{k-1}(N))$

exists by [2]. The entropy $H(\sigma)$ for $\sigma$ is defined as the supremum of $H(N, \sigma)$ for all finite

dimensional subaJgebras $N$ of $M$ .

If there exists an increasing sequence $(N_{j})_{i}$ of finite dimensional subalgebras which

generates $M$ , then by [2]

$H( \sigma)=\lim_{jarrow\infty}H(N_{j}, \sigma)$ .

The relative entropy $H(M1^{N)}$ for a von Neumann subaJgebra $N$ of $M$ is defined ([10])

as an extension form of one ([3]) by

$H(M|N)=Sup_{x} \in s_{1}\sum_{i}[\tau\eta(x;)-\tau\eta E_{N}(x_{i})]$ .

This $H$( $M$ I $N$ ) is a conjugacy invariant for subalgebras of $M$ . Another conjugacy

invariant $\lambda(M, N)$ is introduced in [10] as a generalization of Jones index defined by

$\lambda(M,N)=\max\{\lambda\geq 0;E_{N}(x)\geq\lambda x, x\in M_{+}\}$ .

For an inclusion N C $M$ of finite von Neumann algebras, the von Neumann algebra

on $L^{2}(M, r)$ generated by $M$ and $e=e_{N}$ is called the standard basic extension (or basic

construction) for NC $M$ and denoted by $M_{1}=<M,$ $e>$ . Then by the properties of

$J=J_{M}$ and $e=e_{N}$ , we have $M_{1}=<M,$ $e>=JN$ ‘ $J([6])$ . If $M_{1}$ is finite and if there is

a trace $\tau_{1}$ on $M_{1}$ such that $\tau_{1}(xe)=\lambda\tau(x)$ far all $x\in M$ , then the trace $\tau_{1}$ is called the
$s$

$\lambda$-Markov trace for N C $M$ . If $M\supset N$ are factors and there is the $\lambda$ -Markov trace of $M_{1}$

for $N\subset M$ , then Jones index $[M : N]=\lambda^{-1}$ ([6]).

We shall call an increasing sequence $(M_{j})_{j\in N}$ of von Neumann algebras a standard tower

(cf. [5], [9], [13]) $ifM_{j-1}CM_{j}CM_{j+1}$ is the basic construction obtained from $M_{j-1}CM_{j}$

for each $j$ .
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Let $L$ be a finite factor containing $M$ . We shall call $L$ the algebraic basic construction

for the factors $N\subset M$ if there is a non zero projection $e\in M$ satisfying :

(i) $exe=E_{N}(x)e$ for $x\in M$

and

(ii) $L$ is generated by $e$ and $M$ as a von Neumann algebra.

In this case, there is an isomorphism $\phi$ of $M_{1}$ onto $L$ such that $\phi(e_{N})=e$ and $\phi(x)=x$

for all $x\in M$ ([11]).

We $shaU$ call such a projection $e$ the basic projection for N C $M$ and a decreasing

sequence $(N_{j})_{j\in N}$ of finite factors a standard tunnel (cf. [5], [9], [13]) if $N_{j-1}\supset N_{j}\supset N_{j+1}$

is the algebraic basic construction for $N_{j}\supset N_{j+1}$ for each $j$ .

\S 3. Entropy of n-shift

In this sectio $n$ , we shall give the definition of n-shifts and a formula $0\{the$ entropy for

n-shifts. Let $A$ be an injective finite von Neumann algebra with a fixed faithful normal

trace $\tau$ , with $\tau(1)=1$ . Let $(A_{j})_{j=1,2},.$ . be an increasing sequence of finite dimensional von

Neumann algebras such that $A=the$ weak closure of $\bigcup_{j}A_{i}=\{A_{j} : j\}^{l\prime}$ . Assume that $\sigma$

is a r-preserving *-endomorphism of $A$ . Then $\sigma$ is a ultra-weakly continuous, one to one

mapping with $\sigma(1)=1$ .

Deflnition 1. Let $n$ be a natural number. A $\tau$-preserving $*$-endomorphism $\sigma$ of $A$ is

called an n-shift on the tower $(A_{j})_{j}$ for $A$ if the following conditions are satisfied:

(1) For all $j$ and $m$ , the von Neumann algebra $\{A_{j},\sigma(A_{j}), \ldots, \sigma^{n}(A_{j})\}^{fl}$ generated by

$\{\sigma^{j}(A_{j});j=0, \ldots, m\}$ is contained in $A_{i+n’ n}$ .

(2) There exists a sequence $(k_{j})_{j\in N}$ of integers with the properties:

$\lim_{jarrow\infty}\frac{nk_{j}-j}{j}=0$

and
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$x\sigma^{m}(y)=\sigma^{m}(y)x$ , $\tau(z\sigma^{lk_{j}}(x))=\tau(z)\tau(x)$

for all $l\in N,$ $x,$ $y\in A_{j},$ $m\in k_{j}N$ and $z\in\{A_{j}, \sigma^{k_{j}}(A_{j}), \ldots, \sigma^{(1-1)k_{J}}(A_{j})\}^{li}$ .

(3) Let $E_{B}$ be the conditional expectation of $A$ onto a von Neumann subalgebra $B$ of

$A$ . Then for an $j\geq n$

$E_{A_{j}}E_{\sigma(A_{j})}=E_{\sigma(A_{j-n})}$

(4) For each $j$ , there exists a $\tau$-preserving $*$-automorphism or antiautomorphism $\beta$ of

$A_{nj+n}$ such that $\sigma(A_{nj})=\beta(A_{nj})$ .

Remark 1. The number $n$ of an n-shift depends on the choice of the sequence $(A_{j})_{j}$ .
Every given n-shift can be l-shift on a suitable tower for the same von Neumann algebra.

Example 1. Let $S$ be the *-endomorphism corresponding to the translation of 1 in the

infinite tensor product $R=\otimes_{:\in N}(M;, tr;)of$ the algebra $M_{i}$ of $mxm$ matrices with the

normalized trace $tr_{1}$ on $M$; for each $i\in N$ . For each $j$ , let $A_{j}=\otimes_{1=1}^{j}(M_{1}\cdot, tr_{i})$ . Then for

all $n,$ $S$“ is an n-shift on the tower $(A_{j})_{j}$ for $R$.

In fact, for an $n\in N$ , let $k_{j}=1_{n}^{L}$] $+1$ . Then $(k_{i})_{j}$ satisfies the following properties (2’)

which are stronger than (2):

$\lim_{jarrow\infty}\frac{nk_{j}-j}{j}=0$

and

$x\sigma^{m}(y)=\sigma^{nb}(y)x$ , $\tau(z\sigma^{lk}(x))=\tau(z)\tau(x)$

for all $l\in N,$ $x,$ $y\in A_{l},$ $k_{i}\leq k,$ $m\in N$ and $z\in\{A_{j}, \sigma^{k}(A_{j}), \ldots, \sigma^{k(l-1)}(A_{i})\}^{ll}$ . It is

obvious that another conditions are satisfied by $S^{n}$ .
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Exanple 2. Let $(e;)_{j}$ be the sequence of projections with the following properties for

some natural number $k$ and $\lambda\in(0,1/4$ ] $\cup\{1/(4cos^{2}(\pi/n))n\geq 3\}$ .

(a) $e,e_{j}e_{j}=\lambda e_{i}$ if $|i-j|=k$

(b) $e_{i}e_{j}=e_{j}e_{i}$ if $|i-j|\neq k$

(c) $(e_{j})_{j}$ generates the hyperfinite type $\coprod_{1}$ -factor $R$

(d) $\tau(we_{i})=\lambda\tau(u;)$ for the trace $\tau$ of $R$ and a reduced word $w$ on {1} $e_{1},$
$\ldots,$ $e_{i-1}$ }.

Let $A_{j}$ be the von Neumann algebra generated by $\{e_{1}, \ldots, e_{j}\}$ . Then, by [6], $A_{J}$ is finite

dimensional. Let $\sigma$ be the $*$-endomorphism of $R$ such that $\sigma(e_{i})=e_{i+1}$ ([1]). Then $\sigma^{n}$ is

an n-shift on the tower $(A_{j})_{j}$ of $R$ for all $n$ . In fact, for an $n\in N$ , let $k_{j}$ $= \iota\frac{j+k}{n}$ ] $+1$ .

Then $(k_{j})_{j}$ satisfies propeIties (2’) in Example 1. The condition (3) and (4) are satisfied

by using results by [6] and [1].

In \S 7, we shall show that the canonical shift due to Ocneanu is a 2-shift on the tower of

relative commutant algebras.

Theorem 1. If a $\tau- preserving^{*}$-endomorphism $\sigma$ of $A$ satisfies the condition (1) and

(2) in Definition 1 for the tower $(A_{j})_{j}$ of $A$ , then

$H( \sigma)=\lim_{karrow\infty}\frac{H(A_{nk})}{k}$ .

\S 4. Finite dimensional algabras.

In this section, $M$ will be a finite dimensionaJ von Neumann algebra and $\tau$ a fixed faithful

normal trace of $M$ with $\tau(1)=1$ . Then $M$ is decomposed into the direct summand:

$M= \sum_{1\in K}\oplus M_{l}$

where $M_{l}$ is the algebra of $d(l)xd(l)$ matrices and $K=K_{M}$ is a finite set. Then

the vector $d_{M}=d=(d(l))_{l\in K}$ is called the dimension vector of $M$ . The column vector

8
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$t_{M}=t=(t(l))_{l\in K}$ has $t(l)$ as the value of the trace for the minimal projections in $M_{1}$ ,

and is called the trace vector of $\tau$ . Let $N$ be a von Neumann subalgebra of $M$ with

$N= \sum_{k\in K_{N}}\oplus N_{k}$ . The inclusion matrix $[Nrightarrow M]=(m(k, l))_{k\in K_{N},1\in K_{Af}}$ is given by

the number $m(k, l)$ of simple components of a simple $M_{l}$ module viewed as an $N_{k}$ module.

Then

$d_{N}[N^{\llcorner}arrow M]=d_{M}$ and $[Nrightarrow M]t_{M}=t_{N}$ .

Here we shall give a simple formula for $\lambda(M, N)$ .
By the definition of the basic construction of N C $M$ , there is a natural isomorphism

between the centers of $N$ and $<M,$ $e>viaxarrow JxJ$ . Hence there is a natural identification

$b$ etween the sets of simple summands of $N$ and $<M,$ $e>$ . We put $K=K_{N}=K_{<M,e]>}$ .

The following theorem assures that in the case of finite dimensiona} von Neumann alge-

bras, the $co$ nstant $\lambda($ . $)$ plays the same role as the index for finite factors.

Theorem 2. (1) Assume that there is a trace of $<M,$ $e>$ which is an extension of $\tau$ .

Then

$\lambda(<M, e>, M)^{-1}=\max\frac{t_{N}(k)}{i_{<M,e>}(k)}k\in K$

(2) If the trace $\tau$ of $<M,$ $e>has$ the $\tau(e)$-Markov property, then

$\lambda(<M, e>,M)^{-1}=1/\tau(e)=||[N-\succ M]||^{2}$

Definition 2. Let N C M C $L$ be an inclusion of finite dimensional von Neumann

algebras. Then $L$ is said to be the algebraic basic construction for N C $M$ if there is a

projection $e$ in $L$ satisfying

(a) $L$ is generated by $M$ and $e$ ,

(b) $xe=ex$ for an $x\in N$ ,

9
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(c) If $x\in N$ satisfies $xe=0$ , then $x=!_{\backslash /}^{t}$ ,

(d) $exe=E_{N}(x)_{1^{L}}$ for all $x\in M$ .

In this case, there \’is a $*$-isomorphism of $t_{t}$ he basic construction $1\backslash 4_{1}=JN$
‘ $J-$) $ntr\prime L$ .

We shaJl call $N\subset iM\subset L$ a $lo$eally $a\{/ceb,a\iota cba$ ssc $r?\cdot f_{f}r\iota s\iota\{jj$ ; of N C $M$ if the $\iota e$ is a

projection $p\in L\cap L$ ‘ which satisfies that ’he $in\backslash - lusi- nM\subset J\nearrow pi\iota\backslash$ the a}gebraic basic

construction for N C $M$ .

If $L\supset M\supset N$ is a locally standard extension of the incluSion $M\supset N$ , we can identity

the set $K_{N}$ with a subset of $K_{L}$ via the equality $Ne=eLe$ . Under such an identification,

we have the following:

Proposition 3. Let $L\supset M\supset N$ be a locally standard extension of $M\supset N$ Then

$\lambda(L, M)^{-1}\geq n1ax_{N}rnin_{L}\frac{t_{N}(k)}{t_{L}(l)}k\in K1\in K$

Let

$l(M)= \sum_{l\in K}d(l)t(l)\log\frac{d(1)}{t(l)}$ ,

where $K=K_{M}$ )
$d=d_{I\nu^{r}}$ and $t=t_{M}$ .

proposition 4.

(i) $H(M|N)\leq I(M)-I(N)$

(ii) $H(<M, e>|M)=I(<M, e>)-I(M)$

(iii) $I(M)\leq 2H(M)$ and the equality holds if and only if $M$ is a factor.

\S 5. $H(\sigma)$ and $H$ ( $A$ I $\sigma(A)$ )

In this section we shall investigate a relation between $H(\sigma)$ and $H(A|\sigma(A))$ for an

n-shift $\sigma$ on the tower $(A_{i})_{j}$ for a finite von Neumann algebra $A$ .

10
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Let $(A_{1})_{j}$ be an increasing sequence of finite dimensional von Neumann algebras. Let

$A_{j}= \sum_{k\in K_{\gamma}}\oplus A_{j}(k)$ be such a decomposition as in \S 4, and $d_{j}$ the dimension vector of $A_{j}$

$\Gamma f$ hen we shall say $(A_{j})$ ; satisfies the bounded growth conditions ([2]) if the following two

$condit_{\kappa}ions$ are satisfied.

(i)

$\sup_{j}\frac{|(K_{j})|}{j}<+\infty$

and

(ii) For some $m,$ $A_{f+1}(l)$ contains at most $d_{j}(k)A_{j}(k)-$ components for all $j\geq m$ ,

where $|(K_{j})|$ is the cardinal number of $K_{j}$ .

For examples, let us consider two $t$ owers which are treated in Examples 1 and 2 Both

of them satisfies the bounded growth conditions ([2]). We shall discuss another example

in \S 7.

Theorem 5. Let $\sigma$ be a $\tau- preserving^{*}$-endomrphism of an injective finite von Neumann

algebra $A$ with a faithful normal trac $e\tau,$ $\tau(1)=1$ . If $\sigma$ is an n-shift on the {ower $(A_{j})_{J}$

for $A$ , then

$H(A|\sigma(A))\leq 2H(\sigma)$ .

Furthermore, if the bounded growth conditions are satisfied, for the toWer $(A_{nj})_{j}$

$H(A|\sigma(A))=2H(\sigma)$ .

In order to prove Theorem 5, we need the following:

Lemma 6. Let $\sigma$ be the same as in Theorem 5. If $\sigma$ satisfies the conditions (1), (3)

and (4) in Definition 1 for $n$ , then

$H(A| \sigma(A))=\lim_{iarrow\infty}H$ ( $A_{nj+n}$ I $A_{nj}$ ).

11
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By considering the standard tower

N $C_{\wedge}\gamma fCM_{I}CM_{\sim^{)}}C$ $c_{\perp}t^{}I_{7b}=<\lrcorner\iota_{1/]_{n-1,n- 1}}\rhoarrow>\subset\ldots$

obtained from the pair $N\subset M$ of $IJ_{1}- fa\subset tols$ with $[A’1 . N]<\infty$ by iterating the basic

construction, it is proved in [11] $t_{1}$ hat $H(A4_{n}|N)=\log[M_{n} N]$ if $H(M|1V)=1\iota_{og[M}$ : $N$].

Since \dagger he index has {he multiplicative $p_{T^{t}}per\dagger,y([6]),$ $i${ implies $h\not\in i $\{$ $H(\wedge t1^{J}f_{n}|N)=nH(A’I|$

$N)$ if $H(M|N)=log[M. N]$ . Next corollary shows a similar result $h(|1_{\backslash }\prime 1sf_{(1}r$ the $pai_{1}$

$\sigma(M)CM$ .

Corollary 7. Let a $*_{- end_{omo1}phism}\sigma$ satisfy the same condltioii as in rheolern 5.

Then for all $n$

$H(A|\sigma^{l}(A))=nH(A|\sigma(A))$ .

\S 6. $H(\sigma)$ and $\lambda(A, \sigma(A))$ for n-shift $\sigma$ .
In this section, we shaJl investigat $e$ relations between {he entropy $H(\sigma)$ and the constant

$\lambda(A, \sigma(A))$ for an n-shift $\sigma$ of the tower $(A_{j})_{j\in N}$ for a finite von Neumann algebra A with

a fix$ed$ faithful normal trace $\tau,$ $\tau(1)=1$ .

Deflnition 3. We shall call an increasing sequence $(A_{j})_{J}$ of fnite dimensional von

Neumann subalgabras of a finite von Neumann algebra A with a faithful normal trace $\tau$ a

lacally standard tower for a if there exists a natural number $k$ which satisfies the following

conditions :

1) For a certain centIa} projection $p_{k(j+1)}$ of $A_{k(j+1)}$ ,the inclusion matrix [ $A_{jk}t-\rangle$

$A_{k(j+1)}p_{j+1}]$ is the transpose of $[A_{k(j-1)}\ddagger->A_{kj}]$
} for each $j$

12



200

2) If $(t_{k(\prime-1)}(i))_{i}$ is the trace vector for the restriction of $\tau$ to $A_{k(j-1)}$ , then the value of

$\tau$ of the $mininl4$ pIojections for $A_{k(i+1)Pk(i+l)}$ are given by $(\alpha t_{k(f-1)}(i))$ , for each $j$

$3)There$ is an $c>0$ such that $H(A_{2kj})\leq c-j\log\alpha$ for each $j$ .

We call the number $2k$ a period of the locally standard tower.

As the examples of locally standard towers, we have followings :

(i). The tower $(A_{J})_{j}$ in Example 1 is obviously a locally standard {ower for l/m,because

the inclusion matrix in each step are all same.

(ii). The standard tower is a locally standard tower for $||T^{t}T||^{-1}$ , because the inclusion

matrix in the j-th step is the transpose of one in the $(j-1)$-th step for all $j$ ([6]). Hence

the tower $(A_{j})_{j}$ is also locally standard if $A_{j+1}$ is a locally $4gebraic$ basic extension of

$A_{j-1}\subset A_{j}$ .

(iii). The tower $(A_{j})$ ; in Example 2 is a locally standard tower for $\lambda$ , because the central

support of $e_{j}$ in $A$; satisfies the condition (1) and (2) in Definition 3 and the condition (3)

are proved by results in \S 4.2 and \S 5.1 in [6].

We shall treat another locally standard tower in the next sectio $n$ .

Theorem 8. Let $A$ be a finite von Neumann algebra with a fixed faithful normal trace

$\tau,$ $\tau(1)=1$ . Let $\sigma$ be an n-shift on the locally standard tower $(A_{j})_{j}$ for $\alpha$ with a period

$2n$ , then

$H(A|\sigma(A))\leq 2H(\sigma)\leq-iog\alpha\leq\log\lambda(A, \sigma(A))^{-1}$

The author would like to her hearty thanks to F.Hiai for pointing out a mistake in the

proof of Theorem 8 in the preliminary version.

Corollary 9. Let $A$ be an injective finite factor with the canonical trace $\tau$ and $\sigma$ an

n-shift of a locally standard tower for $A$ with a period $2n$ , then

13
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$H(A|\sigma(A))\leq 2H(\sigma)\leq\log[A : \sigma(A)]$ .

In the case of a factor $A$ , it is obtained in [10] equivalent conditions that $H(A|\sigma(A))=$

$log[A:\sigma(A)]$ . In such a case, we hav $e$

$H(A|\sigma(A))=2H(\sigma)=\iota?og[A : \sigma(A)]$ .

For example, the shifts $S$ in Example 1 and $\sigma$ for $\lambda>(1/4)$ in Example 2 satis$fy$ the

equality ([2]). However, the shifts $\sigma$ in Example 2 have t.he following $relatior$} $([2])$ .

$H(R|\sigma(R))=2H(\sigma)<\log[B:\sigma(R)]$

if $\lambda\leq(1/4)$ .

\S 7 Canonical shift.

In [9], Ocneanu defined a very nice $*$-endomorphism for the tower of the relative com-

mutant algebras for the inclusion $N\subset J/f$ of type $Il_{1}$ -factors with the finite index.

At first, we shall recall from [9] the def nition and main properties of {he canonical shift

on the tower of relative commutants.

$Le\{M$ be a finite factor with the canonical trace $\tau$ and $N$ a subfactor of $M$ such

that $[M : N]<+\infty$ . Then the basic extension $arrow l\urcorner|f_{1}=<M,$ $e>$ is a $II_{1}$-factoi with the

$\lambda=[M : N]^{-1}$ -Markov trace ([6]) and {here are the family $\{m_{2}\}CM$ which forms an

“ orthonormal basis” in $M$ with respect to the $N$ valued inner product $E_{N}(xy^{*})(x, y\in M)$ ,

that is, each $x\in M$ is decomposed in the unique form as the following ([9], [10]):

$x= \sum_{1}E_{N}(m_{i}^{*}x)m_{\dot{\epsilon}}$
.

14
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Iterating the basic construction from N C $M$ , we have the standard tower

$M_{-1}=N\subset M_{0}=M\subset M_{1}=<M_{0},$ $e_{0}>CM_{2}C\cdots$

in which, $e_{j}$ is the projection of $L^{2}(M_{j,j}\tau)$ onto $L^{2}(M_{j-1}, \tau_{j-1})$ , where $\tau_{j}$ is the $\lambda$-Markov

trace for $M_{j}$ . Then from the family $(e_{j})$ ; the projection $e(n_{?}k)$ is obtained and

$M_{n-k}\subset M_{n}CM_{n+g}=<M_{n},$ $e(n, k)>$

is an algebraic basic extension ([9], [11]). Furthermore it is obtained in [9] that the ”or-

thonormal basis“ in $M_{n}$ with respect to $M_{n-k}$ valued inner product from the family of the

basis in $(M_{j})_{j}$ .
Let $A_{j}=M^{l}\cap M_{l}$ for all $j$ . The antiautomorphism $\gamma_{j}$ of $A_{2j}=M’\cap M_{2j}$ defined by

$\gamma_{j}(x)=J_{j}x^{*}J_{j}$ , $x\in A_{2j}$

is caJled the mirroring, where $J_{j}$ is the conjugate unitary on $L^{2}(M_{j}, \tau_{j})$ . Then for all

$x\in M$ ‘
$nM_{2j}$ , the following expression of the mirrorings is given :

$\gamma_{j}(x)=[M_{j} : M]\sum_{i}E(em_{j}^{*}x)em;$ ,

where $E$ is the conditional expectation of $M_{j}$ onto $M,$ $e$ is the projection of $L^{2}(M_{j})$ onto

$L^{2}(M)$ and $(m:)_{i}$ a module basis of $M_{j}$ over $M$ . The expression implies that the mirrorings

satisfies the following relation:

$\gamma_{j+1}\cdot\gamma_{j}=\gamma_{j}\cdot\gamma_{j-1}$

for all $j\geq 1$ on $A_{2j-1}$ . In the view of this relation, the endomorphism $\Gamma$ of $\bigcup_{n}A_{n}$ can be

defined by

$\Gamma(x)=\gamma_{j+1}(\gamma_{j}(x))$ ,

for $x\in A_{2j}$ . Ocneanu called the endomorphism $\Gamma$ the canonical shift on the tower of the

relative commutants. In the case of inclusions of infinit $e$ factors, similar-endomorphisms

15
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are investigated by Longo [8]. The mapping $\Gamma$ has the following properties; for any $k,$ $n\geq 0$

with $n\geq k$ ,

$\Gamma(M_{k}^{l}\cap M_{n})=M_{k+2}^{l}\cap M_{n+2}$ .

Now, we shall consider the finite von Neumann algebra $A$ generated by the tower $(A_{i})_{j}$

and extend $\Gamma$ to a trace preserving *-endomorphism of $A$ as follows.

Since $N\subset M$ are $II_{1}$-factors with $[M : N]<+\infty$ , there is a Rithful normal trace

on $\bigcup_{j}M_{j}$ which extends the canonical trace $\tau$ on $M$ . We denote the trace by the same

notation $\tau$ .

Although $M_{j+1}$ is defined as a von Neumann algebra on $L^{2}(M_{j}, \tau_{j})$ , each $M_{j}$ can be

considered as von Neumann algebras on the Hilbert space $L^{2}(M, \tau)$ . $Hence\cup A_{j}and\cup M_{j}$

can ce considered as von Neumann aJgebras acting on $L^{2}(M, r)$ . Let

$M_{\infty}= \{\bigcup_{j}M_{j}\}^{\iota/}$
,

$A= \{\bigcup_{j}A_{j}\}^{ll}$
.

Then $M_{\infty}$ is a finite factor with $tke$ canonical trace which is the extension of $\tau$ . We

denote it by the same notation $\tau$ . Then $A$ ia a von Neumann subalgebra of $M_{\infty}$ . Since $\Gamma$

is a ultra-weakly continuous endomorphism of $\bigcup_{j}A_{j},$
$\Gamma$ is extended to $a^{*}$-endomorphism

$ofA$ .

Although, in the case where discussed by Ocneane, for all $k$ , the mirroring $\gamma_{k}$ is a trace

preserving map thanks to the assumption $N^{l}\cap M=C1$ , in general, the mirrorings are not

always trace preserving. However the canonical shift is always trace preserving :

Lemma 10. For every $k,$ $\gamma_{k+1}\cdot\gamma_{k}$ is a $\tau-$ preserving isomorphism of $M‘\cap M_{2k}$ onto

$M_{2}^{l}\cap M_{2k+2}$ .

Furthermore, if $E_{A_{1}}(e_{1})=\lambda$ (for example $N$ ‘ $nM=$ Cl), then $\gamma_{j}$ is a trace preserving

antiautomorphism of $A_{2j}$ for $d1j$ .

$\theta$

By Lemma 10, the canonical shift $\Gamma$ on the tower of the relative commutants $(A_{j})_{j}$ of

16
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$M$ is extended to a $\tau- p::eserving^{*}$ -endomorphism of $A$ . We shall call the-endomorphism

of $A$ the canonical $bh\iota ftfo1$ the inclusion $M\supset N$ and denote it by the same notation $\Gamma$ .

We shall show the canonical shift $\Gamma$ is a 2-shift on the tower $(A_{j})_{j}$ for $A$ .

Lemma 11. Let $L$ be a finite von Neumann aJgebra with a faithful normal trace $\tau$ ,

$\tau(1)=1$ . If $M$ is a subfactor of $L$ , then

$\tau(xy)=\tau(x)\tau(y)(x\in M_{\}}y\in M’\cap L)$ .

Proposition 12. The canonical shift $\Gamma$ for the inclution N C $M$ satisfies the conditions

(1), (2) and (3) for 2-shifts.

If $E_{A_{1}}(e_{1})=[M : N]^{-1}$ , then $\Gamma$ is a 2-shift on the tower $(A_{j})$ ; for $A$ .

Next, we shaJl show the entropy $H(\Gamma)$ ofthe *-endomorphism $\Gamma$ of $A$ is always dominated

by $log[M. N]$ .

Lemma 13. Let $B=A\cap N$ for von Neumann subalgebras $A$ and $N$ of a finite von

Neumann algebra $M$ satisfying the commuting square condition : $E_{A}E_{N}=E_{N}E_{A}=E_{B}$ .

Then,

$H(M|N)\geq H(A|B)$ , $\lambda(M, N)\leq\lambda(A, B)$ .

Let $B$ and $C$ be the von Neumann subalgebras of $A$ defined by

$B=( \bigcup_{j}(M_{1}^{l}\cap M_{j}))^{ll}\}C=(\bigcup_{j}(M_{2}’\int\urcorner M_{j}))^{ll}$

Theorem 14. Let $\Gamma$ be the canonical shift for the inclusion N C $M$ of type $II_{1}$ -factors

with $[M : N]<\infty$ . Then

$H( \Gamma)=\lim_{karrow\infty}\frac{H(M^{l}\cap M_{2k})}{k}$ .

17
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If $E_{A_{1}}(\epsilon_{1})=[i^{\dagger_{\sqrt{}}}l : N]^{-1}$ , then

$H(A|C)\leq 2H(\Gamma)\leq\log\lambda(A\rangle C)^{-1}=2H(M|N)=2\log[M. N]$

Corollary 15. Under the same conditions as in Theorem 14, let $A$ be a factor. Then

$H(A|C)\leq 2H(\Gamma)\leq 2\log[A : B]=2\log[M : N]$ .

Corollary 16. Let $\Gamma$ be the canonicaJ shift for {,he inclusion $N\subseteq M$ of type $II_{1}$ -factors

with [-M. $N$] $<\infty$ . If $N^{l}\cap M=$ Cl, then

$H(\Gamma)\leq R(M|N)=1_{-})$ : $N$ ].

For a pair N C $M$ of hyperfinit $e$ type $II_{1}$ -factors with [M. $N$] $<1\infty\rangle$ Popa says that

N $C$ -lI has the generat$ng property if theIe exists a choice of the standald tunnel of

subfactors $(N_{j})_{J}$ such that $M$ is generated by the increasing sequence $(N_{j}’\cap M);$ .

Corollary 17. Assume that N C $M$ has the generating prvperty. $HE_{N’r\gamma M}(e_{0})=[M$ .
$N]^{-1}$ , then

$H(M|N)=H(\Gamma)=\log[M. N]^{-1}$

As a sufficient condition that satisfies two assumptions in Corollary 17, Ocneanu [9]

introduced the following notion for a pair N C $M$ with $N$ ‘ $\cap M=$ Cl, and Popa [13]

extended it to general cases. The inclusion N C $M$ of type $II_{1}$-factors with $[M : N]<+\infty$

is said to have the finrte depth if

$\sup_{j}(k_{j})<+\infty$

where $k_{j}$ is the cardinal number of simple summunds of $M^{l}\cap M_{j}$ .

18
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Renark 1S. If the inclusion N C $M$ of type $II_{1}$-factors with the finte index and

finite depth, then the tower $(A_{j})_{j}$ of relative commutants satisfies the bounded grouwth

conditions.

If an inclusion $NCM$ has the finite depth, then $E_{N^{1}\cap M}(e_{0})=[M : N]^{-1}$ and N C $M$

has the generating property ([13]). Hence we have :

Corollary 19. Let N C $M$ be type $II_{1}$-factors with the finite index and the finite

depth. Let $\Gamma$ be the canonical shift for $NCM$ . Then

$H$ ($M$ I $N$ ) $=H(r)=\log[M : N]^{-1}$ .

Remark 20. In Corollary 18, the shift $\Gamma$ is considered as an $*$-endomorphism of the

algebra $A$ generated by the tower $(A_{j})_{j}$ of the relative commutants of $M$ . Since N C $M$

has the flnite depth, the shift $\Gamma$ induces a trace preserving $*$-endomorphism of $M$ which

transpose $M$ onto such the subfactor $P$ that P C $NCM$ is the algebraic basis extension

for P C $N$ . Then the *-endomorphism of $M$ has the same property as $\Gamma^{\sim}$

In the last of this section, we shall show that the canonical shift has an ergodic property,

which is similar to the canonocal endomorphism in [7]. So that the canonical shift is a

shift in the sense due to Powers [14].

Proposition 21. Let N C $M$ be type $II_{1}$-factors with the finite index. Then the

canonical shift $\Gamma$ for N C $M$ satisfies that

$\bigcap_{k}\Gamma^{k}(A)=C1$ .

\S 8 Extension of canonical shift.
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$\ln$ {his section, we shall show that the canonical shift $\Gamma$ is $extel\iota ded$ to an ergodic $*.$.

automorphism $\Theta$ of a certain big von Neumann aigebra such tha.$tH(I^{\iota})=H(fO)$ .

Let N C $M$ be type $If_{1}$ -factors with $[M : N]<\infty$ . Let

$M_{-1}=NCM=M_{0}\subset M_{1}=<M,$ $e>\subset\ldots\subset M_{j}=<M_{j-1y}e_{j-1}>\subset\ldots$

be Lhe standard tower obtained from $N\subset M$ . Let $M_{\infty}$ be the finite facton generated by

the tower $(M_{j})_{j}$ .

Proposition 22. Let N C $M$ be type $II_{1}$ -factors with the finite index and $\tau$ the

canonical trace of $M$ . Let $\sigma$ be a $*$ -isomorphism of $M()ntoN$ . Then the following

statements are equivalent :

(1) There exists $a^{*}$-isomorphism $\sigma_{1}$ of $A’lJ$ onto $M$ such that for all $x\in M$ ,

$\sigma_{1}(x)=\sigma(x)$ .

(2) There exists a projection $e\in M$ such that

$\sigma(N)=\{e\}^{\iota}\cap N$ and $E_{N}(e)=\lambda 1=[M : N]^{-1}$ .

(3) There exists a projection $e\in M$ such that for all $y\in N$ ,

$eye=E_{r(N)}(y)e$ , $\tau(ey)=\lambda\tau(y)$

and

$M$ is generated by $N$ and $e$ as a von Neumann algebra.

(4) There exists an automorphism $\Theta$ on $M_{\infty}$ such that for all $x\in\lrcorner lf$ and all $j$ ,

$\Theta(x)=\sigma(x)$ and $\Theta(e_{j})\in M_{j}$ .

(5) The decreasing sequence

$M\supset N\supset\sigma(N)\supset\ldots\supset\sigma^{j}(N)\supset\ldots$
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is a standard tunnel.

Deflnition 4. Let $\sigma$ be $a^{*}$ -isomorphism of a type $II_{1}$-factor $M$ ont $0$ a subfactor $N$ with

the finite index. If $\sigma$ satisfies the equivalent conditions in Proposition 22, then we call $\sigma$

basic $*$-endomoIphism for the lnclusion N C $M$ .

Let $\sigma$ be the ba,sic $*$-endomorphism of the inclusion N C $M$ of type $II_{1}$-factors with

the finite index. Let $P_{1}=M\cap\sigma^{j}(M)^{l}$ . Then $(P_{j})_{j}$ is an increasing sequence of finite

dimensional von Neumann algebras. Let $P$ be the von Neumann algebra generated by

$(P_{j})_{j}$ . Then $P$ is a von Neumann subalgebra of $M$ and we have the following.

Proposition 23. Let $\sigma$ be the basic *-endomorphism for the inclusion NC $M$ of thpe

$II_{1}$ -factors with the finite index. Then,

$H( \sigma)=\lim_{k-arrow\infty}\frac{H(M\cap\sigma^{k}(M)^{l})}{k}$

Assume that $E_{N’\cap M}(e)=[M : N]^{-1}$ foa a basic projection of $\sigma(N)\subset\overline{N}$ . Then $\sigma^{m}$ is a

m-shift on the tower $(P_{j})_{j}$ for $P$ for all even numbet $m$ and satisfies the following relations.

For all even $m$ ,

$H(P|\sigma^{m}(P))\leq 2mH(\sigma)\leq\log\lambda(P, \sigma^{m}(P))^{-1}=m\log[M : N]$

Corollary 24. Let $\sigma$ be the same as in Proposition 23. Then

$U$

$2H(\sigma)\leq\log[M : N]$

Fuethermore, if the inclusion N C $M$ has hinite depth, then

$H(M1N)=2H_{M}(a)=2H(a)=\log[M : N]$ ,

where $H_{M}(\sigma)$ is the eniropy of $\sigma$ as $a*$-endomorphism of $M$ .
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As an example of a basic $*$-endomorphism, we have the $*_{- endom1rphism}\wedge\vee\sigma$ in Example

2.

We shall show that another good example of a basic $*$-endomorphisms is the canonicai

shift on the tower of relarive commutants in \S 7.

Proposition 25. Let $M\supset N$ be type $II_{1}$-factors with the finite index and finite

depth. Then the canonical shift $\Gamma$ for the inclusion $M\supset N$ is a basic $*$-endomorphism of

$A=( \bigcup_{j}(M’\cap M_{j})_{j})’’$ .

In [2], we proved that some kinds of $*$ -endomorphisms ar $e$ extended to ergodic $*-$

automorphisms of big algebras with same values as entropies. Here we shall show it also

holds for the canonical shifts.

Let $R$ be the von Neumann algebra which is generated by the standard tower obtained

from $A\supset\Gamma(A)$ . Since $\Gamma$ is a basic *-endomorphism of $A$ , there exists $a^{*}$ -automorphism

of $R$ which is an extension of F. We denote it by O.

Theorem 26. Let $N\subset M$ be type $II_{1}$ -factor with finite index. Then the automorphism

$\Theta$ induced by the canonical shift $\Gamma$ for the inclusion N C $M$ is ergodic. If N C $M$ has

finite depth

$H(M|N)=H(\Theta)=H(\Gamma)=\log[M : N]^{-1}$ .
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