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REGULARISED INTEGRAL EQUATIONS FOR CRACK SHAPE

DETERMINATION PROBLEMS

Naoshi Nishimura (西村直志)

Department of Civil Engineering, Kyoto University

1. Introduction

Let $D$ be a bounded domain in $R^{2}$ having a smooth boundary $\partial D$ . This domain

$D$ contains a smooth piece of non-self-intersecting curve $S$ , or a crack, in its interior.

The shape and the location of $S$ , however, remain unknown. We are now interested

in determining such geometrical information of $S$ from experimental data obtained in

boundary measurements. To be specific we consider a measurement using a physical

quantity $u$ governed by Helmholtz’ equation

$(\triangle+k^{2})u=0$ in $D\backslash \overline{S}$ , (1.1)

where $k\geq 0$ is the wave number. This quantity $u$ is assumed to satisfy

$( \frac{\partial u(x)}{\partial_{77}})^{\pm}=0$ on $S$ , $\ulcorner\lim_{x(\in S)arrow xo(\in\partial S)}\varphi(x)=0$ , (1.2), (1.3)

where $\varphi(x)$ $:=u^{+}(x)-u^{-}(x)$ and the superposed $+(-)$ indicates the limit from the

positive (negative) side, with the positive side of $S$ indicating the one into which the unit

normal vector $n$ to $S$ points. We now carry out measurements which can be interpreted

as prescribing Dirichlet data on $\partial D$ and measuring the corresponding Neumann data,

or vice versa. As a result of these boundary measurements, we know several pairs of

both Dirichlet and Neumann data on $\partial D$ denoted by $\mathring{u}^{I}$ and a $\mathring{u}^{I}/\partial_{7?}$ for $I=1\sim M$ ,

where $M$ is the number of experiments. From these data we attempt to reconstruct $S$ .
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Problems of this type in the Laplace case $(k=0)$ have been considered by engineers

as well as by mathematicians; some of these efforts are found in references cited in [1]

and in [2]. Also we point out that this problem is related to another of determining the

shape of an ordinary (non-flat) scatterer from far field patterns considered in [3], [4],

etc. In this paper we shall discuss a numerical method of solving our inverse problem

with the help of the so called boundary integral equation method (BIEM).

2. Direct and inverse problems

To begin with, we discuss the direct problem, where the shape and the location

of $S$ are known. Our problem is to solve (1.1) subject to (1.2), (1.3) and a boundary

condition of either Dirichlet or Neumann type on $\partial D$ . The solution to this problem is

known to have the following integral representation:

$u(x)= \int_{\partial D}G(x-y)\frac{\partial u(y)}{\partial n}ds_{y}-\int_{\partial D}\frac{\partial G(x-y)}{\partial n_{y}}u(y)ds_{y}+\int_{S}\frac{\partial G(x-y)}{\partial\uparrow\tau_{y}}\varphi(y)ds_{y}$,

(2.1)

where $G(x-y)$ is the fundamental solution of Helmholtz’ equation given by

$G(x-y)= \frac{i}{4}H_{0}^{(1)}(k|x-y|)$ , $k\neq 0$

and $H_{0}^{(1)}$ is the Hankel function of the first kind and 0th order. The unknown data on

$\partial D$ (either $u$ or $\partial u/\partial n$ ) and $\varphi$ on $S$ are obtained as the solution to the following system

of ‘integral’ equations:

$0= \frac{u(x)}{2}-\int_{\partial D}G(x-y)\frac{\partial u(y)}{\partial n}ds_{y}+\int_{\partial D}\frac{\partial G(x-y)}{\partial n_{y}}u(y)ds_{y}$

$- \int_{S}\frac{\partial G(x-y)}{\partial n_{y}}\varphi(y)ds_{y},$ $x\in\partial D$ (2.2)

$0= \frac{\partial}{\partial n_{x}}(\int_{\text{\^{a}} D}G(x-y)\frac{\partial u(y)}{\partial n}ds_{y}-\int_{\partial D}\frac{\partial G(x-y)}{\partial n_{y}}u(y)ds_{y})$

$+ \not\in s\frac{\partial}{\partial n_{x}}\frac{\partial}{\partial n_{y}}G(x-y)\varphi(y)ds_{y},$ $x\in S(2.3)$

where the integration sign with a superimposed $=indicates$ an integration in the sense

of the finite part. This system of equations has a solution except when $k$ coincides with
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one of the eigenfrequencies of the homogeneous problem associated with our boundary

value problem.

In engineering applications one usually discretises these equations with the help of

certain shape functions and collocation, and then solves the resulting algebraic equations

numerically. It has been shown, however, that the use of $C^{1}$ elements for $\varphi$ is necessary in

order to obtain a good numerical solution of (2.3) with collocation [2]. This requirement

is a big burden in $3D$ problems because it is difficult to generate $C^{1}$ shape functions

on a surface, although it is not in $2D$ since one may for example use spline functions.

We therefore choose to use a variational approach in the discretisation of (2.3), even in

$2D$ , because this approach allows the use of $C^{0}$ elements and because we are interested

in formulations applicable to $3D$ problems as well. Another benefit of the variational

approach in numerical analyses is that it reduces the hypersingular integral in (2.3)

to an ordinary one. This reduction of the singularity is called “regularisation” in the

community of BIEM users. This technique, however, should not be confused with

Tikhonov’s regularisation. We shall return to the detail of this approach in the next

section.

We now proceed to the inverse problem mentioned in the introduction. This prob-

lem is now formulated as follows: Given $M$ pairs $(u^{I}\circ, \partial u^{I}\circ/\partial n),$ $(I=1\sim M)$ on $\partial D$ ,

find a crack $S$ in a way that there exists a function $u^{I}(x)(x\in D\backslash \overline{S}, I=1\sim M)$ which

satisfies (1.1) $\sim(1.3)$ and

$u^{I}=u^{I}\circ$ , $\frac{\partial u^{I}}{\partial n}=\frac{\partial\mathring{u}^{I}}{\partial\uparrow\tau}$ on $\partial D$ . $(I=1\sim M)$ (2.4), (2.5)

As regards the uniqueness of the solution when there exists at least one solution

$S$ , we use arguments similar to the one in [5] to show that there cannot be more than

one such $S$ for a sufficiently large but finite $M$ . In the special case of $k=0$ , Friedman

&Vogelius[6] showed that 2 experiments $(M=2)$ are sufficient for the uniqueness.

It appears that their result has not been extended to the cases where $k$ is non-zero.

However, in the particular case of straight cracks, we can show in an almost trivial
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manner that 2 experiments imply the uniqueness in the following sense: Let $k$ be none

of the Dirichlet (or Neumann) eigenvalues for $D$ , and let $U^{I}$ be the solution of

$(\triangle+k^{2})U^{I}=0$ in $D$ and $U^{I}=\mathring{u}^{I}$
$( or\frac{\partial U^{I}}{\partial n}=\frac{\partial\mathring{u}^{I}}{\partial n})$ on $\partial D$ . (2.6)

Then there cannot be more than one straight crack with which (1.1) $\sim(1.3),$ $(2.4)$ and

(2.5) are satisfied if

$\det(\nabla U^{1}, \nabla U^{2})\neq 0$ (2.7)

everywhere in $D$ . Indeed, suppose that there are two cracks $S_{\alpha}(\alpha=1,2)$ which satisfy

all the requirements. The corresponding solutions to the direct problems are denoted by

$u_{\alpha}^{I}$ . Then the difference $u_{1}^{I}-u_{2}^{I}(I=1,2)$ is identically zero in $D\backslash (\overline{S_{1}\cup S_{2}})$ by analytical

continuation. The representation of the solution given in (2.1), however, shows that $\varphi_{\alpha}^{I}$ ,

defined in an obvious manner, vanishes almost everywhere on $S_{\alpha}(\alpha=1,2)$ , because

$\varphi_{1}^{I}=u_{1}^{I+}-u_{1}^{I-}=u_{2}^{I+}-u_{2}^{I-}=0$ almost everywhere on $S_{1}$ ,

etc. But this means $u_{\alpha}^{I}=U^{I}$ , which is a contradiction because one c\’annot have (1.2)

with $u_{\alpha}^{I}=U^{I}(I=1,2)$ at any point in $D$ by virtue of the assumption in (2.7).

We remark that the restriction on $k$ is eliminated if one defines $U^{I}$ by

$-U^{I}=g^{I}$ $:= \int_{\text{\^{a}} D}\frac{\partial G(x-y)}{\partial n_{y}}\mathring{u}^{I}(y)ds_{y}-\int_{\partial D}G(x-y)\frac{\partial\mathring{u}^{I}(y)}{\partial n}d.s_{y}$. (2.8)

This choice, however, is not very convenient in practice.

In general our inverse problem may not have a solution. Guided by (2.2) and (2.3),

however, we consider the following minimisation prob.lem:

$MinimiseJ(S)s$ subject to $S\in D$ ,

where the cost function $J(S)$ is defined as follows: Give $S$ arbitrarily. Solve (See (2.3)

and (2.8).)

$\frac{\partial g^{I}(x)}{\partial n}=\ovalbox{\tt\small REJECT}_{S}\frac{\partial}{\partial n_{x}}\frac{\partial\backslash }{\partial n_{y}}G(x-y)\varphi^{I}(y)ds_{y}$, $x\in S$, (2.9)
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for the unknown $\varphi^{I}$ on the given $S$ . Notice that $g^{I}$ is known since both $\mathring{u}^{I}$ and $\partial\mathring{u}^{I}/\partial n$

are. Define $J(S)$ (See (2.2).) by

$J(S)= \frac{1}{2}\sum_{I}\int_{\partial D}|\frac{u^{I}(x)\circ}{2}-\int_{\partial D}G(x-y)\frac{\partial\mathring{u}^{I}(y)}{\partial n}ds_{y}$

$+ \int_{\text{\^{a}} D}\frac{\partial G(x-y)}{\partial n_{y}}\mathring{u}^{I}(y)ds_{y}-\int_{S}\frac{\partial G(x-y)}{\partial n_{y}}\varphi^{I}(y)ds_{y}|^{2}ds$ .

The most plausible crack $S$ is then obtained as the minimiser of $J(S)$ . In the next

section we present a numerical method for solving this minimisation problem.

3. Numerical methods

3.1. So Iution of singular integral equations As stated earlier, we prefer variational ap-

proaches in solving hypersingular integral equations. A variational equation associated

with (2.9) is written as [7]

$\int_{S}\frac{\partial\psi}{\partial s}ds\int_{S}G\frac{\partial\varphi^{I}}{\partial s}d_{5}\tau-k^{2}\int_{S}\psi n_{i}ds\int_{S}G_{7}\tau_{i}\varphi^{I}ds=-\int_{S}\psi g^{I_{j}}\uparrow t_{j}ds$ . (3.1)

where $\psi$ is a test function which vanishes on $\partial S$ and $i$
$:=\partial/\partial x_{i}$ . The solution $\varphi^{I}$ to

(3.1) and (1.3) is unique. This equation could be solved numerically with Galerkin’s

method, but we prefer another approach which uses

$\int_{S}G(x_{2}-y)\frac{\partial\varphi^{I}(y)}{\partial s}ds_{y}-\int_{s}G(x_{1}-y)\frac{\partial\varphi^{I}(y)}{\partial s}ds_{y}$

$+k^{2} \int_{s(x_{1})^{2}}^{s(x)}n_{i}(x)\int_{S}G(x-y)n_{i}(y)\varphi^{I}(y)ds_{y}ds_{x}=\int_{s(x_{1})^{2}}^{s(x)}g^{I_{i}}(x)n_{i}(x)ds_{x},$ $(3.2)$

where $x_{1}$ and $x_{2}$ are points on $S$ . Equation (3.2) is obtained by taking $\psi$ to be piecewise

constant on $S$ in (3.1). In the numerical analysis based on (3.2) one introduces a certain

discretisation to $\varphi^{I}$ and takes as many pairs $(x_{1}, x_{2})$ as needed to determine unknowns

in the discretised $\varphi^{I}$ . Our experience shows that this approach is faster than Galerkin’s

method in $2D$ . In $3D$ , however, we use Galerkin which is more reliable than the $3D$

counterpart of (3.2). See [2] for details.
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3.2. Minimisation In practice one may introduce simplifying assumptions on the shape

of $S$ and describe $S$ by some shape parameters. For example, the assumption that $S$ is

a straight line enables us to identify $S$ by 4 parameters, e.g. the coordinates of the tips.

Since the cost function $J(S)$ is now a function of these parameters, we can minimise it

by using non-linear programming techniques such as Powell’s variable metric method,

which is our choice. This non-linear programming method, however, needs derivatives

of $J(S)$ with respect to the shape parameters, which are computed as

$j_{(S)}= \sum_{I}{\rm Re}\{\int_{S}[e_{ji}\dot{x}_{j}\frac{\partial\varphi^{I}}{\partial s}-n_{i}\dot{\varphi}^{I}]ds\int_{\partial D}G_{i}\overline{F^{I}}ds+k^{2}\int_{S}\varphi^{I}\dot{x}_{i}n_{i}\int_{\partial D}G\overline{F^{I}}ds\}$ ,

(3.3)

where the superposed dot signifies one of such derivatives, $e_{ij}$ indicates the permutation

symbol, stands for the complex conjugate and

$F^{I}(y)= \frac{\mathring{u}^{I}(x)}{2}-\int_{\text{\^{a}} D}G(x-y)\frac{\partial_{u^{I}}^{o}}{\partial n}(y)ds_{y}+\int_{\partial D}\frac{\partial G(x-y)}{\partial n_{y}}u^{I}(y)ds_{y}\circ$

$- \int_{S}\frac{\partial G(x-y)}{\partial n_{y}}\varphi^{I}(y)ds_{y}$ .

Notice that all the quantities included in (3.3) except for $\dot{\varphi}^{I}$ are known from the bound-

ary data $(u^{I}, \partial\mathring{u}^{I}\circ/\partial n)$ and the solution to (2.9). Also, the following variational equation

for $\dot{\varphi}^{I}$ is obtained as one takes the dot derivative of both sides of (2.9):

$\int_{S}\frac{\partial\psi}{\partial s}ds\int_{S}G\frac{\partial\dot{\varphi}^{I}}{\partial s}$ds–k2 $\int_{S}\psi\frac{\partial x_{i}}{\partial s}ds\int_{S}G\frac{\partial y_{i}}{\partial s}\dot{\varphi}^{I}ds$

$+ \int_{S}\{\frac{\partial\psi}{\partial s}g^{I_{i}}e_{ij}-k^{2}\psi g^{I}n_{j}\}\dot{x}_{j}ds$

$+ \int_{S}\frac{\partial\psi}{\partial s}ds\int_{S}G_{j}(\dot{x}_{j}-\dot{y}_{j})\frac{\partial\varphi^{I}}{\partial s}ds-k^{2}\int_{S}\psi\frac{\partial x_{i}}{\partial s}ds\int_{S}G_{j}(\dot{x}_{j}-\dot{y}_{j})\varphi^{I}\frac{\partial y_{i}}{\partial s}ds$

$-k^{2} \{\int_{S}\psi\frac{\partial\dot{x}_{i}}{\partial s}ds\int_{S}G\varphi^{I}\frac{\partial y_{i}}{\partial s}ds+\int_{S}\psi\frac{\partial x_{i}}{\partial s}ds\int_{S}G\varphi^{I}\frac{\partial\dot{y}_{i}}{\partial s}ds\}=0$. (3.4)

This equation can be solved numerically for $\dot{\varphi}^{I}$ in a manner similar to the method of

solving (3.1). In the special case of a straight crack (3.4) simplifies to

$\int_{S}\frac{\partial\psi}{\partial s}ds\int_{S}G\frac{\partial\dot{\varphi}^{I}}{\partial s}$ds–k2 $\int_{S}\psi ds\int_{S}G\dot{\varphi}^{I}ds$

6



228

$=- \int_{S}\{\frac{\partial\psi}{\partial s}g_{i}^{I}e_{ij}-k^{2}\psi g^{I}n_{j}\}\dot{x}_{j}ds+k^{2}(\frac{\partial\dot{x}_{i}}{\partial s}t_{i})\int_{S}\psi ds\int_{S}G\varphi^{I}ds$ (3.5)

In deriving (3.5) we have used integration by parts and the fact that a $i$ is linear in the

arc parameter $s$ .

4. Numerical examples

As a $2D$ numerical example we consider a circular domain $D$ having a radius of $r$ .

The true crack is a linear one shown in Figure 1. We prescribe on $\partial D2$ Dirichlet data

given by $u^{I}\circ=e^{ikx_{I}}(I=1,2)$ , where the wave number is set equal to $kr=1$ . The

corresponding Neumann data are obtained numerically rather than experimentally. 20%

of error is given to $\partial\mathring{u}^{I}/\partial n-\partial U^{I}/\partial n$ on $\partial D$ , where $U^{I}$ is the solution to the Dirichlet

problem introduced in (2.6). We modelled $\partial D$ by 24 piecewise linear boundary elements

and $S$ by 9 node spline elements. The hypersingular integral equation in (2.9) is solved

with (3.2). Figure l(a) shows the crack configuration after every iteration step in an

analysis which starts from the initial guess indicated in the same figure. This analysis

converged to the crack location shown in Figure l(b).

Obviously the same methodology applies to $3D$ problems as well; the numerical

results of which have so far been obtained only in the Laplace case $(k=0)$ . The do-

main $D$ and the crack $S$ are assumed to be cubic and circular, respectively, as shown

in Figure 2. The Dirichlet data given on the boundary are $\mathring{u}^{I}=x_{I}(I=1\sim 3)$ , and

the corresponding Neumann data are computed via BIEM. No error in the data is con-

sidered. Galerkin’s method is used to solve the $3D$ version of the hypersingular integral

equation in (2.9). The exterior boundary is divided into 216 piecewise constant rectan-

gular elements and the crack $S$ is discretised with piecewise linear triangular elements

having 21 DOF in total. An analysis starting from the initial guess shown in Figure 2(a)

converged to the true crack location as indicated in Figure 2(b). Figure 2(b) also in-

cludes intermediate crack configurations after every (approximately.) 5 iteration steps.

The CPU time for this analysis was 12.4 sec. on Fujitsu $VP400E$ (vector processor).
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Figure 1: $2D$ crack detection analysis. (a) mode of convergence. (b) final result.

5. Concluding remark

In principle the method developed in this paper is applicable to $3D$ problems with

non-zero wave numbers as well. Also a similar approach is possible in an analysis in the

time domain. Investigations along these lines are now under way.
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(a) (b)

Figure 2: 3D crack detection analysis (Laplace). (a) mesh, initial guess and true crack.
(b) mode of convergence.
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