Hamiltonian formulation of two－dimensional motion of an ideal fluid and a finite－mode hydrodynamic system

T．Kambe 神部
勉
Department of Physics，University of Tokyo

1 Introduction

The fact that the total kinetic energy is conserved in the motion of an ideal fluid is a manifestation of the fundamental property of mechanics．However，restricting to two－dimensional motions，it is well－known that there exist an infinite number of invariants for the ideal fluid（see §2）．Computer simulations of the fluid motions are carried out inevitably by means of finite－mode approximation to the exact infinite system．In those studies of two－dimensional motion performed so far，the above property of multiple invariants has not been considered seriously．

Recently，Zeilin［1］proposed a modified dynamical system，based on the $\operatorname{SU}(N)$ algeblas studied in the paper by Fairlie \＆Zachos［2］．This work has established connection between algebras of diffeomorphisms of the domain occupied by the flow and $\operatorname{SU}(N)$－algebras in the limit $N \rightarrow \infty$ ．The Zeitlin＇s hydrodynamic system of the $\mathrm{O}\left(N^{2}\right)$－mode truncation in Fourier space can be shown to have $\mathrm{O}(N)$ invariants． Accordingly，as the number of modes increases，the number of invariants increases arbitrarily．

2 Formulation from the hydrodynamics

2．1 Vorticity equation

Two－dimensional motion of an incompressible fluid in (x, y) plane is described by a streamfunction $\psi(x, y, t)$ ，giving the velocity $\mathbf{v}=(u, v)$ as

$$
\begin{equation*}
u=\partial \psi / \partial y, \quad v=-\partial \psi / \partial x \tag{1}
\end{equation*}
$$

which satisfy the solenoidal relation:

$$
\begin{equation*}
\partial_{x} u+\partial_{y} v=0 \tag{2}
\end{equation*}
$$

The vorticity

$$
\begin{equation*}
\omega=\partial_{x} v-\partial_{y} u=-\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi \tag{3}
\end{equation*}
$$

is governed by the following evolution equation derived from the Euler's equation of motion for the velocity field:

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{D} t} \omega=\partial_{t} \omega+u \partial_{x} \omega+v \partial_{y} \omega=0 \tag{4}
\end{equation*}
$$

which may be called again Euler equation. The above definition of u and v yields

$$
\begin{equation*}
\partial_{t} \omega=\frac{\partial(\psi, \omega)}{\partial(x, y)}=\{\psi, \omega\} \tag{5}
\end{equation*}
$$

where the right hand side is the Poisson bracket and the middle is the Jacobian. Since $\mathrm{D} / \mathrm{D} t$ stands for the Lagrange derivative, i.e. material derivative, the equation (4) represents that the vorticity ω is invariant with respect to each fluid particle in motion. The property (4) leads immediately to

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{D} t} \omega^{n}=0 \tag{6}
\end{equation*}
$$

for arbitrary integer n.

2.2 Motion on the torus \mathbf{T}^{2}

Consider a fluid motion on the torus $\mathrm{T}^{2}=\{x, y ; \bmod 2 \pi\}$ with periodic boundary condition. It is not difficult to show that the equations (6) and (2) yield

$$
\begin{equation*}
\Omega_{n}=\int_{D} \omega^{n}(x, y, t) \mathrm{d} x \mathrm{~d} y=\text { const } \tag{7}
\end{equation*}
$$

where D: $0 \leq x, y \leq 2 \pi$. This means that there exist an infinite number of invariants for a system of infinite number of degree-of-freedom. The total kinetic energy is given by

$$
\begin{equation*}
K=\frac{1}{2} \int_{D}\left(u^{2}+v^{2}\right) \mathrm{d} x \mathrm{~d} y=\frac{1}{2} \int_{D} \psi \omega \mathrm{~d} x \mathrm{~d} y \tag{8}
\end{equation*}
$$

which is an additional invariant.

2.3 Fourier representation

It is convenient to use the Fourier representation for the analysis on the torus T^{2} with the Fourier bases,

$$
e_{\mathbf{k}}=\exp (i \mathbf{k} \cdot \mathbf{x}), \quad \text { where } \mathbf{x}=(x, y), \mathbf{k}=\left(k_{x}, k_{y}\right),
$$

where k_{x} and k_{y} are integers. The streamfunction ψ and vorticity ω are expanded as

$$
\psi=\sum_{\mathbf{k}} \psi_{\mathbf{k}}(t) e_{\mathbf{k}}, \quad \omega=\sum_{\mathbf{k}} \omega_{\mathbf{k}}(t) e_{\mathbf{k}}
$$

Then the equations (3) and (5) lead to

$$
\begin{gather*}
\omega_{\mathbf{k}}=k^{2} \psi_{\mathbf{k}}, \tag{9}\\
\dot{\omega}_{\mathbf{k}}=\sum_{\mathbf{p}+\mathbf{q}=\mathbf{k}} \frac{1}{q^{2}} \mathbf{p} \times \mathbf{q} \omega_{\mathbf{p}} \omega_{\mathbf{q}}=\frac{1}{q^{2}} \mathbf{p} \times \mathbf{q} \omega_{\mathbf{p}} \omega_{\mathbf{q}} \delta(\mathbf{k}-\mathbf{p}-\mathbf{q}) . \tag{10}
\end{gather*}
$$

where the two expressions on the right hand side are understood to be identical. This is the evolution equation of the vorticity $\omega_{\mathbf{k}}$ in Fourier space, here called again Euler equation. This interesting form of the equation will be reconsidered below.

The integral (7) gives

$$
\begin{equation*}
I_{n}=\frac{\Omega_{n}}{(2 \pi)^{2}}=\sum_{\mathbf{k}_{\mathbf{1}}} \cdots \sum_{\mathbf{k}_{\mathbf{n}}} \omega_{\mathbf{k}_{\mathbf{1}}} \omega_{\mathbf{k}_{\mathbf{2}}} \cdots \omega_{\mathbf{k}_{\mathbf{n}}}, \quad\left(\mathbf{k}_{1}+\mathbf{k}_{\mathbf{2}}+\cdots+\mathbf{k}_{n}=0\right) \tag{11}
\end{equation*}
$$

In particular for $n=2$, we have the enstrophy integral,

$$
\begin{equation*}
\frac{\Omega_{2}}{(2 \pi)^{2}}=\sum_{\mathbf{k}}\left|\omega_{\mathbf{k}}\right|^{2}=\mathrm{const} \tag{12}
\end{equation*}
$$

The kinetic energy (8) is reduced to

$$
\begin{equation*}
H=\frac{K}{(2 \pi)^{2}}=\frac{1}{2} \sum_{\mathbf{p}+\mathbf{q}=0} a^{\mathbf{p q}} \omega_{\mathbf{p}} \omega_{\mathbf{q}} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
a^{\mathbf{p q}}=\frac{1}{p^{2}} \delta(\mathbf{p}+\mathbf{q}) \tag{14}
\end{equation*}
$$

3 Hamiltonian formulation

3.1 Algebraic structure

In order to derive the Euler equation (10) in Fourier space from a Hamiltonian formalism, let us first define a commutator (Kirillov bracket) by

$$
\begin{equation*}
\{f, g\}_{K} \equiv c_{p q}^{k} \omega_{k} \frac{\partial f}{\partial \omega_{p}} \frac{\partial g}{\partial \omega_{q}} \tag{15}
\end{equation*}
$$

(the summation convention is understood for repeated indices) for two arbitrary functions of ω_{k}, where the structure constant $c_{p q}^{k}$ has the two properties:
1)

$$
\begin{equation*}
c_{p q}^{k}=-c_{q p}^{k}, \tag{16}
\end{equation*}
$$

2) $c_{p k}^{s} c_{s r}^{q}+c_{k r}^{s} c_{s p}^{q}+c_{r p}^{s} c_{s k}^{q}=0$.

The Kirillov bracket provided with these properties is characterized by (i) bilinearity with respect to f and g, (ii) antisymmetric relation: $\{f, g\}=-\{g, f\}$, and (iii) Jacobi identity:

$$
\begin{equation*}
\{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\}=0 \tag{18}
\end{equation*}
$$

for any three functions f, g and h of ω_{k}. Hence this forms a Lie algebra. For the elements like $f=\omega_{k}$, the bracket (15) takes the form

$$
\begin{equation*}
\left\{\omega_{p}, \omega_{q}\right\}_{K}=c_{p q}^{k} \omega_{k} \tag{19}
\end{equation*}
$$

By this relation and the expression (13) for H, the Euler equation may be written in the following Hamiltonian form,

$$
\begin{equation*}
\dot{\omega}_{k}=\left\{H, \omega_{k}\right\}_{K}=a^{p r} c_{r k}^{q} \omega_{p} \omega_{q} . \tag{20}
\end{equation*}
$$

Let us introduce the structure constant defined by

$$
\begin{equation*}
c_{\mathbf{p} \mathbf{q}}^{\mathbf{k}}=(\mathbf{p} \times \mathbf{q}) \delta(\mathbf{k}-\mathbf{p}-\mathbf{q}), \tag{21}
\end{equation*}
$$

where the boldface indices \mathbf{p}, \mathbf{q} and \mathbf{k} stand for 2 -vectors with two integer components, e.g. $\mathbf{p}=\left(p_{1}, p_{2}\right)$. Using the definition (14), we recover the Euler equation (10):

$$
\begin{equation*}
\dot{\omega}_{\mathbf{k}}=\frac{1}{p^{2}} \delta(\mathbf{p}+\mathbf{r}) \mathbf{r} \times \mathbf{k} \delta(\mathbf{q}-\mathbf{r}-\mathbf{k}) \omega_{\mathbf{p}} \omega_{\mathbf{q}}=\frac{1}{q^{2}} \mathbf{p} \times \mathbf{q} \omega_{\mathbf{p}} \omega_{\mathbf{q}} \delta(\mathbf{k}-\mathbf{p}-\mathbf{q}) \tag{22}
\end{equation*}
$$

3.2 Matrix formulation

The dynamical system has a matrix representation with some set of basis matrices L_{i}, satisfying the following commutation relation,

$$
\begin{equation*}
\left[L_{p}, L_{q}\right]=(\mathbf{p} \times \mathbf{q}) L_{\mathbf{p}+\mathbf{q}} . \tag{23}
\end{equation*}
$$

Then the Euler equation may be rewritten in the matrix form:

$$
\begin{equation*}
\dot{W}=[W, \Psi] \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
W=\omega_{\mathbf{i}} L_{\mathbf{i}}, \quad \Psi=a^{\operatorname{lm}} \omega_{\mathbf{l}} L_{-\mathbf{m}} \tag{25}
\end{equation*}
$$

In fact, substituting (25) into (24), one obtains

$$
\begin{equation*}
\dot{\omega}_{\mathbf{i}} L_{\mathbf{i}}=a^{\mathbf{l m}} \omega_{\mathbf{k}} \omega_{\mathbf{l}}\left[L_{\mathbf{k}}, L_{-\mathbf{m}}\right]=\frac{1}{l^{2}} \mathbf{k} \times 1 \omega_{\mathbf{k}} \omega_{\mathbf{l}} \delta(\mathbf{i}-\mathbf{k}-\mathrm{l}) L_{\mathbf{i}} \tag{26}
\end{equation*}
$$

This is equivalent to (10). From the matrix equation (24), it is readily shown that Trace (W^{n}) is conserved for any integer n (Casimir functions) :

$$
\begin{equation*}
I_{n}=\operatorname{Tr}\left(W^{n}\right)=\sum_{\mathbf{k}_{\mathbf{1}}} \cdots \sum_{\mathbf{k}_{\mathbf{n}}} \omega_{\mathbf{k}_{\mathbf{1}}} \omega_{\mathbf{k}_{\mathbf{2}}} \cdots \omega_{\mathbf{k}_{\mathbf{n}}}, \quad\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\cdots+\mathbf{k}_{n}=0\right) \tag{27}
\end{equation*}
$$

3.3 Finit-mode analogue

An attempt ot construct a finite-mode system closely connected with (10) has been made by Zeitlin [1]. This is based on the fact that there exists a special basis for $\operatorname{SU}(N)$-algebras [2] in which the commutator takes the form,

$$
\begin{equation*}
\left[L_{\mathbf{p}}, L_{\mathbf{q}}\right]=-2 i \sin \frac{2 \pi}{N}(\mathbf{p} \times \mathbf{q}) L_{\mathbf{p}+\mathbf{q} \mid \bmod N} \tag{28}
\end{equation*}
$$

Here $L_{\mathbf{p}}$ is a set of special $N \times N$ matrices defined by

$$
\begin{equation*}
L_{\mathbf{p}}=\alpha^{p_{1} p_{2} / 2} \mathrm{G}^{p_{1}} \mathrm{H}^{p_{2}} ; \quad L_{-\mathbf{p}}=L_{\mathbf{p}}^{*} \tag{29}
\end{equation*}
$$

where the superscript * denotes taking the complex conjugate. For odd N, α is given as $e^{i 4 \pi / N}$ which is a primitive N th root of unity. The 2 -vector \mathbf{p} is (p_{1}, p_{2}) with p_{1} and p_{2} being integers. A basis for the $\operatorname{SU}(N)$ algebras is built from the following two unitary unimodular matrices:

$$
G=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & \alpha & 0 & \cdots & 0 \\
0 & 0 & \alpha^{2} & \cdots & 0 \\
. & . & . & \cdots & . \\
0 & 0 & 0 & \cdots & \alpha^{N-1}
\end{array}\right)
$$

$$
\begin{gather*}
H=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right) \tag{30}\\
\mathrm{G}^{N}=\mathrm{H}^{N}=1, \quad \mathrm{HG}=\alpha \mathrm{GH} .
\end{gather*}
$$

The formula of matrix multiplication defined by

$$
L_{\mathbf{p}} L_{\mathbf{q}}=\alpha^{\frac{1}{2} \mathbf{p} \times \mathbf{q}} L_{\mathbf{p}+\mathbf{q} \mid \bmod N}
$$

leads to the commutation relation (28). Renormalizing the generator $L_{\mathbf{p}}$ and taking the limit $N \rightarrow \infty$, the commutator (28) reduces to the relation (23).

The matrix $W=\omega_{\mathbf{i}} L_{\mathbf{i}}$ is a hermitean traceless matrix, hence there are $N-1$ functionally independent invariants $\operatorname{Tr} W^{n}$ (Casimir invariants) for $n=2, \cdots, N$:

$$
\begin{equation*}
I_{n}^{(N)}=\operatorname{Tr}\left(W^{n}\right)=\sum_{\mathbf{k}_{\mathbf{1}}+\cdots+\mathbf{k}_{\mathbf{n}=0 \mid \bmod N}} \omega_{\mathbf{k}_{\mathbf{1}}} \cdots \omega_{\mathbf{k}_{\mathbf{n}}} \operatorname{Tr}\left(L_{\mathbf{k}_{\mathbf{1}}} \cdots L_{\mathbf{k}_{\mathbf{n}}}\right) \tag{31}
\end{equation*}
$$

3.4 Examples

Let us illustrate the above results by two lowest-mode systems.
(A) $N=3$ system

Minimal system is the su(3)-system in which $\alpha=e^{i 4 \pi / 3}$: (i) take eight points on the plane with coordinates k_{1}, k_{2} taking the values $(-1,0,+1)$; (ii) assign to each point except the origin $(0,0)$ the complex quantity $\omega_{\mathbf{k}}$; (iii) identify $\omega_{-\mathbf{k}}=\omega_{\mathbf{k}}^{*}$. As a result, we have three integrals of motion:

$$
\begin{gathered}
H=\frac{1}{2} \sum_{\mathbf{k} \neq 0} \frac{1}{k^{2}}\left|\omega_{\mathbf{k}}\right|^{2} \quad(\text { kinetic energy }), \\
I_{2}^{(3)}=\frac{1}{2} \sum_{\mathbf{k} \neq 0}\left|\omega_{\mathbf{k}}\right|^{2}, \\
I_{3}^{(3)}=\sum_{\mathbf{p}, \mathbf{q} \neq 0} \cos \frac{2 \pi}{3}(\mathbf{p} \times \mathbf{q}) \omega_{\mathbf{p}} \omega_{\mathbf{q}} \omega_{-\mathbf{p}-\mathbf{q} \mid \bmod 3} .
\end{gathered}
$$

(B) $N=5$ system

Difference from the $N=3$ system is to take 24 points on the plane with coordinates k_{1}, k_{2} taking the values ($-2,-1,0,+1,+2$), and α is $e^{i 4 \pi / 5}$ instead of $e^{i 4 \pi / 3}$. There exist five invariants: energy integral H and $I_{n}^{(5)}(n=2, \cdots, 5)$, where

$$
I_{n}^{(5)}=\sum_{\mathbf{k}_{\mathbf{1}}+\cdots+\mathbf{k}_{\mathbf{n}}=0 \mid \bmod 5} \omega_{\mathbf{k}_{1}} \cdots \omega_{\mathbf{k}_{\mathbf{n}}} \operatorname{Tr}\left(L_{\mathbf{k}_{\mathbf{1}}} \cdots L_{\mathbf{k}_{\mathbf{n}}}\right) .
$$

For example, $I_{3}^{(5)}$ has the same form as (32) except for 3 being replaced by 5 .
A numerical test has been performed, in which only three modes of $\mathbf{k}=$ $(0,1),(1,2),(2,2)$ and their complex conjugate counterparts (hence 6 modes out of 24 modes) are given nonzero initial values. A double-precision calculation has shown that the relative errors of the values of the five invariant functions with respect to the initial values are

$$
\begin{gathered}
1.3 \times 10^{-15}(H), \quad 1.2 \times 10^{-15}\left(I_{2}^{(5)}\right), \quad 17.3 \times 10^{-15}\left(I_{3}^{(5)}\right), \\
0.4 \times 10^{-15}\left(I_{4}^{(5)}\right), \quad 4.4 \times 10^{-15}\left(I_{5}^{(5)}\right)
\end{gathered}
$$

Figures 1 and 2 illustrate how the energy H and the fifth invariant $I_{5}^{(5)}$ stay at constant levels. Figure 3 shows the streamlines at the initial $(t=0)$ and final ($t=10$) time.

The author wishes to acknowledge Mr. Y. Hattori for the computer calculation of the numerical test.

References

[1] V. Zeitlin (1990) Finite-mode analogs of 2-D ideal hydrodynamics: coadjoint orbits and local canonical structure, Institute of Atmospheric Physics (USSR Academy of Sciences, Moscow), Preprint No 4.
[2] D.B. Fairlie and C.K. Zachos (1989) Infinite-dimensional algebras, sine brackets, and SU(∞), Phys. Lett. B, 224, 101-107.

ENERGY

Figure 1

Figure 2

Figure 3

