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1 Introduction
We consider the following initial-boundary value problem for a system of diffusion equa-

tions with non-linear boundary conditions:

(1.1) $\{\begin{array}{l}a(x)u_{t}=u_{xx}(x,t)\in(0,1)\cross(0,\infty)b(x)v_{t}=v_{xx}(x,t)\in(0,1)\cross(0,\infty)u_{x}(1,t)=v_{x}(1,t)=0t\in(0,\infty)u_{x}(0,t)=k_{1}u^{m}(0,t)v^{n}(0,t)t\in(0,\infty)v_{x}(0,t)=k_{2}u^{m}(0,t)v^{n}(0,t)t,\in(0,\infty)u(x,0)=u_{0}(x)\geq 0x\in(0,1)v(x,0)=v_{0}(x)\geq 0x\in(0,1)\end{array}$

This is a mathematical model of the reaction

(1.2) $mU+nVarrow U_{m}V_{n}$

on the interface $x=0$ between two chemical species $U$ and V streaming to the t-axial
direction between two pararell plates (see Figure 1). Unknown functions $u$ and $v$ stand
for the concentration of $U$ and V respectively. $a(x)$ and $b(x)$ are given functions which
represent velocity of flow of $U$ and V respectively. Such models have already been analyzed
from mathematical points of view [3, 4, 5], and uniqueness and existence of bounded global
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Figure 1: Chemical interfacial reaction

solutions and their convercence to steady states are known facts. First we introduce thpse
facts and formulate our problem discussed in this article.

We assume that $a(x)$ and $b(x)$ are non-nagetive functions in $C^{\infty}[0,1]$ , and positive on
$[0,1)$ . $m,$ $n$ are constants greater than or equal to 1, and $k_{1},$ $k_{2}$ are positive constants. On
these assumptions for any non-negative and bounded initial data $u_{0},$ $v_{0}\in L^{\infty}(0,1)$ there
exists a bounded solution uniquely in the class

$(u, v)\in\{C([0, \infty);L^{2}(0,1))\cap C((0, \infty);H^{2}(0,1))\cap H_{1oc}^{1}(0, \infty;H^{1}(0,1))$

$\cap C^{\infty}([0,1]\cross(0, \infty))\cap L^{\infty}((0,1)\cross(0, \infty))\}^{2}$ .

Moreover $u,$ $v$ are also non-negative.
We note that

(1.3) $A= \frac{1}{k_{1}}\int_{0}^{1}$ au $dx- \frac{1}{k_{2}}\int_{0}^{1}bvdx$

is an invariance, $i,e.$ , independent of $t$ , and determined by the initial data.
In this article we discuss the convergence of solutions to steady states. It is reasonable

that chemical species continue to react till at least one of them will vanish since the reaction
(1.2) is not reversible. In order to react species, $m$ molecules of $U$ and $n$ molecules of V
must collide at the same time at a point on the interface. The lager $m$ and $n$ are, the
harder $m+n$ molecules colhde at the same time. Hence we observe that

(1) The solution $(u, v)$ converges to a steady state $(u_{\infty}, v_{\infty})$ in some topology as $tarrow\infty$ .
(2) The rate of convergence goes down as $m$ and $n$ increase.
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If (1) is true, then according to (1.3) the steady state $(u_{\infty}, v_{\infty})$ is given by

$u_{\infty}$ $=$ $k_{1} \max\{A, 0\}/\int_{0}^{1}$ a $dx$ ,

:

.
$v_{\infty}$ $=$ $k_{2} \max\{-A, 0\}/\int_{0}^{1}bdx$ .

Shinomiya [3] estabhshed that (1) is true in the $L^{\infty}$ -topology. Now we consider (2) in the
$L^{1}$-topology with weight $a(x)$ and $b(x)$ . We can establish the observation (2) as follows:

Theorem 1. It holds that

$\int_{0}^{1}\alpha|u-u_{\infty}|dx\leq C\rho_{1}(t)$ , $\int_{0}^{1}b|v-v_{\infty}|dx\leq C\rho_{2}(t)$ ,

where

$\rho_{J}\cdot(t)=$

$e^{-\lambda t/(3-j)}$ $(\lambda>0)$ if $A>0$ and $n=1$ ,

$(t+1)^{-1/\{(3-\gamma)(n-1)\}}$ if $A>0$ and $n>1$ ,

$(t+1)^{-1/(m+n-1)}$ if $A=0$ ,

$(t+1)^{-1/\{j(m-1)\}}$ if $A<0$ and $m>1$ ,

$\tau$

$e^{-\lambda t/j}$ $(\lambda>0)$ if $A<0$ and $m=1$ .

The proof is based on the energy method, however, for each case it is different in details.
We sketch it for the case $A=0$ in \S 2, because this case needs most technical argument of
all. In \S 3 we comment on other cases and on the decay rate of $(u_{x}, v_{x})$ . This article is a
summary of [2], but we also describe the development after [2].

2 The case $A=0$

We put
$M= \max\{||u||_{L^{\infty}((0,1)\cross(0,\infty))},$ $\Vert v||_{L^{\infty}((0,1)\cross(0,\infty))}\}$ .
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Remart that $M<\infty$ . Let us define a function $\varphi_{m+n}$ on $[0, M]$ by

$\varphi_{m+n}(u)=\{\begin{array}{l}exp\{-\frac{c_{m+n}}{u^{m+n-1}}\}(u>0)0(u=0)\end{array}$

where $c_{m+n}$ are determined so large that

(2.1) $0\leq u^{-2(m+n)}\varphi_{m+n}(u)\leq C\varphi_{m+n}’’(u)$ $(0\leq u\leq M)$

holds. We note that
(2.2) $u^{m+n}\varphi_{m+n}’(u)=c\varphi_{m+n}(u)$ ,

where $c=c_{m+n}(m+n-1)$ . Here and in what follows we interpret $u^{-k}\varphi_{m+n}(u)|_{u=0}=0$

for $k>0$ .
We multiply the first equation of (1.1) by $\varphi_{m+n}’(u)$ , and integrate with respect to $x$ . We

obtain $($

(2.3) $\frac{d}{dt}\int_{0}^{1}a\varphi_{m+n}(u)dx+\int_{0}^{1}\varphi_{m+n}’’(u)u_{x}^{2}dx+ck_{1}u^{-n}(0, t)v^{n}(0, t)\varphi_{m+n}(u(0, t))=0’$

by use of boundary conditions and (2.2). If $\int_{0}^{1}a\varphi_{m+n}(u(x, t_{0}))dx=0$ for some $t_{0}\geq 0$ ,

then taking (1.3) with $A=0$ into account we have $u=v\equiv 0$ for $t\geq t_{0}$ by the uniqueness

of solutions. Thus we may assume $\int_{0}^{1}a\varphi_{m+n}(u(x, t))dx>0$ for all $t\geq 0$ . Let define sets
$F_{l}$. on $(0, \infty)$ by

$F_{1}$ $=$ $\{t>0 ;u(0,t)\leq v(0,t)\}$ ,

$F_{2}$ $=$ $\{t>0 ; u(0,t)\geq v(0,t)\}$ .

It follows from (2.2) and (2.1) that

$\varphi_{m+n}(u)$ $\leq$ $\varphi_{m+n}(u(0,t))+\int_{0}^{1}|\varphi_{m+n}’(u)u_{x}|dx$

$=$ $\varphi_{m+n}(u(0,t))+c\int_{0}^{1}|u^{-(m+n)}\varphi_{m+n}(u)v_{x}|dx$

$\leq$ $\varphi_{m+n}(u(0, t))+\epsilon\int_{0}^{1}\varphi_{m+n}(u)dx+C\int_{0}^{1}\varphi_{m+n}’’(u)u_{x}^{2}dx$ .

If $t\in F_{1}$ , then

$\int_{0}^{1}a\varphi_{m+n}(u(x, t))dx$ $\leq$ $C( \varphi_{m+n}(u(0, t))+\int_{0}^{1}\varphi_{m+n}’’(u)u_{x}^{2}dx)$

(2.4)
$\leq$ $C(u^{-n}(0, t)v^{n}(0,t) \varphi_{m+n}(u(0, t))+\int_{0}^{1}\varphi_{m+n}’’(u)u_{x}^{2}dx)$
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holds.
By (2.3) and (2.4) there exists $\lambda>0$ such that a differential inequality

$\frac{d}{dt}\log\int_{0}^{1}a\varphi_{m+n}(u)dx\leq-\lambda\chi_{F_{1}}(t)$

holds, where $\chi_{F_{1}}$ is the characteristic function of the set $F_{1}$ . This inequality $i\iota nplies$

$\int_{0}^{1}a\varphi_{m+n}(u)dx\leq C\exp\{-\lambda\int_{0}^{t}\chi_{F_{1}}(\tau)d\tau\}$ .

Since $\varphi_{m+n}$ is a convex function, we can apply Jensen’s inequality to get

$\varphi_{m+n}$ ( $\int_{0}^{1}$ au $dx/ \int_{0}^{1}$ a $dx) \leq C\exp\{-\lambda\int_{0}^{t}\chi_{F_{1}}(\tau)d\tau\}$ .

In a similar way we have

$\varphi_{m+n}(\int_{0}^{1}bvdx/\int_{0}^{1}bdx)\leq C\exp\{-\lambda\int_{0}^{t}\chi_{F_{2}}(\tau)d\tau\}$ .

Because of
$\int_{0}^{t}(\chi_{F_{1}}+\chi_{F_{2}})d\tau\geq t$ ,

we have
$\varphi_{m+n}$ ( $\int_{0}^{1}$ au $dx/ \int_{0}^{1}$ a $dx$) $\varphi_{m+n}(\int_{0}^{1}bvdx/\int_{0}^{1}bdx)\leq Ce^{-\lambda t}$ .

We obtain the desired estimate by virture of the definition of $\varphi_{m+n}$ and (1.3) with $A=0$ .
口

3 Concluding Remarks
In this section we comment on other results without proofs.
The method mentioned in the previous section gives us only the estimate in the weighted

L’-topology. In cases $m=n=1$ and $A\neq 0$ , however, we can show estimates in the
weighted $L^{p}$-topology.

Theorem 2. Let $A=0$ and $m=n=1$ . Then there exists $C>0$ such that

$\int_{0}^{1}(au^{2}+bv^{2})dx\leq C(t+1)^{-2}$ .
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Theorem 3. Let $A$ be nonzero. Then there exist $\lambda>0$ and $C>0$ such that

1. For $A>0$ and $n=1$ ,

$\int_{0}^{1}a(u-u_{\infty})^{2}dx\leq Ce^{-\lambda t}$ , $\int_{0}^{1}bv^{2}dx\leq Ce^{-2\lambda t}$ ,

2. For $A>0$ and $n>1$ ,

$\int_{0}^{1}a(u-u_{\infty})^{2}dx\leq C(t+1)^{-1/(n-1)},$ $\int_{0}^{1}bv^{p}dx\leq C(p)(t+1)^{-p/(n-1)}(1\leq p<\infty)$ ,

3. For $A<0$ and $m>1$ ,

$\int_{0}^{1}au^{p}dx\leq C(p)(t+1)^{-p/(m-1)}(1\leq p<\infty),$ $\int_{0}^{1}b(v-v_{\infty})^{2}dx\leq C(t+1)^{-1/(m\neg 1)}($

4. For $A<0$ and $m=1$ ,

$\int_{0}^{1}au^{2}dx\leq Ce^{-2\lambda t}$ , $\int_{0}^{1}b(v-v_{\infty})^{2}dx\leq Ce^{-\lambda t}$ .

For the discussion on the decay estimate of $(u_{x}, v_{x})$ we assume the existence of a non-
negative $C^{1}$-function $\sigma(x)$ on $[0,1]$ satisfying

$\sigma(x)>0$ on $[0,1$ ) and $\sigma’(x)\leq 0$ on $[0,1]$ ,

$\lim_{x\uparrow 1}\frac{a(x)\sigma(x)}{\int_{x}^{1}a(\xi)d\xi}$

and
$\lim_{x\uparrow 1}\frac{b(x)\sigma(x)}{\int_{x}^{1}b(\xi)d\xi}$

exist and are finite,

$\sup_{x\in[0,1)}\frac{(\int_{x}^{1}a(\xi)d\xi)^{2}}{a(x)\sigma(x)}+\sup_{x\in[0,1)}\frac{(\int_{x}^{1}b(\xi)d\xi)^{2}}{b(x)\sigma(x)}\leq C$

.

For example, if $a(x)$ and $b(x)$ satisfy

$C^{-1}(1-x)^{k_{3}}\leq a(x)\leq C(1-x)^{k_{3}}$ ,

$C^{-1}(1-x)^{k_{4}}\leq b(x)\leq C(1-x)^{k_{4}}$

around $x=1$ for some $k_{i}\geq 0$ , then $\sigma(x)=1-x$ satisfies our assumtions.
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Then
$\alpha(x)=\int_{0}^{x}(a(\xi)\sigma(\xi)/\int_{\xi}^{1}a(\eta)d\uparrow 7)d\xi\int_{x}^{1}a(\xi)d\xi\sim$

and
$\beta(x)=\int_{0}^{x}(b(\xi)\sigma(\xi)/\int_{\xi}^{1}b(\eta)d\eta)d\xi\int_{x}^{1}b(\xi)d\xi$

are non-negative $C^{2}$-functions on $[0,1]$ . Using $\alpha$ and $\beta$ as weight functions, we get a decay
estimate of $(u_{x}, v_{x})$ in the weighted $L^{2}$-topology.

Theorem 4. We have

(3.1) $\int_{0}^{1}(\alpha u_{x}^{2}+\beta v_{x}^{2})dx\leq\{\begin{array}{l}C\tilde{\rho}_{2}^{2n}(t)C\rho_{1}^{2m}(t)\rho_{2}^{2n}(t)C\tilde{\rho}_{1}^{2?n}(t)\end{array}$ $ififif$ $AAA=<>000,$

’

where functions $\rho_{J}\cdot(t)(j=1,2)$ are given in Theroem 1, and $\tilde{\rho}_{j}(t)(j=1,2)$ are

$\tilde{\rho}_{1}(t)=\{\begin{array}{l}\rho_{1}(t)e^{-\tilde{\lambda}t}(\tilde{\lambda}>0)\end{array}$ $ifif$

either
$A<0A<0andandm=1m>1$

) or $A=0$ ,

$\tilde{\rho}_{2}(t)=\{\begin{array}{l}\rho_{2}(t)e^{-\tilde{\lambda}t}\cdot(\tilde{\lambda}>0)\end{array}$ $ifif$

either
$AA>,0>0andandn>1n=1$

.

or $A=0$ ,

The problem in this article is proposed to the author by Professor Yotsutani, Ryukoku
University. While the paper [2] was submitted to publish, he kindly pointed out that the
estimates in Theorem 1 can be improved. Due to him, we have the estimate

$||(u-u_{\infty}, v-v_{\infty})||_{H^{1}(01)} \}\leq C\min\{\rho_{1}(t), \rho_{2}(t)\}$

in an improved procedure of [2]. By Sobolev’s imbedding theorem we can conclude the rate
of convergence in the $L^{\infty}$ -topology. The decay rate of $(u_{x}, v_{x})$ is not sharper than (3.1).

Furthermore when the symposium on evolution equations was held at Kyoto University
in October, 1990, he imformed the author that the decay rate of derivative can be also
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improved. It will be published anywhere by names: Iida, M., Y. Yamada and S. $Yot_{St1}\cap tani$

(see [1]). The author is grateful to Professor Yotsutani for his helpful imformation.
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