Game Theoretic Analysis for an Optimal Stopping Problem

in Some Class of Distribution Functions

Jun-ichi NAKAGAMI Chiba University, Japan

千葉大学 理学部 中神 潤一

1. Introduction

Let $X_1, X_2, \dots, X_n, \dots$ be mutually independent and identically distributed random variables with a common cdf $F(t) = P\{X \leq t\}$ such that $E[X^+] = \int_{R_+} t dF(t) < \infty$, where $R = (-\infty, \infty), R_+ = [0, \infty)$. A positive observation cost $c \in R_{++} = (0, \infty)$ is incurred to the observation of each $X_n, n \geq 1$. If the observation process is stopped after X_n is observed, a reward $X_n - nc$ is received.

The optimal stopping time N is necessarily of the form; to stop at $N = \min\{n \mid X_n \in S\}$ for some stopping set $S \subset R$, and S is stationary and of a control-limit-type $\{X \ge x\}$ or $\{X > x\}$ for some $x \in R$, where x is called a stopping level. For this, we define that a stopping level x (or x - 0) means a stopping set $\{X > x\}$ (or $\{X \ge x\}$) respectively.

For any stopping level x and for any cdf F, we define an expected reward $\phi(x, F) = E[X_N - cN]$ of the stopping problem by

(1.1)
$$\phi(x,F) = \frac{\int_{(x,\infty)} t dF(t) - c}{\bar{F}(x)} = x + \frac{\int_{(x,\infty)} (t-x) dF(t) - c}{\bar{F}(x)}$$

where $\overline{F}(x) = 1 - F(x)$. Note that $\overline{F}(x) \to 0$ and $\phi \to -\infty$ as $x \to \infty$ and that $\overline{F}(x) \to 1$ and $\phi \to \mu_F - c$ as $x \to -\infty$ where $\mu_F = E[X] = \int_R t dF(t)$.

By the assumption $E[X^+] < \infty$, define $T_F(x)$,

(1.2)
$$T_{F}(x) = \int_{x}^{\infty} (t-x) dF(t) = \int_{x}^{\infty} \bar{F}(t) dt$$

Lemma 1. $T_F(x)$ is continuous, non-negative, convex and non-increasing function of x. It satisfies that $T_F(x) \ge (\mu_F - x)^+$ for any $x \in R$ and that $T_F(x) \to +\infty$ as $x \to -\infty$ and $T_F(x) \to 0$ as $x \to +\infty$. T_F has a derivative a.e.. Moreover, if $T_F(x)$ is positive at any point x, it is strictly decreasing at x.

Now, redefining the expected reward $\phi(x, F)$ by (1.1') for any stopping level x and for any cdf F, we will have the optimal expected reward $\phi^{o}(F)$ for any cdf F.

(1.1') $\phi(x,F) = x + \frac{T_F(x) - c}{\bar{F}(x)}.$

(1.3)
$$\phi^{o}(F) \stackrel{\text{def}}{=} \sup_{x \in R} \phi(x, F) .$$

(1.4)
$$\frac{d\phi(x,F)}{dF(x)} = \frac{T_F(x)-c}{\bar{F}^2(x)}.$$

The right hand side of (1.4) changes the sign from + to - at most one time as x goes from $-\infty$ to $+\infty$. From Lemma 1, the equation $T_F(x) = c$ for any fixed c(c > 0) has a unique solution $x^o(F) \stackrel{\text{def}}{=} (T_F)^{-1}(c)$, so that the set of optimal stopping levels $\mathbf{x}^o(F)$ (which must contain the point $x^o(F)$) of (1.3) is given by

(1.5)
$$\mathbf{x}^{\circ}(F) = \{x \mid F(x) = F(x^{\circ}(F))\}$$

Since the cdf F is right-continuous, this set is an interval of the form [a, b].

We have the optimal expected reward $\phi^o(F)$,

(1.3')
$$\phi^{o}(F) = x^{o}(F) = \phi(\mathbf{x}^{o}(F), F)$$

where $\phi(A, F)$ means $\phi(y, F)$ for any y in a set A.

Lemma 2. For any given cdf F, the following stopping sets or stopping levels (i) (ii) (iii) are optimal, and the optimal expected reward is given by (1.3'');

, and the second s

- (i) the set $\{X > a\}$ or level a where $a = \min\{x \mid x \in \mathbf{x}^o(F)\}$,
- (ii) the set $\{X \ge b\}$ or level b 0 where $b = \sup\{x \mid x \in \mathbf{x}^{\circ}(F)\}$,
- (iii) the set $\{X > x\}$ ($\{X \ge x\}$) or level x (x 0) where $\forall x \in (a, b)$.

First, we shall derive the maximal bound ϕ^u for $\phi(x, F)$ on $R \times \mathcal{F}$

(1.6)
$$\phi^{u} = \sup_{x \in R} \sup_{F \in \mathcal{F}} \phi(x, F) = \sup_{F \in \mathcal{F}} \phi^{o}(F)$$
$$= \phi(x^{o}(F^{u}), F^{u}) = \phi(x^{u}, F^{u}),$$

where (x^u, F^u) is a joint maximizing point of $\phi(x, F)$.

Second, we shall consider $\phi(x, F)$ as a two-person zero-sum game in which the player 1 (gambler) decides his level x in R and the player 2 (nature) chooses her cdf F in \mathcal{F} , before the observation of $\{X_n; n \ge 1\}$. Then the minimax value ϕ^* and the maximin value ϕ_* on $R \times \mathcal{F}$,

(1.7)
$$\phi^* = \inf_{F \in \mathcal{F}} \sup_{x \in R} \phi(x, F) = \inf_{F \in \mathcal{F}} \phi^\circ(F)$$
$$= \phi(x^\circ(F^*), F^*) = \phi(x^*, F^*) ,$$

(1.8)
$$\phi_* = \sup_{x \in \mathbb{R}} \inf_{F \in \mathcal{F}} \phi(x, F) = \phi(x_*, F_*) ,$$

and the saddle value ϕ^s , the saddle point (x^s, F^s) in $R \times \mathcal{F}$,

(1.9)
$$\phi^s = \operatorname{value}_{x \in R, F \in \mathcal{F}} \phi(x, F) = \phi(x^s, F^s) ,$$

will be derived for the following two classes $\mathcal{F}(\mu, \sigma^2)$ and $\mathcal{F}(\mu, \sigma^2, M)$ of cdf's.

The class $\mathcal{F}(\mu, \sigma^2, M)$ is the set of cdf's whose mean μ , variance σ^2 and domain $[\mu - M, \mu + M]$ are assumed to be known.

(1.10)
$$\mathcal{F}(\mu,\sigma^2,M) = \{F \mid \int_A dF(t) = 1, \int_A t dF(t) = \mu,$$
$$\int_A t^2 dF(t) = \mu^2 + \sigma^2 \text{ where } A = [\mu - M, \mu + M], \ M \ge \sigma\}$$

The class $\mathcal{F}(\mu, \sigma^2)$ is $\mathcal{F}(\mu, \sigma^2, M)$ where M is arbitrary in R_{++} , and $\mathcal{F}(\mu)$ is $\mathcal{F}(\mu, \sigma^2)$ where σ^2 is arbitrary in R_{++} .

Let a random variable X has a mean μ with a cdf $F_{\mu}(t)$, then the new random variable $X - \mu$ has the mean 0 with the cdf $F_0(t) = F_{\mu}(t + \mu)$. The following Lemma 3 below holds immediately from the definition (1.1) of $\phi(x, F)$.

2. Some Fundamental Lemmas

Lemma 3.

(2.4)
$$\phi(x,F_{\mu}) = \mu + \phi(x-\mu,F_0) \text{ for any } x \in \mathbb{R}.$$

Therefore, we may assume without loss of generality that all the cdf's in F have the mean 0. So that, we shall analyze the stopping problem in only two classes $\mathcal{F}(0, \sigma^2)$ and $\mathcal{F}(0, \sigma^2, M)$.

Lemma 4. For cdf's F_i and non-negative numbers $\lambda_i, i = 1, 2, \dots, n$, such that $\sum_{i=1}^n \lambda_i = 1$, let $F = \sum_{i=1}^n \lambda_i F_i$. Then

(2.5)
$$\phi(x,F) = \sum_{j=1}^{n} \lambda_j(x)\phi(x,F_j) \text{ for any } x \in R \text{, where}$$
$$\lambda_j(x) = \frac{\lambda_j \bar{F}_j(x)}{\sum_{i=1}^{n} \lambda_i \bar{F}_i(x)}.$$

Let define G_n be a discrete cdf which has n probability masses p_i , $p_i > 0$, at n points t_i , $i = 1, 2, \dots, n$, respectively $(\sum_{i=1}^n p_i = 1)$, i.e., it is represented as

(2.6)
$$G_n(t) = (\langle t_1, \cdots, t_n \rangle \langle p_1, \cdots, p_n \rangle),$$

and $\mathcal{G}_n(\mu, \sigma^2)$ be all discrete cdf's G_n in $\mathcal{F}(\mu, \sigma^2)$. Let

(2.7)
$$G_2(t;q) = (\langle -\frac{\sigma}{q}, \sigma q \rangle \langle \frac{q^2}{1+q^2} \rangle)$$

for any $q, 0 < q < \infty$. Then $G_2(t;q)$ is the only two-point cdf which has the mean 0 and the variance σ^2 .

Lemma 5. The class $\mathcal{G}_2(0, \sigma^2)$ of two-point cdf's is represented with a parameter $q, 0 < q < \infty$, as follows,

$$\mathcal{G}_2(0,\sigma^2) = \{G_2(\cdot;q) \mid 0 < q < \infty\}$$

Let us define

(2.8)
$$T^{u}_{\mathcal{F}}(x) = \sup_{F \in \mathcal{F}} T_{F}(x) , \ T^{\ell}_{\mathcal{F}}(x) = \inf_{F \in \mathcal{F}} T_{F}(x) .$$

Lemma 6. Suppose $\mathcal{F} = \mathcal{F}(0)$ so that $\mu_F = 0$ for all $F \in \mathcal{F}$, then $T^u_{\mathcal{F}}(x)$ and $T^{\ell}_{\mathcal{F}}(x)$ have the same property as $T_F(x)$ in Lemma 1 with μ_F replaced by 0, except that $T^{\ell}_{\mathcal{F}}(x)$ is not always convex.

From above Lemma 6, $T_{\mathcal{F}}^{u}(x)$ and $T_{\mathcal{F}}^{\ell}(x)$ have inverse functions $(T_{\mathcal{F}}^{u})^{-1}(c)$ and $(T_{\mathcal{F}}^{\ell})^{-1}(c)$ for all c, c > 0, respectively. Thus we have shown the existence of the values of ϕ^{u} and ϕ^{*} :

(2.9)
$$\phi^{u} = \sup_{F \in \mathcal{F}} \{ x \mid T_{F}(x) = c \} = (T_{\mathcal{F}}^{u})^{-1}(c)$$

(2.10)
$$\phi^* = \inf_{F \in \mathcal{F}} \{ x \mid T_F(x) = c \} = (T_{\mathcal{F}}^{\ell})^{-1}(c)$$

3. The Class $\mathcal{F}(\mu, \sigma^2)$

Proposition 3. [Feller p.151] If F is an arbitrary cdf, then

(3.2)
$$(\int_{A} u(t)v(t)dF(t))^{2} \leq (\int_{A} u^{2}(t)dF(t)) (\int_{A} v^{2}(t)dF(t))$$

for any set A and any functions u, v for which the integrals on the right exist. Furthermore, the equality sign holds if and only if

(3.3)
$$\int_A (au(t) + bv(t))^2 dF(t) = 0 \text{ for some } a, b \in R.$$

Note that if u and v are linearly dependent, i.e., for some $a, b \in R$, au(t) + bv(t) = 0, the condition (3.3) is satisfied for all $F \in \mathcal{F}$, and that if u and v are linearly independent, the condition (3.3) is satisfied only when the cdf F is degenerated at one point in a set A.

We shall calculate ϕ^u and the maximizing point (x^u, F^u) of the problem (2.9) by Proposition 3.

(3.4)
$$(\int_{(x,\infty)} (t-x) dF(t))^2 \leq (\int_{(x,\infty)} dF(t)) \left(\int_{(x,\infty)} (t-x)^2 dF(t) \right) ,$$

(3.4')
$$(\int_{(-\infty,x]} (t-x)dF(t))^2 \le (\int_{(-\infty,x]} dF(t)) \left(\int_{(-\infty,x]} (t-x)^2 dF(t)\right) .$$

Then, we obtain the maximal bound ϕ^u .

(3.7)
$$\phi^{u} = \sup_{F \in \mathcal{F}} \{x \mid T_{F}(x) = c\} = \frac{\sigma^{2}}{4c} - c \; .$$

Since the equality holds in two Schwartz inequalities (3.4) and (3.4'), from the remark of Proposition 3, the maximizing cdf F^u should be the two-point cdf. Then, we have

(3.8)
$$F^{u}(t) = G_{2}(t; \frac{\sigma}{2c}) = (\langle -2c, \frac{\sigma^{2}}{2c} \rangle \langle \frac{\sigma^{2}}{\sigma^{2} + 4c^{2}} \rangle),$$

(3.9)
$$x^{u} \in \mathbf{x}^{u} = \mathbf{x}^{o}(F^{u}) = \left[-2c, \frac{\sigma^{2}}{2c}\right).$$

Theorem 1. For a class $\mathcal{F}(0, \sigma^2)$ of cdf's, the maximal bound ϕ^u is $\sigma^2/4c - c$ by (3.7) ind the maximizing point $(x^u, F^u) \in \mathbf{x}^u \times \{F^u\}$ is given by $F^u(t) = G_2(t; \sigma/2c)$ in (3.8) and $\mathbf{x}^u = [-2c, \sigma^2/2c)$ in (3.9).

Remark of Theorem 1. From Lemma 2, The equation (3.9) means that the player 1 may decide a stopping level x^u for some $x^u \in [-2c, \sigma^2/2c)$ or $\sigma^2/2c - 0$. If the player 1 decides any of the above stopping levels, he stops the process whenever $X_n = \sigma^2/2c$ is observed because the player 2 chooses only one cdf given by (3.8).

Second, we shall calculate the minimax value ϕ^* of (2.10) and the minimax-mizing point $x^*, F^* \in (\mathbf{x}^*, \mathcal{F}^*)$.

From Lemma 6, $T_{\mathcal{F}}^{\ell}(x) \geq (-x)^{+}$ for all $x \in R$. Then it holds that $T_{F^{*}}(x) = (-x)^{+} \leq T_{\mathcal{F}}^{\ell}(x)$ for $x \in (-\infty, -c]$ if a cdf F^{*} , which has all the mass on $[-c, \infty)$, is contained in \mathcal{F} . Since $T_{F^{*}}(x) = (-x)^{+}$ is strictly decreasing on $(-\infty, -c]$, we have

3.10)
$$\phi^* = \inf_{F \in \mathcal{F}} \{ x \mid T_F(x) = c \} = \{ x \mid T_{F^*}(x) = c \} = -c$$

such a class \mathcal{F}^* of cdf's F^* always exists in \mathcal{F} for all c, c > 0.

3.11)
$$\mathcal{F}^* = \{F \mid \int_{[-c,\infty)} dF(t) = 1, F \in \mathcal{F}\}.$$

n particular, we can find the class $\mathcal{G}_2^* = \mathcal{G}_2^*(0, \sigma^2)$ of two-point cdf's in \mathcal{F}^* from Lemma 5.

3.11')
$$\mathcal{G}_2^* = \{G_2(\cdot;q) \mid q \ge \frac{\sigma}{c}\}.$$

It is easily shown that for any $F^* \in \mathcal{F}^*$ it is optimal for the player 1 to stop the process nmediately. That is,

3.12)
$$\mathbf{x}^* = \mathbf{x}^o(F^*) = (-\infty, -c) \text{ for all } F^* \in \mathcal{F} .$$

 $\mathbf{5}$

Theorem 2. For a class $\mathcal{F}(0, \sigma^2)$ of cdf's, the minimax value ϕ^* is -c by (3.10) and the minimax-mizing point $(x^*, F^*) \in (\mathbf{x}^*, \mathcal{F}^*)$ is given by (3.11) and (3.12). In particular, there exists the class \mathcal{G}_2^* of two-point cdf's in \mathcal{F}^* by (3.11').

Now, we shall derive the saddle value ϕ^s for $\phi(x, F)$ in $\mathcal{F} = \mathcal{F}(\mu, \sigma^2)$. We have a candidate $(\mathbf{x}^*, \mathcal{F}^*)$ for a set of saddle points $(\mathbf{x}^s, \mathcal{F}^s)$.

Theorem 3. For a class $\mathcal{F}(0, \sigma^2)$ of cdf's, the saddle value ϕ^s is -c and the saddle point $(x^s, F^s) \in \mathbf{x}^s \times \mathcal{F}^s$ is given by $\mathbf{x}^s = \mathbf{x}^*, \mathcal{F}^s = \mathcal{F}^*$ and $\mathcal{G}_2^s = \mathcal{G}_2^* \subset \mathcal{F}^s$ defined in Theorem 2.

Theorem 3 says the class $\mathcal{F}(\mu, \sigma^2)$ is so rich for the player 2 that the player 1 must stop immediately. In this case, the information of the value σ^2 is useless for the player 1.

4. The Class $\mathcal{F}(\mu, \sigma^2, M)$

In this section, we shall derive the maximal bound ϕ^u and the saddle value ϕ^s in the more restrictive and interesting class $\mathcal{F} = \mathcal{F}(0, \sigma^2, M)$ (see (1.10)).

Theorem 4. For a class $\mathcal{F}(0, \sigma^2, M)$ of cdf's, $\sigma < M$, the maximal bound ϕ^u and the maximizing point $(x^u, F^u) \in \mathbf{x}^u \times \mathcal{F}^u$ are as follows: (i) When $0 \le c \le \sigma^2/2M$,

$$\phi^{u} = M - c(1 + \frac{M^{2}}{\sigma^{2}}) , \ \mathbf{x}^{u} = \left[-\frac{\sigma^{2}}{M}, M\right) ,$$
$$F^{u}(t) = G_{2}(t; \frac{M}{\sigma}) = \left(<-\frac{\sigma^{2}}{M}, M > <\frac{M^{2}, \sigma^{2}}{\sigma^{2} + M^{2}} >\right)$$

(ii) When $\sigma^2/2M \le c \le M/2$, the same result as Theorem 1 holds, i.e.,

$$\phi^{u} = \frac{\sigma^{2}}{4c} - c , \ \mathbf{x}^{u} = \left[-2c, \frac{\sigma^{2}}{2c}\right) ,$$
$$F^{u}(t) = G_{2}(t; \frac{\sigma}{2c}) = \left(<-2c, \frac{\sigma^{2}}{2c} > <\frac{\sigma^{2}, 4c^{2}}{\sigma^{2} + 4c^{2}} >\right)$$

(iii) When $M/2 \le c \le M$,

$$\phi^{u} = \frac{\sigma^{2}}{M} - c(1 + \frac{\sigma^{2}}{M^{2}}) , \ \mathbf{x}^{u} = [-M, \frac{\sigma^{2}}{M}) ,$$
$$F^{u}(t) = G_{2}(t; \frac{\sigma}{M}) = (\langle -M, \frac{\sigma^{2}}{M} \rangle \langle \frac{\sigma^{2}}{\sigma^{2} + M^{2}} \rangle) .$$

Now, we shall derive the saddle value ϕ^s . We confine our consideration to the case:

(4.4)
$$0 < c < \sigma^2/M$$
.

On the other hand, it holds that

(4.2')
$$\inf_{F \in \mathcal{F}} \phi(x, F) \leq \phi(x, G_2(\cdot; M/\sigma)) = -c \text{ for } x \in [-M, -\sigma^2/M) ,$$

(4.3')
$$\inf_{F \in \mathcal{F}} \phi(x, F) \leq \phi(x, G_2(\cdot; \sigma/M)) = -\infty \text{ for } x \in [\sigma^2/M, M] ,$$

because the player 1 stops immediately in the case of (4.2') or he cannot stop in the case of (4.3'). Then, the player 1 must decide his stopping level x in the interval

(4.5)
$$\mathbf{x}^M \stackrel{\text{def}}{=} \left[-\frac{\sigma^2}{M}, \frac{\sigma^2}{M}\right),$$

in order not to make his reward $\inf_{F \in \mathcal{F}} \phi(x, F) \leq -c$, where -c is the reward of immediately stopping or the saddle value $\phi^s = -c$ in Section 3.

Lemma 7. For any strategy $(x, F), x \in \mathbf{x}^M$, $F \in \mathcal{F}$, if F has a probability mass p at any point y in the interval (x, M) and satisfies $\phi(x, F) \geq -c$, then there exists a cdf $F'' \in \mathcal{F}$ such that F'' has no mass in the interval (x, M), and it satisfies $\phi(x - 0, F'') \leq \phi(x, F)$.

Lemma 8. For any strategy $x \in \mathbf{x}^M$, $F \in \mathcal{F}$, if F has probability mass p at any point y in the interval (-M, x) and it satisfies $\phi(x, F) \ge -c$, then there exists a cdf $F'' \in \mathcal{F}$ such that F'' has no mass in the interval (-M, x), and it satisfies $\phi(x, F'') \le \phi(x, F)$.

Let us define for any $x \in [-\sigma^2/M, \sigma^2/M]$, a three-point cdf $G_3^M(\cdot; x) \in \mathcal{F}$ which has all the mass at three points -M, x, M with the mean 0 and the variance σ^2 . This cdf is uniquely determined by

(4.11)
$$G_3^M(t;x) = (\langle -M, x, M \rangle \langle \frac{Mx + \sigma^2}{2M(M+x)}, \frac{M^2 - \sigma^2}{M^2 - x^2}, \frac{\sigma^2 - Mx}{2M(M-x)} \rangle)$$

and let $\mathcal{G}_3^M = \{G_3^M(t;x) \mid -\sigma^2/M \leq x \leq \sigma^2/M\}$. Note that if $x = \sigma^2/M$ or $-\sigma^2/M$, $G_3^M(t;x)$ becomes the two-point cdf $G_2(t;\sigma/M)$ or $G_2(t;M/\sigma)$ respectively.

The player 1 would decide a stopping level x in the following set

(4.13)
$$\{x \mid \phi(x, F) \ge -c \text{ for all } F \in \mathcal{F}\} \cap \mathbf{x}^M \stackrel{\text{def}}{=} \mathbf{x}_c^M$$

This set is not empty because x = -c is contained in it.

If there exists a point $x^s \in \mathbf{x}_c^M$ such that

(4.15)
$$\phi(x^s, G_3^M(\cdot; x^s)) = (T_{\mathcal{G}_3^M}^{\ell})^{-1}(c)(=\phi(x^s - 0, G_3^M(\cdot; x^s))) \geq -c ,$$

the strategy $(x^s, G_3^M(\cdot; x^s), x \in \mathbf{x}_c^M, G_3^M(\cdot; x^s) \in \mathcal{G}_3^M \subset \mathcal{F}$, is the saddle point and $\phi^s = (T_{\mathcal{G}_3^M}^\ell)^{-1}(c)$ is the saddle value. Because, from (4.14), Proposition 1 and (2.10), the following relation is satisfied.

$$\phi(x^s - 0, G_3^M(\cdot; x^s)) \leq \sup_{x \in \mathbf{x}_c^M} \inf_{F \in \mathcal{F}} \phi(x, F) \leq \inf_{F \in \mathcal{F}} \sup_{x \in \mathbf{x}_c^M} \phi(x, F)$$

$$\leq \inf_{F \in \mathcal{G}_3^M} \sup_{x \in \mathbf{x}_c^M} \phi(x, F) = (T_{\mathcal{G}_3^M}^\ell)^{-1}(c) = \phi(x^s, G_3^M(\cdot; x^s)).$$

Theorem 5. For a class $\mathcal{F}(0, \sigma^2, M)$ of cdf's, $\sigma \leq M$, the saddle point $(x^s, F^s) \in (\mathbf{x}^s, \mathcal{F}^s)$ is as follows:

(i) When $\sigma^2/M \le c \le M$, the same result as Theorem 3 holds, that is,

$$\phi^s = -c, \ \mathbf{x}^s = [-M, -c] \text{ and}$$
$$\mathcal{F}^s = \{F \mid \int_{[-c,M]} dF(t) = 1, F \in \mathcal{F}(0, \sigma^2, M)\}$$

(ii) When $0 < c < \sigma^2/M$,

$$\phi^s = (\sigma^2/M - c)^+ - c, \ \mathbf{x}^s = \{x^s\}, \ x^s = (\sigma^2/M - c)^+ - c \text{ and}$$

 $\mathcal{F}^s = \{F^s\}, \ F^s(t) = G_3^M(t; x^s) \text{ defined by (4.11)}.$

References

[1] Billingsley, P., Probability and Measure, Wiley, New York, 1978.

[2] Chow, Y.S., H.Robbins and D.Siegmund, Great Expectations : The Theory of Optimal Stopping, Houghton-Mifflin, New York, 1971.

[3] Ekeland, I. and R. Teman, Convex Analysis and Variational Problems, North-Holland, 1976.

[4] Feller, W., An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1968.

[5] Nakagami, J. and M.Yasuda, "Saddle Point of an Inventory Problem", J. Information and Optimization Sciences, 2 1981, pp. 181-191.

[6] Pickands III, Jr., "Extreme Order Statistics with Cost of Sampling", Adv. Appl. Prob., 15 1983, pp. 783-797.

Jun-ichi NAKAGAMI

Department of Mathematics Faculty of Science, Chiba University 1-33 Yayoi-cho, Chiba-city, 260 JAPAN

