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Game Theoretic Analysis for an Optimal Stopping Problem

in Some Class of Distribution Functions
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千葉大学理学部 中神潤一

1. Introduction

Let $X_{1},$ $X_{2},$ $\cdots,$ $X_{n},$ $\cdots$ be mutually independent and identically distributed random vari-
ables with a common cdf $F(t)=P\{X\leq t\}$ such that $E[X^{+}]= \int_{R+}tdF(t)<\infty$ , where
$R=(-\infty, \infty),$ $R_{+}=[0, \infty$ ). A positive observation cost $c(\in R_{++}=(0, \infty))$ is incurred
to the observation of each $X_{n},$ $n\geq 1$ . If the observation process is stopped after $X_{n}$ is
observed, a reward $X_{n}-nc$ is received.

The optimal stopping time $N$ is necessarily of the form; to stop at $N= \min\{n|X_{n}\in S\}$

for some stopping set $S\subset R$ , and $S$ is stationary and of a control-limit-type $\{X\geq x\}$ or
$\{X>x\}$ for some $x\in R$ , where $x$ is called a stopping level. For this, we define that a
stopping level $x$ (or $x-O$) means a stopping set $\{X>x\}$ (or $\{X\geq x\}$ ) respectively.

For any stopping level $x$ and for any cdf $F$ , we define an expected reward $\phi(x, F)=$

$E[X_{N}-cN]$ of the stopping problem by

(1.1) $\phi(x, F)=\frac{\int_{(x,\infty)}tdF(t)-c}{\overline{F}(x)}=x+\frac{\int_{(x,\infty)}(t-x)dF(t)-c}{\overline{F}(x)}$ ,

where $\overline{F}(x)=1-F(x)$ . Note that $\overline{F}(x)arrow 0$ and $\phiarrow-\infty$ as $xarrow$ 科科 and that $\overline{F}(x)arrow 1$

and $\phiarrow\mu_{F}-c$ as $xarrow-\infty$ where $\mu_{F}=E[X]=\int_{R}tdF(t)$ .

By the assumption $E[X^{+}]<\infty$ , define $T_{F}(x)$ ,

(1.2) $T_{F}(x)-= \int_{x}^{\infty}(t-x)dF(t)=\int_{x}^{\infty}\overline{F}(t)dt$ .

Lemma 1. $T_{F}(x)$ is continuous, non-negative, convex and non-increasing function of $x$ .
It satisfies that $T_{F}(x)\geq(\mu_{F}-x)^{+}$ for any $x\in R$ and that $T_{F}(x)arrow+\infty$ as $xarrow-\infty$ and
$T_{F}(x)arrow 0$ as $xarrow+\infty$ . $T_{F}$ has a derivative a.e.. Moreover, if $T_{F}(x)$ is positive at any
point $x$ , it is strictly decreasing at $x$ .

Now, redefining the expected reward $\phi(x, F)$ by (1.1’) for any stopping level $x$ and for
any cdf $F$ , we will have the optimal expected reward $\phi^{o}(F)$ for any cdf $F$ .

(1.1) $\phi(x, F)=x+\frac{T_{F}(x)-c}{\overline{F}(x)}$
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(1.3) $\phi^{o}(F)def=\sup_{x\in R}\phi(x, F)$ .

(1.4) $\frac{d\phi(x,F)}{dF(x)}=\frac{T_{F}(x)-c}{\overline{F}^{2}(x)}$

The right hand side of (1.4) changes the sign $from+to-at$ most one time as $x$ goes from
$-\infty to+\infty$ . From Lemma 1, the equation $T_{F}(x)=c$ for any fixed $c(c>0)$ has a unique
solution $x^{o}(F)^{d}=^{ef}(T_{F})^{-1}(c)$ , so that the set of optimal stopping levels $x^{o}(F)$ (which must
contain the point $x^{o}(F))$ of (1.3) is given by

(1.5) $x^{o}(F)=\{x|F(x)=F(x^{o}(F))\}$ .

Since the cdf $F$ is right-continuous, this set is an interval of the form $[a, b$ ).

We have the optimal expected reward $\phi^{o}(F)$ ,

(1.3’) $\phi^{o}(F)=x^{o}(F)=\phi(x^{o}(F), F)$ ,

where $\phi(A, F)$ means $\phi(y, F)$ for any $y$ in a set $A$ .

Lemma 2. For any given cdf $F$ , the following stopping sets or stopping levels (i) (ii) (iii)
are optimal, and the optimal expected reward is given by (1.3“) ;

(i) the set $\{X>a\}$ or level $a$ where $a= \min\{x|x\in x^{o}(F)\}$ ,
(ii) the set $\{X\geq b\}$ or level $b-0$ where $b= \sup\{x|x\in x^{o}(F)\}$ ,
(iii) the set $\{X>x\}$ $(\{X\geq x\})$ or level $x(x-O)$ where $\forall x\in(a, b)$

First, we shall derive the maximal bound $\phi^{u}$ for $\phi(x, F)$ on $R\cross \mathcal{F}$

(1.6) $\phi^{u}=\sup_{x\in RF}\sup_{\in \mathcal{F}}\phi(x, F)=\sup_{F\in F}\phi^{o}(F)$

$=\phi(x^{o}(F^{u}), F^{u})=\phi(x^{u}, F^{u})$ ,

where $(x^{u}, F^{u})$ is a joint maximizing point of $\phi(x, F)$ .

Second, we shall consider $\phi(x, F)$ as a two-person zero-sum game in which the player 1
(gambler) decides his level $x$ in $R$ and the player 2 (nature) chooses her cdf $F$ in $\mathcal{F}$ , before
the observation of $\{X_{n}; n\geq 1\}$ . Then the minimax value $\phi^{*}$ and the maximin value $\phi_{*}$ on
$R\cross \mathcal{F}$,

(1.7) $\phi^{*}=\inf_{F\in \mathcal{F}}\sup_{x\in R}\phi(x, F)=\inf_{F\in \mathcal{F}^{-}}\phi^{o}(F)$

$=\phi(x^{o}(F^{*}), F^{*})=\phi(x^{*}, F^{*})$ ,

(1.8) $\phi_{*}=\sup_{x\in R}\inf_{F\in F}\phi(x, F)=\phi(x_{*}, F_{*})$ ,
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and the saddle value $\phi^{s}$ , the saddle point $(x^{s}, F^{s})$ in $R\cross \mathcal{F}$,

(1.9) $\phi^{s}=$ value$x\in R,F\in \mathcal{F}\phi(x, F)=\phi(x^{s}, F^{s})$ ,

will be derived for the following two classes $\mathcal{F}(\mu, \sigma^{2})$ and $\mathcal{F}(\mu, \sigma^{2}, M)$ of cdf’s.

The class $\mathcal{F}(\mu, \sigma^{2}, M)$ is the set of cdf’s whose mean $\mu$ , variance $\sigma^{2}$ and domain $[\mu-$

$M,$ $\mu+M$] are assumed to be known.

(1.10) $\mathcal{F}(\mu, \sigma^{2}, M)=\{F|\int_{A}dF(t)=1,$ $\int_{A}tdF(t)=\mu$ ,

$\int_{A}t^{2}dF(t)=\mu^{2}+\sigma^{2}$ where $A=[\mu-M, \mu+M],$ $M\geq\sigma$}

The class $\mathcal{F}(\mu, \sigma^{2})$ is $\mathcal{F}(\mu, \sigma^{2}, M)$ where $M$ is arbitrary in $R_{++}$ , and $\mathcal{F}(\mu)$ is $\mathcal{F}(\mu, \sigma^{2})$

where $\sigma^{2}$ is arbitrary in $R_{++}$ .

Let a random variable $X$ has a mean $\mu$ with a cdf $F_{\mu}(t)$ , then the new random variable
$X-\mu$ has the mean $0$ with the cdf $F_{0}(t)=F_{\mu}(t+\mu)$ . The following Lemma 3 below holds
immediately from the definition (1.1) of $\phi(x, F)$ .

2. Some Fundamental Lemmas

Lemma 3.

(2.4) $\phi(x, F_{\mu})=\mu+\phi(x-\mu, F_{0})$ for any $x\in R$ .

Therefore, we may assume without loss of generality that all the cdf’s in $F$ have the
mean $0$ . So that, we shall analyze the stopping problem in only two classes $\mathcal{F}(0, \sigma^{2})$ and
$\mathcal{F}(0, \sigma^{2}, M)$ .

Lemma 4. For cdf’s $F_{i}$ and non-negative numbers $\lambda_{i},$ $i=1,2,$ $\cdots,$ $n$ , such that $\Sigma_{\dot{t}}^{n_{=1}}\lambda_{i}=$

$1$ , let $F=\Sigma_{i=1}^{n}\lambda_{i}F_{1}$ . Then

(2.5) $\phi(x, F)=\sum_{j=1}^{n}\lambda_{j}(x)\phi(x, F_{j})$ for any $x\in R$ , where

$\lambda_{j}(x)=\frac{\lambda_{j}\overline{F}_{j}(x)}{\Sigma_{i=1}^{n}\lambda_{i}\overline{F}_{1}(x)}$

Let define $G_{n}$ be a discrete cdf which has $n$ probability masses $p;,$ $p_{*}>0$ , at $n$ points
$t_{i},$ $i=1,2,$ $\cdots,$ $n$ , respectively $(\Sigma_{i=1}^{n}p_{i}=1)$ , i.e., it is represented as

(2.6) $G_{n}(t)=(<t_{1}, \cdots,t_{n}><p_{1}, \cdots,p_{n}>)$ ,

and $\mathcal{G}_{n}(\mu, \sigma^{2})$ be all discrete cdf’s $G_{n}$ in $\mathcal{F}(\mu, \sigma^{2})$ . Let

(2.7) $G_{2}(t;q)=(<- \frac{\sigma}{q}, \sigma q><\frac{q^{2},1}{1+q^{2}}>)$
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for any $q,$ $0<q<\infty$ . Then $G_{2}(t;q)$ is the only two-point cdf which has the mean $0$ and
the variance $\sigma^{2}$ .

Lemma 5. The class $\mathcal{G}_{2}(0, \sigma^{2})$ of two-point cdf’s is represented with a parameter $q,$ $0<$

$q<\infty$ , as follows,
$\mathcal{G}_{2}(0, \sigma^{2})=\{G_{2}(\cdot;q)|0<q<\infty\}$ .

Let us define

(2.8) $T_{F}^{u}(x)= \sup_{F\in F}T_{F}(x),$ $T_{F}^{l}(x)= \inf_{F\in F}T_{F}(x)$ .

Lemma 6. Suppose $\mathcal{F}=\mathcal{F}(0)$ so that $\mu_{F}=0$ for all $F\in \mathcal{F}$, then $T_{F}^{u}(x)$ and $T_{F}^{\ell}(x)$ have
the same property as $T_{F}(x)$ in Lemma 1 with $\mu_{F}$ replaced by $0$ , except that $T_{F}^{\ell}(x)$ is not
always convex.

From above Lemma 6, $T_{F}^{u}(x)$ and $T_{\mathcal{F}}^{t}(x)$ have inverse functions $(T_{F}^{u})^{-1}(c)$ and $(T_{F}^{t})^{-1}(c)$

for all $c,$ $c>0$ , respectively. Thus we have shown the existence of the values of $\phi^{u}$ and $\phi^{*}:$

(2.9) $\phi^{u}=\sup_{F\in F}\{x|T_{F}(x)=c\}=(T_{\mathcal{F}}^{u})^{-1}(c)$ ,

(2.10) $\phi^{*}=\inf_{F\in \mathcal{F}}\{x|T_{F}(x)=c\}=(T_{\mathcal{F}}^{t})^{-1}(c)$ .

3. The Class $\mathcal{F}(\mu, \sigma^{2})$

Proposition 3. [Feller p.151] If $F$ is an arbitrary cdf, then

(3.2) $( \int_{A}u(t)v(t)dF(t))^{2}\leq(\int_{A}u^{2}(t)dF(t))(\int_{A}v^{2}(t)dF(t))$

for any set $A$ and \v{c}my functions $u,$ $v$ for which the integrals on the right exist. Furthermore,
the equality sign holds if and only if

(3.3) $\int_{A}(au(t)+bv(t))^{2}dF(t)=0$ for some $a,$ $b\in R$ .

Note that if $u$ and $v$ are linearly dependent, i.e., for some $a,$ $b\in R,$ $au(t)+bv(t)=0$ , the
condition (3.3) is satisfied for all $F\in \mathcal{F}$ , and that if $u$ and $v$ are linearly independent,
the condition (3.3) is satisfied only when the cdf $F$ is degenerated at one point in a set $A$ .

We shall calculate $\phi^{u}$ and the maximizing point $(x^{u}, F^{u})$ of the problem (2.9) by Propo-
sition 3.

(3.4) $( \int_{(x,\infty)}(t-x)dF(t))^{2}\leq(\int_{(x,\infty)}dF(t))(\int_{(x,\infty)}(t-x)^{2}dF(t))$ ,
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$((3.4’)$ $( \int_{-\infty,x]}(t-x)dF(t))^{2}\leq(\int_{(-\infty,x]}dF(t))(\int_{(-\infty,x]}(t-x)^{2}dF(t))$ .

Then, we obtain the maximal bound $\phi^{u}$ .

$((3.7)$ $\phi^{u}=\sup_{F\in \mathcal{F}},\{x|T_{F}(x)=c\}=\frac{\sigma^{2}}{4c}-c$ .

Since the equality holds in two Schwartz inequalities (3.4) and (3.4’), from the remark
$)f$ Proposition 3, the maximizing cdf $F^{u}$ should be the two-point cdf. Then, we have

3.8) $F^{u}(t)=G_{2}(t; \frac{\sigma}{2c})=(<-2c, \frac{\sigma^{2}}{2c}><\frac{\sigma^{2},4c^{2}}{\sigma^{2}+4c^{2}}>)$ ,

3.9) $x^{u} \in x^{u}=x^{o}(F^{u})=[-2c, \frac{\sigma^{2}}{2c})$ .

Theorem 1. For a class $\mathcal{F}(0, \sigma^{2})$ of cdf’s, the maximal bound $\phi^{u}$ is $\sigma^{2}/4c-c$ by (3.7)
$\iota nd$ the maximizing point $(x^{u}, F^{u})\in x^{u}\cross\{F^{u}\}$ is given by $F^{u}(t)=G_{2}(t;\sigma/2c)$ in (3.8)
$\iota ndx^{u}=[-2c, \sigma^{2}/2c)$ in (3.9).

Iemark of Theorem 1. From Lemma 2, The equation (3.9) means that the player
[ may decide a stopping level $x^{u}$ for some $x^{u}\in[-2c, \sigma^{2}/2c$) or $\sigma^{2}/2c-0$ . If the player
decides any of the above stopping levels, he stops the process whenever $X_{n}=\sigma^{2}/2c$ is

$)bserved$ because the player 2 chooses only one cdf given by (3.8).

Second, we shall calculate the minimax value $\phi^{*}$ of (2.10) and the minimax-mizing point
$x^{*},$ $F^{*}$ ) $\in(x^{*}, \mathcal{F}^{*})$ .

From Lenuna 6, $T_{F}^{t}(x)\geq(-x)^{+}$ for all $x\in R$ . Then it holds that $T_{F^{r}}(x)=(-x)^{+}\leq$

$\cap t\mathcal{F}(x)$ for $x\in(-\infty, -c$] if a cdf $F^{*}$ , which has all the mass on $[-c, \infty$ ), is contained in $\mathcal{F}$ .
Iince $T_{F^{*}}(x)=(-x)^{+}$ is strictly decreasing on $(-\infty, -c$], we have

3.10) $\phi^{*}=\inf_{F\in F}\{x|T_{F}(x)=c\}=\{x|T_{F^{*}}(x)=c\}=-c$ .

luch a class $\mathcal{F}^{*}$ of cdf’s $F^{*}$ always exists in $\mathcal{F}$ for all $c,$ $c>0$ .

3.11) $\mathcal{F}^{*}=\{F|\int_{1-c,\infty)}dF(t)=1, F\in \mathcal{F}\}$ .

[1 particular, we can find the class $\mathcal{G}_{2}^{*}=\mathcal{G}_{2}^{*}(0, \sigma^{2})$ of two-point cdf’s in $\mathcal{F}^{*}$ from Lemma 5.

3.11’) $\mathcal{G}_{2}^{*}=\{G_{2}(\cdot;q)|q\geq\frac{\sigma}{c}\}$ .

It is easily shown that for any $F^{*}\in \mathcal{F}^{*}$ it is optimal for the player 1 to stop the process
nmediately. That is,

3.12) $x^{*}=x^{o}(F^{*})=(-\infty, -c)$ for all $F^{*}\in \mathcal{F}$ .
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Theorem 2. For a class $\mathcal{F}(0, \sigma^{2})$ of cdf’s, the minimax value $\phi^{*}$ is $-c$ by (3.10) and
the minimax-mizing point $(x^{*}, F^{*})\in(x^{*}, \mathcal{F}^{*})$ is given by (3.11) and (3.12). In particular,
there exists the class $\mathcal{G}_{2}^{*}$ of two-point cdf’s in $\mathcal{F}^{*}$ by (3.11’).

Now, we shall derive the saddle value $\phi^{s}$ for $\phi(x, F)$ in $\mathcal{F}=\mathcal{F}(\mu, \sigma^{2})$ . We have a
candidate $(x^{*}, \mathcal{F}^{*})$ for a set of saddle points $(x^{s}, \mathcal{F}^{s})$ .

Theorem 3. For a class $\mathcal{F}(0, \sigma^{2})$ of cdf’s, the saddle value $\phi^{s}is-c$ and the saddle point
$(x^{s})F^{s})\in x^{s}\cross \mathcal{F}^{s}$ is given by $x^{s}=x^{*},$ $\mathcal{F}^{s}=\mathcal{F}^{*}$ and $\mathcal{G}_{2}^{s}=\mathcal{G}_{2}^{*}\subset \mathcal{F}^{s}$ defined in Theorem 2.

Theorem 3 says the class $\mathcal{F}(\mu, \sigma^{2})$ is so rich for the player 2 that the player 1 must stop
immediately. In this case, the information of the value $\sigma^{2}$ is useless for the player 1.

4. The Class $\mathcal{F}(\mu, \sigma^{2}, M)$

In this section, we shall derive the maximal bound $\phi^{u}$ and the saddle value $\phi^{s}$ in the
more restrictive and interesting class $\mathcal{F}=\mathcal{F}(0, \sigma^{2}, M)$ (see (1.10)).

Theorem 4. For a class $\mathcal{F}(0, \sigma^{2}, M)$ of cdf’s, $\sigma<M$ , the maximal bound $\phi^{u}$ and the
maximizing point $(x^{u}, F^{u})\in x^{u}\cross \mathcal{F}^{u}$ are as follows:
(i) When $0\leq c\leq\sigma^{2}/2M$ ,

$\phi^{u}=M-c(1+\frac{M^{2}}{\sigma^{2}}),$ $x^{u}=[-\frac{\sigma^{2}}{M}, M$),

$F^{u}(t)=G_{2}(t; \frac{M}{\sigma})=(<-\frac{\sigma^{2}}{M}, M><\frac{M^{2},\sigma^{2}}{\sigma^{2}+M^{2}}>)$ .

(ii) When $\sigma^{2}/2M\leq c\leq M/2$ , the same result as Theorem 1 holds, i.e.,

$\phi^{u}=\frac{\sigma^{2}}{4c}-c,$ $x^{u}=[-2c, \frac{\sigma^{2}}{2c}$),

$F^{u}(t)=G_{2}(t; \frac{\sigma}{2c})=(<-2c, \frac{\sigma^{2}}{2c}><\frac{\sigma^{2},4c^{2}}{\sigma^{2}+4c^{2}}>)$ .

(iii) When $M/2\leq c\leq M$ ,

$\phi^{u}=\frac{\sigma^{2}}{M}-c(1+\frac{\sigma^{2}}{M^{2}}),$ $x^{u}=[-M, \frac{\sigma^{2}}{M}$ ),

$F^{u}(t)=G_{2}(t; \frac{\sigma}{M})=(<-M, \frac{\sigma^{2}}{M}><\frac{\sigma^{2},M^{2}}{\sigma^{2}+M^{2}}>)$ .

Now, we shall derive the saddle value $\phi^{s}$ .
We confine our consideration to the case:

(4.4) $0<c<\sigma^{2}/M$ .
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On the other hand, it holds that

(4.2’) $\inf_{F\in F}\phi(x, F)\leq\phi(x, G_{2}(\cdot;M/\sigma))=-c$ for $x\in_{\rho}[-M, -\sigma^{2}/M$),

(4.3’) $\inf_{F\in F}\phi(x, F)\leq\phi(x, G_{2}(\cdot;\sigma/M))=-\infty$ for $x\in[\sigma^{2}/M, M]$ ,

because the player 1 stops immediately in the case of (4.2’) or he cannot stop in the case
of (4.3’). Then, the player 1 must decide his stopping level $x$ in the interval

(4.5) $x^{M^{d}}=^{ef}[-\frac{\sigma^{2}}{M}, \frac{\sigma^{2}}{M}$ ),

in order not to make his reward $\inf_{F\in F}\phi(x, F)\leq-c,$ $where-c$ is the reward of immediately
stopping or the saddle value $\phi^{s}=-c$ in Section 3.

Lemma 7. For any strategy $(x, F),$ $x\in x^{M},$ $F\in \mathcal{F}$ , if $F$ has a probability mass $p$ at any
point $y$ in the)interval $(x, M)$ and satisfies $\phi(x, F)\geq-c$ , then there exists a cdf $F”\in \mathcal{F}$

such that $F^{n}$ has no mass in the interval $(x_{J}M)$ , and it satisfies $\phi(x-0, F^{n})\leq\phi(x, F)$ .

Lemma 8. For any strategy $x\in x^{M},$ $F\in \mathcal{F}$ , if $F$ has probability mass $p$ at any point $y$

in the interval $(-M, x)$ and it satisfies $\phi(x, F)\geq-c$ , then there exists a cdf $F^{\pi}\in \mathcal{F}$ such
that $F^{u}$ has no mass in the interval $(-M, x)$ , and it satisfies $\phi(x, F^{u})\leq\phi(x, F)$ .

Let us define for any $x\in[-\sigma^{2}/M, \sigma^{2}/M]$ , a three-point cdf $G_{3}^{JI}(\cdot;x)\in \mathcal{F}$ which has
all the mass at three points $-M,$ $x,$ $M$ with the mean $0$ and the variance $\sigma^{2}$ . This cdf is
uniquely determined by

(4.11) $G_{3}^{Af}(t;x)=(<-M, x, M>< \frac{Mx+\sigma^{2}}{2M(M+x)}, \frac{M^{2}-\sigma^{2}}{M^{2}-x^{2}}, \frac{\sigma^{2}-Mx}{2M(M-x)}>)$ ,

and let $\mathcal{G}_{3}^{M}=\{G_{3}^{M}(t;x)|-\sigma^{2}/M\leq x\leq\sigma^{2}/M\}$ . Note that if $x=\sigma^{2}/M$ or $-\sigma^{2}/M$ ,
$G_{3}^{M}(t;x)$ becomes the two-point cdf $G_{2}(t;\sigma/M)$ or $G_{2}(t;M/\sigma)$ respectively.

The player 1 would decide a stopping level $x$ in the following set

(4.13) { $x|\phi(x,$ $F)\geq-c$ for all $F\in \mathcal{F}$} $\cap x^{M^{d}\underline{\mathscr{Q}}}x_{c}^{M}$

This set is not empty because $x=-c$ is contained in it.

If there exists a point $x^{s}\in x_{c}^{M}$ such that

(4.15) $\phi(x^{s}, G_{3}^{M}(\cdot;x^{s}))=(T_{\mathcal{G}_{3}^{M}}^{t})^{-1}(c)(=\phi(x^{s}-0, G_{3}^{M}(\cdot;x^{s})))\geq-c$ ,

the strat\’egy $(x^{s}, G_{3}^{M}(\cdot;x^{s}),$ $x\in x_{c}^{M},$ $G_{3}^{M}(\cdot;x^{s})\in \mathcal{G}_{3}^{M}\subset \mathcal{F}$ , is the saddle point and $\phi^{s}=$

$(T_{\mathcal{G}_{3}^{M}}^{p})^{-1}(c)$ is the saddle value. Because, from (4.14), Proposition 1 and (2.10), the following
relation is satisfied.

$\phi(x^{s}-0, G_{3}^{M}(\cdot;x^{s}))\leq\sup_{x\in x_{c}^{M}}\inf_{F\in F}\phi(x, F)\leq\inf_{F\in \mathcal{F}}\sup_{x\in x_{c}^{M}}\phi(x, F)$
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$\leq\inf_{F\in \mathcal{G}^{M}}\sup_{x\in x_{c}^{M}}\phi(x, F)=(T_{\mathcal{G}^{u}}^{\ell})^{-1}(c)=\phi(x^{*}, G_{3}^{M}(\cdot;x^{*}))$ .

Theorem 5. For a class $\mathcal{F}(0, \sigma^{2}, M)$ of cdf’s, $\sigma\leq M$ , the saddle point $(x^{s}, F^{s})\in(x^{s}, \mathcal{F}^{s})$

is as follows:
(i) When $\sigma^{2}/M\leq c\leq M$ , the same result as Theorem 3 holds, that is,

$\phi\cdot=-c,$ $x^{s}=[-M, -c]$ and

$\mathcal{F}^{*}=\{F|\int_{1-c,M]}dF(t)=1, F\in \mathcal{F}(0, \sigma^{2}, M)\}$ .

(ii) When $0<c<\sigma^{2}/M$ ,

$\phi^{s}=\{\sigma^{2}/M-c)^{+}-c,$ $x=\{x$
“

$\}$ , $x”=(\sigma^{2}/M-c)^{+}-c$ and

$\mathcal{F}^{*}=\{F^{*}\},$ $F$ ‘ $(t)=G_{3}^{M}(t;x^{s})$ defined by (4.11).
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