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1 Introduction

Constrained nonlinear optimization has been the subject of a significant amount of re-
search during the past two decades. As a result, a variety of different types of methods
for solving nonlinear optimization problems have been proposed and developed, for ex-
ample, the augmented Lagrangian method, the sequential quadratic programming (SQP)
method, the penalty method, the reduced gradient method, the trust region method and
so forth. Among these methods, those based on the SQP method have been found to be
very efficient for solving small to medium-sized problems.

Recently, methods for solving large and sparse nonlinear constrained problems have
been required. As yet, however, there have been relatively few methods to solve large-
sized problems. One of such attempts is to use the successive linear programming (SLP)
algorithms[10]. Unfortunately, the above mentioned methods for solving general nonlinear
optimization problems can not necessarily applied to large and sparse problems.

Though applying the SQP method to large problems seems promising, the solution
of a large-sized quadratic programming subproblem might be rather expensive and could
be as costly as solving the original problem directly. So it is reasonable to solve the QP
subproblems inexactly by using iterative methods, e.g., conjugate gradient like and SOR
like methods [5], [6], [8]. This notion was suggested by Dembo and Tulowitzki[1] and
Fontecilla[2], [3] and they proved the locally superlinear convergence of their methods.
Further, sparse quasi-Newton updates for unconstrained optimization might be applied

to the SQP method[9]. The SQP method for solving sparse problems has been studied
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by Nickel and Tolle[7]. These types of SQP methods are called the sequential truncated
QP method or the inexact quasi-Newton method. \
In this paper, we propose a sequential truncated QP method and, by using the results
- of Han[4], we show the global convergence of the method.

The general form of the nonlinear optimization problems to be considered is:

(NLP)

minimize f(z) with respect to z
subject to ¢gi(z) <0,i=1,...,m,

h](:Z:) =O, j= 1,...,1,
where

t€R, f:R"—R, g:R"—> R, hj: R" = R,
g(.’l:) = (91(37),- o agm(x))Ta h(w) = (h’l(m)> ce ';hl(z))T'

Throughout this paper, || o || and || @ ||; denote the 2 and 1 norms, respectively. Vf is a
gradient vector of f(z) and Vg, Vh mean Jacobian matrices of g(z) and h(z), respectively.
Further, we recall that a directional derivative D(g(z); d) of a real-valued function ¢ at a
point z in a direction d is the quantity defined by

g(z +td) ~ q(z)
t

2 Sequential Truncated QP Method

D(g(z) ; d) = lim

The algorithm of the original SQP method is as follows:

(SQP method)

Step 0. Select an initial point z! and an n x n symmetric positive definite matrix B;.

Set k£ = 1.

Step 1. Having z* and By, find the search direction d* by solving the QP subproblem:

(QP subproblem)
minimize %dTBkd + V f(z*)Td

2
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subject to  g(z*) + Vg(2*)d < 0,
h(z*) + Vh(z*)d = 0,
and choose A**! and p**! to be the optimal multiplier vectors for this problem.

Step 2. If (z%, \F*1) u*+1) satisfy the Karush-Kuhn-Tucker(K-K-T) condition of Problem
NLP, then stop; otherwise, go to Step 3.

Step 3. Determine a step size o by a suitable line search procedure.
Step 4. Set z*! = z* + oy d*.

Step 5. Update By giving a sy‘mmetric positive definite matrix By by a suitable quasi-

Newton formula.

Step 6. Set k =k + 1 and go to Step 1.

Though the original SQP method requires the QP sﬁbproblem to be solved exactly,
the sequential truncated QP (STQP) method relaxes the K-K-T condition of the QP
subproblem. We propose the following relaxed K-K-T condition:

(The parameters €;, €2, €3 and &4 are given in Step 0 of the above algorithm.)

Step.1’ Find the triple ( d*, \¥*! u**1 ) satisfying

(1) |1Brd + Vf(z") + Vg(2")" X + Vh(z")Tull

< elldl],
(2) [N (g(2*) + Vg(z")d)| < elld]?,
(3) (1" (a(z*) + VR(z*)d)| < eslld]f?),
(4) |hi(z*) + Vhi(e*)Td] < edldl’,  i=1,...,1
(5) 9(z*) + Vg(a*)d < 0,
(6) A >0

Setting e, = €3 = €3 = €4 = 0, we have the exact K-K-T condition of the original

QP subproblem. The expreséion (2) corresponds to the complementarity condition for
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the inequality constraints, while the expression (3) for the equality constraints is redun-
dant and can be obtained by combining the expression (4) and the boundedness of the
Lagrangian multiplier vectors, which is assumed in the next section.

In Step 3 of the above algorithm, we use Han’s merit function[4] as follows:
(7) 0,(z) = f(z) + rp(s),
where r is a penalty parameter and
(8) p(z) = max(0, g1(2), .. ., gmn(2), [ha(2)], - .., [hu(2)])-
Then we have the following STQP algorithm:

(STQP method)

Step 0. Select an initial point 2! and an n X n symmetric positive definite matrix B;. Set

= 1. Give the parameters ¢;, €3, €3, €4, >0, 0<v <1/2 and 0< 7 < 1.

Step 1. Having z* and By, find the triple ( d*, \**1, u*+1 ) satisfying the conditions

|1 Bid + V f(2*) + Vg(z*)" X+ Vh(e*) ul| < elld]],
INT(g(2¥) + Vg(z*)d)| < eolld|?,
(|67 (h(z*) + VA(z*)d)| < eslld?),
hi(z*) + Vhi(@*)Td] < eld’, i=1,...,],
g(z*) + Vg(ah)d < 0,
A > 0.

Step 2. If (z*, \¥*1  *¥+1) satisfy the Karush-Kuhn-Tucker(K-K-T) condition of Problem
NLP, then stop; otherwise, go to Step 3.

Step 3. Determine a step size o by Han’s line search procedure;

Step 3.1 Set fx3=1and:=1.

Step 3.2 If the generalized Armijo’s criterion
(9) 9,..(:12‘: + ﬁk,,'dk) <4, (:ck) — I/ﬂk,g(dk)TBkdk
is satisfied, then set oy = f; and go to Step 4; otherwise, go to Step 3.3.

4
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Step 3.3 Set fii41 = 70k;, ¢t =1+ 1 and go to Step 3.2.

Step 4. Set z¢*! = z* 4 ;. dF.

Step 5. Update By giving a symmetric positive definite matrix By, by a suitable quasi-

Newton formula.

Step 6. Set k = k+ 1 and go to Step 1.

3 Global Convergence

In this section, following to Han[4], we show the global convergence property of the STQP

method given in the previous section. Suppose the assumptions:

(A1) f, g¢; and h; are twice continuously differentiable.
(A2) The subproblem in the STQP method ig solvable at each iteration.
(A3) For given r, the level set of the merit function
1 L(s!) = {& € R"(0,(x) < (")}
is compact.
(A4) There exist positive constants M; and M, such that
(11) Mi|lv|l* < v" By < Myjolf?
for all v and for each £ > 1.
(A5) There holds r > || M|y + ||u*||, for each & > 1.
(A6) The parameters are chosen so that €1 + €, + €5+ reg < Ml(% —-v).

Considering the relaxed K-K-T conditions (1) ~ (6), we obtain directly the following

result.
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Theorem 1 If d* = 0 for some k, the triple (z*, M**1, u¥*1) is a K-K-T point of
Problem NLP.

The above implies the case where the stationary point is achieved in a finite number
of iterations. In the below, we consider the case of d* # 0. In which case, it is desirable
that the vector d* is a descent search direction of the merit function. We show below that
the directional derivative D(6,(z*) ; d*) is negative. First, we estlmate the directional

derivative of f(z) at a point z* in a direction d¥.

Lemma 1

(12)  VAH)Td* < ~(@) B + (I + 5 l)p(a*) + ( Zaz N1

i=1

Proof. It follows from the Cauchy-Schwarz 1nequa11ty and (1) that
(dk)T(B &+ Vf( k)+vg( k)T)‘k+1+Vh(zk)T k1)

< ¥l IBid® + V£(z*) + Vg(2*) A + Vh(z*) T k“ll

< elldi? |

So the expressions (2) and (3) yield

Vf(a:k)Tdk < __(dk)TBkdk + ()\k.«kl)Tg'(xk)‘ +?(“k+1)’1‘.h(mk) +( Zei )”dkuz

1=1

< —(d*)"Bid* + E/\k“%(fv + Z |5+ hy (mk)l +( Ze, M|
=1 . ) . l-l ;
< =(d)" By d"+(||>\'°+1||1 + [+ 1)p(2*) + ( Ze, M.
. =1
'
Secondly, the next lemma suggests that d* is a descent search direction of 4, (z).
Lemma 2

13 D) ) | . ‘
B e e redllP (= (1) e
~ (M = (ex 2+ 4 eI = {r = (1N + 1)} pls*)

A
o
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Proof. Let

L = {i]g(z*)=p(*), i€{0,1,...,m}}, go(z) =0
L = {jlhi(z*)=p(E"), je{1,....0} },
o= {51 =k =p(), je{L....0} ).

Since the expressions (4) and (5) implies that
max (Vgi(z*)"d") < max(—gi(z")) = —p(s*) < edl|d"|I* - p(a"),
1€l tcn

max (Vh;(z*)"d*) < max(e]|d*||® — h;(z*)) = edl|d*||* — p(=*),
I€NL J€EL
and

max (~Vh;(2)7d) < max(ed|dH|P + hi(z*) = ealldH| = p(z)
JEL _ J€EL

we have
D(p(a*) ; d*) = max{ max(Vgi(z*)"d"), max(Vh;(z")"d"), max(~Vh;(z*)"d")}
tcly FAT] €43
< edlP = pla*).
So, by the property of the directional derivative, we have
D(6,(z*) ; d)
= Vf(z*)"d* +r D(p(z*) ; d)
m 1
< —(d*)T Brd" + (e1 + &2+ e3 + reg) || + (30 M+ Y it — ) p(a¥)
=1 i=1
< —(d*)"Byd* + (&1 + €2 + 3 + reg)l[d*[I” — {r — (IIN**! s + |6+ 11)} p(2*)
< —{Mi — (&1 + &2 + &3+ re) HId | = {r = (1INl + [1e*+H1]1)} p(=*).

The proof is complete. g

In order to prove the global convergence property, it is required that the line search
procedure terminates in a finite number of iterations at each k. We give a justification

for the line search procedure givén in the STQP method.

Lemma 3  The step size ay has a positive value and oy = By for some finite t.
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Proof. Suppose that, forall i > 1,

(147) 9,.(2:’c + ﬁk,gdk) > 9,-(38") - l/ﬂk'.‘(dl“)TBkdk.

Then we have
6, (z* + Bd*) — 6,(z*)
Bhr.i )

Since ¢ — oo implies By ; — 40, it follows from Lemma 2 that

k Ak k
_V(dk)TBkdk < lim 0, (z +ﬁkéd) 6, (%)
$—+00 k,i‘
= D(6.(s*);d*)

< —(d*)TBid® + (61 + €2 + €3 + rey)]|d*|%.

—U(dk)TBkdk <

Thus we have, by (A4) and (A6),

0 < —(1=v)(d*)Bid* +(e1+ &2+ s+ res)||d*|?
1
< - (-2- - u) M| + (61 + €2 + €3 + rea)l|d*|?
' 1 : ..
< - {(5 - u) M —(e1+ex+e3+ re.,,)} Il ||
< 0,

which is the contradiction. g

The above lemmas guarantee z* € L,(z') for any k. Further, since the level set of the

merit function at the initial point is compact, there exist positive constants M3, M, and

Mj such that

(15) My > sup [[V2f(z* +pd")||,
0<p<1

(16) My > sup [|[Vig(z*+ o), i=1,...,m,
0<p<1

(17) Ms > sup ||[V?hi(e* +pd*)ll, j=1,...,1

0<p<1

The following lemma suggests that the step size oy is uniformly bounded below.

Lemma 4  For any k,

. . M,
(18) ap>a =1 mm(M3+r(M4+M5)’1)'

8
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Proof. Suppose that, for some k, o < . Then there exists an integer ¢ such that

ai = Pt Since o* < 7 < 1, we have t > 2. So Bx -1 satisfies
6, (z* + Pri—1d*) > 6,(2*) — vBiec1(d*)T Brd",

which implies N . k

(19) 0,(z* + Bru-1d®) = 6,(a%)
Br,t-1

It follows from the mean value theorem that there exist &, (m,...,7m) and (G, ..., G)

such that

—i(d*)T Byd*,

&+ Buierd) = F(5) 4 BpesV F)T + Lo (2 O
and
(e Buimad) = max(0,gi(2* + Pres ), s (¥ + Buimrd))
= max(0, g:(") + Fi-1Vgi(at) d" + %ﬁi,t_l(d*)Tvzge(m)d" :
[h5(2%) + Breca Vs (2570 + 262y ()7 PRy (G)d¥)
S (A= Bue)Plet) + B aca(Mat MR + Buseall I

Noting that ay = Bk ¢ = TPk,-1 < a*, we have

M N
M3’+ T(M4 + M5)’

(20) Br,i-1 <
:whi?:h yields
b+ Bead®) — 6,(2Y)
Br,t-1 .
< (G + Buiad) = F(M) + 1(o(a* + frimd®) = p(s)
- Brt—1 S
< (VHEHTE + S @)V H(OF)

‘ 1 .
47 (=p(2%) + SBhea(Me + Me)lHP +ealldb)P)
Thus, by Lemma 1 and'(20); we have - ., -

0,(z* + i i—1d¥) — 6,(z¥)
Br,t-1

1 | |
< =5(@) Bed® + (Xl + 15l = r)p(a®) + (61 + €2 + 3 + rea) |,

(21)

9
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Therefore, by (19) and (21), we have

0 < —{r— (X" + l**]l)}p(=*)
g (-;- — u) (d¥)TB*d* + (e1+ 62+ €3+ ré.;)”d"”z
—{r = (¥ 1) Yp(a)

_ {(% - 1/) Mi—(e1+estes+ 7'64)} ]2

< 0,

IN

which is the contradiction. Hence the proof is complete. 3

Using the above lemmas, we obtain the following convergence theorem.

Theoreﬁl 2
(22) lim [|&*|| =o.
Proof. By the choice of the step size oy, we have
8,(z**1) < H,V(:ck) — vay(d*)T Byd*.
Taking the sum of both sides of the above inequality for & = 1,...,N ,.
6,(z') > 6,(z"*) +v i a(d*)7 Byd
k=1

N
> ) +vat My Y [l

k=1

Since the level set of the merit function is condpact and f is continuously differentiable,

the function f is bounded below and f(z¥*!) > f! for some f!. Then we have

N
0 < va*My ) |ld*|? < 6.(c") — f,
k=1 '
which implies that the series

> Nl
k=1
converges. Thus theorem is proven. g
The above theorem guarantees that any accumulation point of the sequence generated
by the STQP method is a K-K-T point of Problem NLP. With the additional assumption

that all the functions to be treated are convex, any accumulation point of {z*} is actually

an optimal solution of Problem NLP.

10
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