Radon transform an real hyperbolic spaces

Let \mathbf{H}^n be the real hyperbolic space of dimension n, $1 \le k \le n-1$, and $\Sigma = \Sigma_k$ be the family of all totally geodesic submanifolds of \mathbf{H}^n of dimension k. Σ carries a natural manifold structure. Moreover, each $\xi \in \Sigma$ carries the induced surface measure $\mathbf{d}_k \mathbf{x}$ from the volume element $\mathbf{d}_n \mathbf{x}$ in \mathbf{H}^n . We can therefore define the k-dimensional Radon transform $\mathbf{R} = \mathbf{R}_k$ by

$$Rf(\xi) = \int_{\xi} f(x) d_k x$$
,

at least for functions $f \in C_0^{\infty}(H^n)$. We have $Rf \in C_0^{\infty}(\Sigma)$.

Let $x \in H^n$, Σ_x the family of all $\xi \in \Sigma$ such that $x \in \xi$. It also carries a natural measure $d\xi$, which is "independent of x" in an obvious sense. We define the adjoint operator R* as follows:

$$R*\varphi(x) = \int_{\Sigma_x} \varphi(\xi) d\xi$$
.

Given a function κ of a single real variable t we can define a "radial convolution operator" K on H^n by

$$Kf(x) = \int_{H^n} f(y) \kappa(d(x,y)) d_n y$$
,

where d(x,y) denotes the hyperbolic distance between x and y . The operator R*R is a radial convolution operator (as

shown by Helgason) and for k even it has an inversion formula

of the form

$$P(\Delta) R*R = id$$
,

where P is an explicit polynomial in the Laplace-Beltrami operator (Helgason) .

In joint work with E. Casadio Tarabusi, I have shown for k odd that if $\kappa(t)=\cosh\,t(\sinh\,t)^{k-n}$ and K is the corresponding convolution operator, then there is an explicit polynomial Q such that

$$Q(\Delta)$$
 K R*R =id .

The original case of interest was the x-ray transform in the hyperbolic disk, because of its applications to Applied Potential Tomography. In this case k=1, n=2, and if we take

$$\kappa(t) = \frac{\cosh t}{\sinh t} - 1$$

the corresponding operator K has an integrable kernel and the inversion formula for R*R is

$$-\frac{1}{4\pi} \Delta K R*R = id.$$

Helgason has a different inversion formula of the operator ${\tt R}$ involving Abel integral equations.

Carlos Berenstein