goooboooogn
0 7540 19910 25-34

29

On the-role of equivalence queries in learning
via queries

Seiichi Tani* (& E{—)

B ahor, KAV ESoREREIC 2 3 RERRORE-SVWTEL 5. FEK
RIBAHE LCRBEZG LD, (1) BERRTIL A& S 02 HL I T L, BIU, (2) RAEXRRDY
LTVEWRASICREA2 543D 22008 E LT3, FEEE:PFIBREOY bbb
—H DAL TRBEIARECRAECEA VA, EOHAFOEMELHAV 3 L SEARECRETE
BEED 7 I RADHELERKONT RS, ARTR, 2D X35 %7 F 20 ki cFERED (1) okl
PHWEL CTHBEIRECRIECE 230RFET S L 2RT. X OHE,FELRA k- FHE
DNF 2= (ktMDNF) Kz 0 X 5 AR 2o L 2RFT LR XV TFAS.

R, R 2WEORFDI IR L, 01,62 ¥ R ORCIRRINZERETE. cot®, o
DEFHrER L c; CHTIFTBREANICEL MRS LONALLE, ¢ & g LARAIUEEHNY
5 P EHIET SMBELREMEEMPLC LICTE. ARTR, REEFRA— +< v (dfa) o
ERERRERETD SR ARETEMATENS. —F, ktMDNF 35 X CB/NRESER: n © dfa
i3 S RERBE XS EARM RT3 T L BRI NS,

1 Introduction

In this paper, we consider the problem of exactly identifying a representation of an unknown
set (i.e. “concept”) from a representation class using various types of queries. This problem
is one of central issues in computational learning theory and there has been extensive research
into the problem. Recently, polynomial time learning algorithms have been found for sev-
eral representaion classes. For example, Angluin showed a learning algorithm that identifies
deterministic finite automata (dfa) using membership and equivalence queries[2]. Further-
more, she showed a learning algorithm that identifies desjunctive normal form formulas with
at most k-terms (k-term DNF formula) using membership and equivalence queries[1]. See
also [5, 7, 10]. On the other hand, some negative results have been showed. For example,
Angluin showed that there is no polynomial time algorithm that exactly identifies dfa using
only equivalence queries [4]. Valiant introduced stochastic setting learning model, so called
PAC (Probably Approzimately Correct) learning model[8]. In this setting, Pitt and Valiant
showed for all £ > 2, k-term DNF formulas cannot be probably approximately identified in
polynomial time from randam sampling using onlu equivalence queries unless RP = NP![6].
As a corollary of this result, in [3] Angluin showed that there is no polynomial time algorithm
that exactly identifies k-term DNF formulas unless RP = NP.

*‘Dep‘artment of Mathematics, Waseda University. E-mail address : tani@ds5000.math.waseda.ac.jp
1RP is the class of sets recognizable in randam polynomial time. RP is a subclass of NP, but it is unknown
whether the containment is strict. Many reserchers suspect that RP and NP are unequal.

1

26

In this paper, we consider the power of equivalence queries in learning unknown concepts
from what is called “minimally adequate teacher (MAT for short)”. MAT is a model of
a teacher introduced by Angluin[2], which can answer membership queries and equivalence
queries. An equivalence query proposes a representation », and MAT answers yes if the set
¢ specified by r is equivalent to the unknown set u, while selects a string ¢ in u @ c otherwise.
(For any set A and B, A @ B denotes (AU B) — (AN B).) In the latter case, the string
t is called a counterezample. Equivalence queries have the following two roles: (1) indicat-
ing whether learning algorithms have succeeded and (2) giveing counterexamples. Several
reserchers have delt with restricted equivalence queries, which is equivalence queries playing
the former role only. But no results concerning the equivalence queries playing the latter role
only have shown in the literature as far as the author knows. In this paper, we will show that
there exists a representation class that can be identified by using MAT without requiring the
role (1) of equivalence queries . We introduce concept of “learning from successful couterez-
ample queries (SCEX)”, and characterize a subcollection of representation classes with this
property. We show that there is no polynomial time algorithm to identify nonredundant
monotone DNF formulas with k-term (ktMDNF) using only equivalence queries unless NP
= RP. We also show that there is a polynomial time algorithm to identify k#tMDNF from
MAT without the role (1) of equivalence queries.

In order to give some insights into the identifiable representation classess from MAT
without role (1) of equivalence queries, we introduce the notion of “detectable” representation
classes. Suppose R is a representaion language for some concepts. We consider the problem,
given a representaion » € R and membership queries consistent with ¢ which is a concept
represented by a string in R, to decide whether c is equivalent to the concept described by
r using the membership queries. If this problem is solvable, we call the class R is detectable.
We show that ktMDNF is detectable in polynomial time. On the other hand, we show that
if dfa is detectable then there exists a deterministic algorithm to identify dfa using only
membership queries.

2 Preliminaries

2.1 Representation Classes

Here we specify “concepts ”, objectives for learners, by using a “representation class”introduced
by Warmuth [9].
A representaion class is a four-tuple (R, I';, ®,T';), where

o I'y and T'; : finite sets, called an alphabet for representations and an alphabet for
concepts respectively,

¢ R: a subset of I'], called a representaion language, and
e & : a mapping from R to concepts over I';.

For each represetation r € R, the set ®(r) is the concept represented by r. Since we use a
fixed alphabet ¥ (= {0, 1}) throughout this paper, we omit specifying alphabets and write,
e.g., (R, ®). '

27

We assume a natural way to encode Turing machines and Boolean formulas. For any
representation r of Turing machine, let L(r) denote the language accepted by the Turing
machine specified by r; L(-) is used similarly for Boolean formulas. In this paper the following
semantic function is used common: a function @ty that maps every representation r of
Turing machine to L(r) and a function ®pr such that for every representaion r of Boolean
formula, ®pp(r) consists of all assignments {0,1}" that satisfy the formula.

Below we define some representation languages.

e Ram = {r: 7 is a description of dfa}

o Rpnr = {r : r encodes a Boolean formula in disjunctive normal form}

Ri-ipnr = {r : r is a DNF formula with at most k-terms}

Rupnr = {r : r encodes a monotone Boolean formula in disjunctive normal form}

Ri:mpnr = {7 : 7 is a nonredundunt monotone DNF formula with k terms}

2.2 Learnability

Let R = (R, ®) be a representation class. For the exact learning problem there is an unknown
concept ¢ € ®(R), and information may be gathered about ¢ by asking some types of queries.
In this paper, we consider following two types of queries:

1. Membership query. The input is a string = and the output is yesif z € ¢ and no if
z ¢ ec.

2. Equivalence query. The input is a representation © € R and output is yes ifP(r)=-c
and a no otherwise. In addition of the answer no, a counterezample is supplied, that
is, a string ¢t € ®(r) ® c. The choice of counterexamples is assumed to be arbitary.

We shall also consider restricted version of equivalence queries, for which the responses are
just yes and no, with no counterexample provided. '

Let Q be a set of some types of queries. For example, @ is membership and equiva-
lence queries. A deterministic algorithm A exactly learns C using Q if and only if for every
¢ € ®(R), when A is given 0"l as input and run with an oracle for Q for ¢, A eventually halts
and outputs some * € R such that &(r) = c. Such an algorithm runs in polynomial time if
and if only if there is a polynomial p(l,m) such that for every ¢ € ®(R), if l is the length of
input then when A is run with an orcle for @ for ¢ at any point in the run the time used by
A is bounded by p(l,m), where m is the maximum length of answer from the oracle for @
so far in the run, or m = 0 if no equivalence queries have been used.

R is (polynomial time) learnable using @ if and only if there exists a deterministic
(polynomial time) algorithm to learn using Q.

3 Learning from membership and successful coun-
terexample queries

In this section, we will introduce a concept of “successful counterexample queries (SCEX)”.

3

28

3.1 Successful counterexample queries SCEX

Equivalence queries have two roles: equivalence queries (1) indicate whether learning algo-
rithms have succeeded and (2) give an counterexample. Equivalence queries can play the
former role only (restricted equivalence queries), but they cannot play the latter role only.
Let C = (R, ®) be a representation class. Consider an algorithm tries to identify an unknown
concept ¢ € ®(R). Suppose equivalence queries try to answer to give counterexamples only
and no information about whether the algorithm has succeeded or not. If a equivalence
query is taken a representation » such that ®(r) = ¢, then the query has no counterexample
“returned to the algorithm and indicates that the algorithm has identified since $(r) ®c =0

Here we introduce a concept of “learning from membership queries and successful coun-
terzample queries (SCEX)”for characterizing a subcollection of representation classes such
that is learnable using MAT but don’t require the role(1) of equivalence queries.

We consider SCEX for C. When SCEX takes a representation » € R, SCEX outputs a

counterexample if there exists a counterexample and a special string fail othrewise.

Definition. Let C = (R, ®) be a representation. A deterministic algorithm A learns C
using membership queries and SCEX if and only if for every ¢ € &(R), when A is given 0!
as input and run with an oracle for membership queries and SCEX for ¢, A eventually halts
and outputs some » € R such that &(r) = c and A is not given “fail "by the oracle in the
run time. Such an algorithm runs in polynomial time if and if only if there is a polynomial
p(l,m) such that for every ¢ € ®(R), if ! is the length of input then when A is run with
an orcle for membership queries and SCEX for ®(r) at any point in the run the time used
by A is bounded by p(I,m), where m is the maximum length of answer from the oracle for
membership queries and SCEX so far in the run, or m = 0 if no equivalence queries have
been used.

R is (polynomial time) learnable using membership queries and SCEX if and only if there
exists a deterministic (polynomial time) algorithm to learn using membership queries and
SCEX.

Suppose a learning algorithm tries to identify an unknoun concept ¢ € ®(R). By this
definition, the learning algorithms use counterexamples but when the algorithms constructs
a hypothesis » » such that ®(r) = ¢ they must halt before asking an SCEX query.

3.2 Nonredundant k-term MDNF is learnable from SCEX

Let ktDNF = (Rk-tDNF; QBF); MDNF = (RMDNF, @BF); and ktMDNF = (RktMDNFa QBF) In
this subsection, we consider the problem to learn ktMDNF using membership and SCEX
queries.

Pitt and Valiant showed for all k£ > 2, k&t DNF cannot be probably approximately identified -
in polynomial time from randam sampling unless NP = RP[6]. We can certify Pitt and
Valiant’s result holds for ktMDNF. By relationships between types queries and Valiant’s
stochastic setting the followin proposition is proved. (See [3])

Proposition 3.1 Let k > 2. ktMDNF is not polynomial time learnable using only equiva-
lence gqueries unless NP = RP.

29

On the other hand, k&tMDNF is polymomial time learnble using MAT since Angluin showed
there exists a polynomial time algorithm to learn MDNF using MAT1].
The main result to be proved in this section is the following.

Theorem 3.2 Let k > 1. ktMDNF is polynomial time learnable using membership queries
and SCEX.

Proof. This theorem is porved by showing a polynomial time algorithm to learn ktMDNF.
The algorithm is a modification of Angluin’s algorithm to learn MDNF using membership
and equivalence queries in polynomial time.

A prime tmplicant of a Boolean formula % is a satisfiable product ¢ of literals such ¢
implies 1, but no proper subterm of ¢ implies 9.

The algorithm keeps a current hypothesis 9’, initially the empty formula. The hypothesis
1)’ always consists of a sum of prime implicants of ¥, and therefore implies 1.

The -algorithm takes an assignment a that satifies 3 but not %' as a counterexample
by asking SCEX. Initially there is a counterexample since the algorithm keeps the empty
formulas and k£ > 1. From a the algorithm searches for a new prime implicant of 3. Let
t be the product of all those variables «; such that a(z;) is true. Clearly a(t) is true. The
following procedure is used to reduce ¢ to prime implicant.

For each t' obtained by deleting one literal from ¢, determine whether ¢’ implies 9 as
follows. Let a’' be the assignment that assigns true those variables in ¢’ and false to the
others. By making a membership query with a’, the algorithm decides whether ¢’ implies 9
or not. (a'(%) is true if and only if ¢ implies %.)

If ¢ implies 7, then t is replaced by ¢’ and the reduction process is continued. Eventually
the algorithm arrives at a term ¢ such that ¢ implies v, but no term obtained from ¢ by
deleting one literal implies 4.

a(t) is true and so ¢ is not already in 9’. The algorithm replace the hypothesis 9’ by
¥’ +t. The algorithm iterates from getting a counterexample k-th times. After k-th times
iterations, the algorithm has a hypothesis 9’ such that ®pp(9’') = ®pr(¥).

At each iteration the number of terms of 9’ increments just one. Therefore there exists
a counterexample until the algorithm iterates k-th times, so the algorithm cannot get “fail”.

Each prime implicant added to the formula requires one SCEX and at most » member-
ship queries, so the running time of the algorithm is clearly bounded by polynomial n. This
concludes the proof of Theorem 3.2. o

Let n-DFA denote (R,-gsa, <I>T1;,1), where

Rn-ata = {r : R € Rys and the minimum dfa accepting ®(d) has n states}. Since Rp gt €
Ras., n-DFA is learnable using MAT. The following proposition is also shown.

Proposition 3.3 n-DFA is polynomaial time learnable from membership queries and SCEX.

4 Detectability

4.1 Detectability

Let C = (R, ®) be a representation class. For any representation r € R, and any concept
c € ®(R), we say that c is correct with respect to r if and only if ¢ is equivalent to &(r).

5

30

In this section we consider the problem, given a representaion » € R and an access to
membership query for ¢ € ®(R), to decide whether c is correct with respect to r. We will
introduce the concept of the detecter. Consider a detecter that is designed for a representa-
tion class C = (R, ®). The goal of the detecter D is that if D is given r € R and an access
to membership query for ¢ € ®(R) then D decides whether the concept ¢ is correct with
respect to r using membership queries for c.

Definition. Let C = (R, ®) be a representaion class. A deterministic algorithm D detects
C if and only if for every r € R and every ¢ € ®(R), when, given r as input, D is run with
an orcle for membership queries for ¢, eventually D halts and outputs special string “correct
», if ¢ is correct with respect to » and “incorrect”otherwise. A deterministic algorithm D
polynomial time detects C if and only if there exist a polynomial p such that for every r € R
and every c € ®(r), given r as input D is run with an oracle for membership query for c at
any point in the run the time used by D is bounded by p(|r|) and detects C.

For any representation class C, we say C is detectable (polynomial time detectable) if
there exists a deterministic algorithm D that detects (polynomial time detects) C.

4.2 Detectable representation classes

In this subsection we show some nontrivial polynomially detectable representation classes.
Theorem 4.1 n-DFA is polynomilal time detectable.

In this section we follow standard definitions and notations in computational complexity
theory .

By a string we mean an element of ¥*, and by a language we mean a subset of ¥*. A
symbol 1L ¢& ¥ is used to denote undeﬁned ”. The length of a string = is denoted by |z|; a
function Az.|z| is denoted by |- |.

For z,y € ¥*, = - y denotes the concatinaton of z and y. For X,Y C X*, X Y denotes
{z-yle € X,y eY}.

Proof of Theorem 4.1 is done by showing an algorithm that polynomially detects n-DFA
DETECT nDFA. DETECT_nDFA is shown in figure 1.

Let r be a representation in R__j5, and c be a concept in ®1m(R,__4¢,)- Suppose DE-
TECT_nDNF takes r as input and tries to decide whether = is correct with respect to ¢
using an oracle for menmbership queries of c. DETECT_nDFA simulates Angluin’s learning
algorithm for ®rm(r). DETECT nDFA checks whether the examples used by the learning
algorithm are consistent with c. DETECT nDFA halts and outputs ‘incorrect’if an answer
from membership query for $1(r) and an answer from membership query for $ry(r’) are
different. If DETECT_nDFA doesn’t output ‘incorrect’and gets a representation ' such that
®rm(r) = ®rm(r') by simulateing Angluin’s algorithm, DETECT nDFA halts and output
‘correct’

The DETECT nDNF use the following three subprocedures:

1. MEM_BB : the input is an instance a, and the output is yesif a € ¢ and no otherwise.

6

31

S :={A}; E:={A};
For eacht € SU A do
ans; :=MEM_MAT(t); ans, :=MEM_BB(t);
If ans; # ans; then halt and output ‘incorrect ’
end
construct the initial observation table (S, E, T');
Repeat % Main Loop%
While (S, E,T) is not closed or not consistent do
If (S, E,T) is not closed then do
find s; € S and a € ¥ such that
f[s1-a] # fls] for all s € S;
add s; -a to S;
Foreacht€ (SUS-Z—(S—381-a)U(S—8,:a)-X)-E do
ans; :=MEM_MAT(t); ans, :=MEM_BB(t);
If ans; # ans,; then halt and output ‘incorrect’
end
extend T to (SUS-X)-E
end
If (S, E,T) is not consistent then do
find s8,,8, € S, a € X and e € E such that
fls1] = flsz) and T'(sy -a-€) # T(s3 - a - ¢€);
add a-e to F;
Foreacht€ (SUS:-X)-a-edo
ans, :=MEM_MAT(t); ans, :=MEM_BB(t);
If ans; # ans; then halt and output ‘incorrect ’
end
extend T to (SUS -X)- E
end
end \
Make the conjecture M¢ := M(S,E,T);
If the number of the states of M, is less than n then do
¢ :=CEMAT(Mc); P := {c and all its prefixes };
add all elements of P to S;
Foreacht€ (SUS-2—~(S—P)U(S—-P)-X)-E do
ans, :==MEM_MAT(t); ans, :=MEM_BB(t);
If ans; # ans,; then halt and output ‘incorrect ’
end
extend T to (SUS-X)- E
end
Until the number of states of M is n;
halt and output ‘correct’

Figure 1: The Algorithm for Detecting n-DFA, DETECT nDFA

32

2. MEM_MAT : the input is an instance a, and the output is yes if a € ®1y(d) and no
otherwise.

3. CE_MAT : the input is a representation ' € R,_g4s, and the output L if Srm(r) @
®7pm(r') = 0 and a counterexample t € Srm(r) ® Brm(r’) otherwise.

MEM_BB is realized by using the oracle for membership queres of c. MEM_MAT takes a as
inputs and simulates a dfa represented by r. Given 7' as input, CE_LMAT constructs a dfa
exactly accepting &1y (7) ® Brm(r’) and checks whether the accepting set of the dfa is empty
or not. If the dfa accepts any string, CE_.MAT outputs a couterexample in S1m(r)D Brm(r’).
These three procedures run in polynomial time.

Angluin introduced the concept the CCOT and proved the Lemma 4.2[2]. An observation
table is a triple (S, E, T) consists of 1-3 as follows:

1. S is a nonempty finite prefix-closed set,
2. E is a nonempty finite suffix-closed set,
3. T is a finite function mapping ((SU S - X) - E) to {0,1}.

(A set is prefiz-closed if and only if every prefix of every member of the set is also a member
of the set. Suffix-closed is defined analogously.) |

An observation table can be visualised as 2-demensional matrix with rows labelled by
elements of SU S - X, columuns labelled by elements of E, and entry for row s and column
e equal to T(s-e). For s € SUS-X, let f[s] denote a function such that

fls]: E — {0,1}, f["](e) =T(s-¢)

An observation table is closed if for each ¢t € § - X there exist an s € S such that
f[t] = fls]. An observation table is consistent if whenever s, s, € S are elements of S such
that f[s)] = flsz], for all a € B, fls1 - a] = f[s, - al. | |

Let (S, E, T) s a closed consistent observation table (CCOT for short). The corresponding
dfa M(S,E,T) over X constructed from (S, E,T) is defined with the state set @), the set of
final states F, and the state transition function é as follows: '

Q={flsl|s€ S}
qO:f[A];
F = {f[s] | s€ S and T(s) =1},

5(f[s],a) = fls - a].

Lemma 4.2 Let (S, E,T) be a COOT. The dfa M(S, E,T) defined above satisfied the

following three conditions.

1. M is well-defined.

2. M is consistent with the finite function T. That is, for everyz € (SUS -X)- E,
8(go,z) € F if and only if T(z) = 1.

3. Suppose that M has n states. If M is any dfa consistent with T that has n or fewer
states, then M' is isomorphic to M.

33

The following lemma is proved by modifying a Lemma in [2].

Lemma 4.3 In running of DETECT nDFA, the number of states of the dfa M(S,E,T)

increases monotonic.

Lemma 4.4 For all ? € Ry, and all ¢ € ®rm(Rn-aray DETECT nDFA halts in time

polynomial in n and answers whether ¢ is correct with respect to r.

Proof of Lemma 4.4. Consider DETECT_nDFA takes 7 € R,.45» and an access for
membership queries of ¢ € ®ym(Rp-ara) and tries ¢ is correct with respect r. Suppose
DETECT_nDFA has an ovsevation table (S, E,T). Let M(S, E,T) be the corresponing dfa
to (S, E,T). Note r is always consistent with T'.

1) In the case cis correct with respect to r: Since ¢ = ®1m(r), ans, # ans, never happens
Therefore A can’t output ‘incorrect’. -

By Lemma 4.3 and Lemma 4.2, after at most n-th iterations, the number of states of

M(S, E,T)is n and halts and output ‘correct’. By the difinition of T', the 1M ~'(c) and r are
consistent with T'. Therefore &1y ~(c), 7, and M(S, E, T) are descriptions of dfa consistent
with T with n states. By Propositon 4.2, 1y ~!(c), 7, and M(S, E, T) are isomorphic.
2) In the case cis correct with respect tor: rm(r)® # 0. Wecall an element of &1y (r)Dc
is witness. When A constructs an observation table, for each a € (SUS-A)- E, membership
queries for @1y (r) and ¢ are done. If a witness a contained in the observation table, ans, #
ansy. Then A halts and outputs ‘incorrect’. Assume any witness a is not contained in the
observation table and then M(S, E,T) with n states is constructed. By |[®rm~(c)| = n
and Proposition 4.2, &1y~ (c) and M(S,E,T) are isomorphic. This contradicts to the
assumption. Therefore A must find witness a and halt and output“incorrect”.

Angluin’s learning algorithm for DFA, L*[2] halts in time polynomial in n. DETECT _DFA
halts also in time polymomial in n]

Proposition 4.5 ktMDNF is polynomial time detecterbale.

Proof of proposition 4.5 is omitted.

4.3 DFA is not detectable

Here we consider the problem to detect DFA. Angluin showed there exist a deterministic
algorithm to learn DFA in polynomial time using MAT [2]. But we show followg theorem.

Theorem 4.6 DFA is not detectable unless there ezists a deterministic algorithm to learn
DFA using membership queries.

Proof. Assume DFA is detectable. Let dy,d,,...,d;,... be a natural enumeration of all
elements of Ras. Suppose we try to identify an unknown concept ¢ € ®rm(Raw). Let 2 be
a nutural number such that ¢ = ®tm(d;). Since DFA is detectable by assumption, there
exists a deterministic algorithm D to detect DFA. For every d; € Rgs, given an access to
membership queries for ¢, D can answer whether ®(d;) = c. If D is given d; in enumeration
order D answers ¢ = ®rm(d;) when i = j. We can identify the unknown concept $(dy) in
finite time. This is inconsistent to that there exist no deterministic algorithms to learn DFA
using membership queries. a

34

5 Concluding remarks

We characterize a subcollection of the representation classes that can be identified by using
MAT without requiring the role (1) of equivalence queries . It is open whether there exists
a characterization all representaion classes that can be identified by using MAT without
requiring the role (1). It is unknown whether the collection of polynomial time detectable
representaion classes is equal to the collection of representation classes that is polynomial
time learnable using membership queries and SCEX.

Acknowledgement The author would like to express his sincere thanks to Professor
Hiroshi Noguchi of Waseda University for his kind advice. He also thanks to Dr. Tetsuro
Nishino of Tokyo Denki University, for his useful suggestions.

References

[1] Angluin, D. : Learning k-term DNF formulas using queries and counterezamples. Te-
chinical Report, YALEU/DCS/RR-559, Department of Computer Science, Yale Univer-
sity (1987).

[2] Angluin, D.: Learning regular sets from queries and counterexamples, Information and
Computation, 75(1987), pp.87-106.

[3] Angluin, D. : Queries and concept learning, Machine Learning, 2 (1987), pp.319-342.

[4] Angluin, D. : Negative Results for Equivalence Queries, Machine Learning, 5(1990),
pp-121-150.

[6] Nishino, T.: Learninig Logic Formulas and Programs Based in Their Models. Reserch
Report, TDU-IS-19, Tokyo Denki University (1990).

[6] Pitt, L. and L. G. Valiant : Computational limitation on learning from examples, Jour-
nal of the ACM, 85 (1988), pp.965-984.

[7] Sakakibara, Y. : Learning context-free grammars from structual data in polynomial
time, Proceedings of the 1988 Workshop on Computational Lerning Theory, Morgan
Kaufmann (1988).

[8] Valiant, L. G. : A theory of the learnable, Communications of the ACM, 27 (1984),
pp.1124-1142.

[9] Warmuth, M. : Towards representation independeﬁce in PAC learning, Lecture Notes
in AT 397, Springer-Verlag (1989), 78-103.

[10] Watanabe, O. : A formal study of learnability via queries, Automata, Languages and
Programing, 1990. Proccedings. Lecture Notes in Computer Science 443, Springer-Varlag
(1990). o

10

