
25

On the role of equivalence queries in learning
via queries

Seiichi Tani* (谷 聖一)

概要: 本論では, 質問を用いた概念の同定問題における同値質問の役割ついて考える. 同値質
問は入力として仮説を受けとり, (1) 同定が成功したかどうかを教えること, および, (2) 同定が成功
していない場合には反例を与えることの 2 っの役割を持っている. 同値質問と所属質問のどちらか
一方のみからでは多項式時間で同定できないが, その両方の質問を用いると多項式時間で同定でき
る概念のクラスの存在が知られている. 本論では, そのようなクラスのなかに同値質問の (1) の役割
を用いなくても多項式時間で同定できるものが存在することを示す. その証明は,非冗長な k- 項単
調 DNF論理式 $(ktMDNF)$ がこのような性質を持つことを示すことにより行なう.
次に, R を概念の表現のクラスとし, $c_{1},$ c_{2} を R の元で記述される概念とする. このとき, c_{1}

の表現 $r\in R$ と c_{2} に対する所属質問に答える神託が与えられたとき、 c_{1} と c_{2} とが同じ概念かど
うかを判定する問題を検定問題と呼ぶことにする. 本論では,決定性有限オートマトン (出 7a) の検
定問題が決定不能である強い状況証拠が示される. 一方, $ktMDNF$ および最小状態数が n の dfa
に対する検定問題は多項式時間で解けることが示される.

1 Introduction
In this paper, we consider the problem of exactly identifying a representation of an unknown
set (i.e. “ concept”) from a representation class using various types of queries. This problem
is one of central issues in comp\’utational learning theory and there has been extensive research
into the problem. Recently, polynomial time learning algorithms have been found for sev-
eral representaion classes. For example, Angluin showed a learning algorithm that identffies
deterministic finite automata (dfa) using membership and equivalence queries[2]. Further-
more, she showed a learning algorithm that identifies desjunctive normal form formulas with
at most k-terms (k-term DNF formula) using membership and equivalence queries[l]. See
also [5, 7, 10]. On the other hand, some negative results have been showed. For example,
Angluin showed that there is no polynomial time algorithm that exactly identffies dfa using
only equivalence queries [4]. Valiant introduced stochastic setting learning model, so called
PAC (Probably Approximately Correct) learning mode1[8]. In this setting, Pitt and Valiant
showed for all $k\geq.2$, k-term DNF formulas cannot be probably approximately identified in
polynomial time from randam sampling using onlu equivalence queries unless RP $=NP^{1}[6]$.
As a corollary of this result, in [3] Angluin showed that there is no polynomial time algorithm
that exactly identifies k-term DNF formulas unless RP $=NP$.

’Department of Mathematics, Waseda University. E-mail address : tani@ds5000.math.waseda.ac.jp
1RP is the class of sets recognizable in randam polynomial time. RP is a subclass of NP, but it is unknown

whether the containment is strict. Many reserchers suspect that RP and NP are unequal.

1

数理解析研究所講究録
第 754巻 1991年 25-34

26

In this paper, we consider the power of equivalence queries in learning unknown concepts
from what is called “minimaUy adequate teacher (MAT for short)”. MAT is amodel of
ateacher introduced by $Angluin[2]$, which can answer membership queries and equivalence
queries. An equivalence query proposes arepresentation r , and MAT answers yes if the set
c spe$cified\cdot byr$ is equivalent to the unknown set u , while selects astring t in $u\oplus c$ otherwise.
(For any set A and $B,$ $A\oplus B$ denotes $(A\cup B)-(A\cap B).$) In the latter case, the string
t is called acounterexample. Equivalence queries have the foUowing two roles: (1) indicat-
ing whether learning algorithms have succeeded and (2.) giveing counterexamples. Several
reserchers have delt with restricted equivalence queries, which is equivalence queries playing
the former role only. But no results concerning the equivalence queries playing the latter role
only have shown in the literature as far as the author knows. h this paper, we wiU show that
there exists arepresentation class that can be identified by using MAT without requiring the
role (1) of equivalence queries. We introduce concept of “learning $homsuccessfi\iota l$ couterex-
ample queries (SCEX)”, and characterize asubcoUection of representation classes with this
property. We show that there is no polynomial time algorithm to identify nonredundant
monotone DNF formulas with k-term $(ktMDNF)$ using only equivalence queries unless NP
$=RP$. We also show that there is apolynomial time algorithm to identify $ktMDNF$ bom
MAT without the role (1) of equivalence queries.

In order to give some insights into the identffiable representation classess hom MAT
without role (1) of equivalence queries, we introduce the notion of “detectable”representation
classes. Suppose R is arepresentaion language for some concepts. We consider the problem,
given arepresentaion $r\in R$ and membership queries consistent with c which is aconcept
represented by astring in R, to decide whether c is equivalent to the concept described by
r using the membership queries.. If this problem is solvable, we call the class R is detectable.
We show that $ktMDNF$ is detectable in polynomial time. On the other hand, we show that
if dfa is detectable then there exists adeterministic algorithm to identify dfa using only
membership queries.

2 Preliminaries

2.1 Representation Classes
Here we specify “concepts”, objectives for learners, by using a “representation class”introduced
by Warmuth [9].

A representaion class is a four-tuple $(R, \Gamma_{1}, \Phi, \Gamma_{2})$, where

\bullet Γ_{1} and Γ_{2} : finite sets, called an alphabet for representations and an alphabet for
concepts respectively,

\bullet R : a subset of Γ_{1}^{*} , called a representaion language, and

\bullet
Φ : a mapping from R to concepts over Γ_{2}^{*} .

For each represetation $r\in R$, the set $\Phi(r)$ is the concept represented by r . Since we use a
fixed alphabet $\Sigma(=\{0,1\})$ throughout this paper, we omit specifying alphabets and write,
e.g., (R,Φ) .

2

27

We assume a natural way to encode Turing machines and Boolean formulas. For any

representation r of Turing machine, let $L(r)$ denote the language accepted by the Turing

machine specified by $r;L(\cdot)$ is used similarly for Boolean formulas. In this paper the following

semantic function is used common: a function Φ_{TM} that maps every representation r of

Turing machine to $L(r)$ and a function Φ_{BF} such that for every representaion r of Boolean
formula, $\Phi_{BF}(r)$ consists of all assignments $\{0,1\}$“ that satisfy the formula.

Below we define some representation languages.

\bullet $R_{dfa}=$ {r : r is a description of dfa}
\bullet $R_{DNF}=$ {$r:r$ encodes a Boolean formula in disjunctive normal form}

\bullet $R_{k-tDNF}=$ {$r:r$ is a DNF formula with at most k-terms}
\bullet $R_{MDNF}=$ {r : r encodes a monotone Boolean formula in disjunctive normal form}

\bullet R_{k}tMDNF $=$ {$r:r$ is a nonredundunt monotone DNF formula with k terms}

2.2 Learnability

Let $R=(R, \Phi)$ be a representation class. For the exact learning problem there is an unknown
concept $c\in\Phi(R)$, and information may be gathered about c by asking some types of queries.
In this paper, we consider following two types of queries:

1. Membership query. The input is a string x and the output is yes if $x\in c$ and no if
$x\not\in c$.

2. Equivalence query. The input is a representation $r\in R$ and output is yes if $\Phi(r)=c$

and a no otherwise. In addition of the answer no , a counterexample is supplied, that
is, a string $t\in\Phi(r)\oplus c$. The choice of counterexamples is assumed to be arbitary.

We shall also consider restricted version of equivalence queries, for which the responses are
just yes and no, with no counterexample provided.

Let Q be a set of some types of queries. For example, Q is membership and equiva-
lence queries. A deterministic algorithm A exactly learns C using Q if and only if for every
$c\in\Phi(R)$, when A is given $0^{|f|}$ as input and run with an oracle for Q for $c,$ A eventually halts
and outputs some $r\in R$ such that $\Phi(r)=c$. Such an algorithm runs in polynomial time if
and if only if there is a polynomial $p(l,m)$ such that for every $c\in\Phi(R)$, if l is the length of
input then when A is run with an orcle for Q for c at any point in the run the time used by
A is bounded by $p(l,m)$, where m is the maximum length of answer from the oracle for Q

so far in the run, or $m=0$ if no equivalence queries have been used.

R is (polynomial time) learnable using Q if and only if there exists a deterministic
(polynomial time) algorithm to leam using Q .

3 Learning from membership and successful coun-
terexample queries

In this section, we will introduce a concept of “successful counterexample queries (SCEX)“.

3

28

3.1 Successful counterexample queries SCEX

Equivalence queries have two roles: equivalence queries (1) indicate whether learning algo-
rithms have succeeded and (2) give an counterexample. Equivalence queries can play the
former role only (restncted equivalence quenes), but they cannot play the latter role only.
Let $C=(R, \Phi)$ be a representation class. Consider an algorithm tries to identify an unknown
concept $c\in\Phi(R)$. Suppose equivalence queries try to answer to give counterexamples only
and no information about whether the algorithm has succeeded or not. If a equivalence
query is taken a representation r such that $\Phi(r)=c$, then the query has no counterexample
returned to the algorithm and indicates that the algorithm has identified since $\Phi(r)\oplus c=\emptyset$

Here we introduce a concept of learning from membership queries and successful coun-
terrample queries (SCEX)“for characterizing a subcollection of representation classes such
that is learnable using MAT but don’t require the role(l) of equivalence queries.

We consider SCEX for C . When SCEX takes a representation $r\in R$, SCEX outputs a
counterexample if there exists a counterexample and a special string fail othrewise.

Definition. Let $C=(R, \Phi)$ be a representation. A deterministic algorithm A learns C

using membership queries and SCEX if and only if for every $c\in\Phi(R)$, when A is given $0^{|r|}$

as input and run with an oracle for membership queries and SCEX for $c,$ A eventually halts
and outputs some $r\in R$ such that $\Phi(r)=c$ and A is not given “fail “by the oracle in the
run time. Such an algorithm runs in polynomial time if and if only if there is a polynomial
$p(l,m)$ such that for every $c\in\Phi(R)$, if l is the length of input then when A is run with
an orcle for membership queries and SCEX for $\Phi(r)$ at any point in the run the time used
byAisbounded by p(l,m), wherem is the maximum length of answer from the oracle for
membership queries and SCEX so far in the run, or $m=0$ if no equivalence queries have
been used.

R is (polynomial time) learnable using membership queries and SCEX if and only if there
exists a deterministic (polynomial time) algorithm to learn using membership queries and
SCEX.

Suppose a learning algorithm tries to identify an unknoun concept $c\in\Phi(R)$. By this
definition, the learning algorithms use counterexamples but when the algorithms constructs
a hypothesis rr such that $\Phi(r)=c$ they must halt before asking an SCEX query.

3.2 Nonredundant k-term MDNF is learnable from SCEX
Let $ktDNF=(R_{k-tDNF}, \Phi_{BF})$, MDNF $=(R_{MDNF}, \Phi_{BF}))$ and $ktMDNF=(R_{ktMDNF}, \Phi_{BF})$. In
this subsection, we consider the problem to learn $ktMDNF$ using membership and SCEX
queries.

Pitt and Valiant showed for all $k\geq 2,$ $ktDNF$ cannot be probably approximately identified
in polynomial time from randam sampling unless NP $=RP[6]$. We can certify Pitt and
Valiant’s result holds for $ktMDNF$. By relationships between types queries and Valiant’s
stochastic setting the followin proposition is proved. (See [3])

Proposition 3.1 Let $k\geq 2$. $ktMDNF$ is not polynomial time learnable using only equiva-
lence querees unless NP $=RP$.

4

29

On the other hand, $ktMDNF$ is polymomial time learnble using MAT since Angluin showed
there exists a polynomial time algorithm to learn MDNF using MAT[I].

The main result to be proved in this section is the following.

Theorem 3.2 Let $k\geq 1$. $ktMDNF$ is polynomial time leamable using membership queries

and SCEX.

Proof. This theorem is porved by showing apolynomial time algorithm to learn $ktMDNF$.
The algorithm is amodification of Angluin’s algorithm to learn MDNF using membership
and equivalence queries in polynomial time.

Aprime imphcant of aBoolean $f_{orm\dot{t}1}1a\psi$ is asatisfiable product t of literals such t

implies ψ , but no proper subterm of t implies ψ .
The algorithm keeps acurrent hypothesis $\psi’$, initiaUy the empty formula. The hypothesis

$\psi’$ always consists of asum of prime implicants of ψ , and therefore implies ψ .
The-algorithm takes an assignment a that satifies ψ but not $\psi’$ as acounterexample

by asking SCEX. Initially there is acounterexample since the algorithm keeps the empty
formulas and $k\geq 1$. From a the algorithm searches for anew prime implicant of ψ . Let
t be the product of aU those variables x_{i} such that $a(x_{*}\cdot)$ is true. Clearly $a(t)$ is true. The
following procedure is used to reduce t to prime implicant.

For each $t’$ obtained by deleting one literal from t , determine whether $t’$ implies ψ as
foUows. Let $a’$ be the assignment that assigns true those variables in $t’$ and false to the
others. By making amembership query with $a’$, the algorithm decides whether $t’$ implies ψ

or not. ($a’(\psi)$ is true if and only if $t’$ implies $\psi.$)
If $t’$ implies ψ , then t is replaced by $t’$ and the reduction process is continued. Eventually

the algorithm arrives at aterm t such that t implies ψ , but no term obtained from t by
deleting one literal implies ψ .

$a(t)$ is true and so t is not already in $\psi’$. The dgorithm replace the hypothesis $\psi’$ by
$\psi’+t$. The algorithm $iterates\backslash$ from getting acounterexample k-th times. After k-th times
iterations, the algorithm has ahypothesis $\psi’$ such that $\Phi_{BF}(\psi’)=\Phi_{BF}(\psi)$.

At each iteration the number of terms of $\psi’$ increments just one. Therefore there exists
acounterexample until the algorithm iterates k-th times, so the $4gorithm$ cannot get “fail”.

Each prime implicant added to the formula requires one SCEX and at most n member-
ship queries, so the running time of the algorithm is clearly bounded by polynomial n . This
concludes the proof of Theorem 3.2. \square

Let n-DFA denote $(R_{n- dfa}, \Phi_{TM})$, where
$R_{n- dfa}=$ {r : $R\in R_{dfa}$ and the minimum dfa accepting $\Phi(d)$ has n states}. Since $R_{n-dfa}\in$

$R_{df\iota}$, n-DFA is learnable using MAT. The following proposition is also shown.

Proposition 3.3 n-DFA is polynomial time leamable ffom membership queries and SCEX.

4 Detectability

4.1 Detectability
Let $C=(R, \Phi)$ be a representation dass. For any representation $r\in R$, and any conc\’ept
$c\in\Phi(R)$, we say that c is correct with respect to r if and only if c is equivalent to $\Phi(r)$.

5

30

In this section we consider the problem, given a representaion $r\in R$ and an access to
membership query for $c\in\Phi(R)$, to decide whether c is correct with respect to r . We will
introduce the concept of the detecter. Consider a detecter that is designed for a representa-
tion class $C=(R, \Phi)$. The goal of the detecter D is that if D is given $r\in R$ and an access
to membership query for $c\in\Phi(R)$ then D decides whether the concept c is correct with
respect to r using membership queries for c.
Definition. Let $C=(R, \Phi)$ be a representaion class. A deterministic algorithm D detects
C if and only if for every $r\in R$ and every $c\in\Phi(R)$, when, given r as input, D is run with
an orcle for membership queries for c , eventuaUy D halts and outputs special string “correct

$)$ if c is correct with respect to r and “incorrect”otherwise. A deterministic algorithm D

polynomial time detects C if and only if there exist a polynomial p such that for every $r\in R$

and every $c\in\Phi(r)$, given r as input D is run with an oracle for membership query for c at
any point in the run the time used by D is bounded by $p(|r|)$ and detects C .

For any representation class C , we say C is detectable (polynomial time detectable) if
there exists a deterministic algorithm D that detects (polynomial time detects) C .

4.2 Detectable representation classes
In this subsection we show some nontrivial polynomiaUy detectable representation classes.

Theorem 4.1 n-DFA is polynomilal time detectable.

In this section we follow standard definitions and notations in computational complexity
theory.

By a string we mean an element of Σ^{*} , and by a language we mean a subset of Σ^{*} . A
$symbol\perp\not\in\Sigma$ is used to denote “undefined “. The length of a string x is denoted by $|x|$; a
function $\lambda x.|x|$ is denoted by $|\cdot|$.

For $x,y\in\Sigma^{*},$ $x\cdot y$ denotes the concatinaton of x and y . For $X,$ $Y\subseteq\Sigma^{*},$ $X\cdot Y$ denotes
$\{x\cdot y|x\in X,y\in\dot{Y}\}$.

Proof of Theorem 4.1 is done by showing an algorithm that polynomially detects n-DFA
$DETECT_{-}nDFA$. DETECT-nDFA is shown in figure 1.

Let r be a representation in R_{n-dfa} and c be a concept in $\Phi_{TM}(R_{\mathfrak{n}- dfa})$. Suppose DE-
$TECT_{-}nDNF$ takes r as input and tries to decide whether r is correct with respect to c

using an oracle for menmbership queries of c. $DETECT_{-}nDFA$ simulates Angluin’s learning
algorithm for $\Phi_{TM}(r)$. $DETECT_{-}nDFA$ checks whether the examples used by the learning
algorithm are consistent with c . $DETECT_{-}nDFA$ halts and outputs ‘incorrect’if an answer
from membership query for $\Phi_{TM}(r)$ and an answer from membership query for $\Phi_{TM}(r’)$ are
different. If $DETECT_{-}nDFA$ doesn’t output ‘incorrect‘and gets a representation $r’$ such that
$\Phi_{TM}(r)=\Phi_{TM}(r’)$ by simulateing Angluin’s algorithm, DETECT-nDFA halts and output
correct’

The DETECT-nDNF use the following three subprocedures:

1. MEM-BB : the input is an instance a , and the output is yes if $a\in c$ and no otherwise.

6

31

S $:=\{\lambda\};E$ $:=\{\lambda\}$;
For each $t\in S\cup A$ do

ans_{1} $:=MEM_{-}MAT(t);ans_{2}$ $:=MEMBB(t)$;
If $ans_{1}\neq ans_{2}$ then halt and output ‘incorrect ‘

end
construct the initial observation table (S,E, T) ;
Repeat % Main Loop%

While (S,E, T) is not closed or not consistent do
If (S, E, T) is not closed then do

find $s_{1}\in S$ and $a\in\Sigma$ such that
$f[s_{1}\cdot a]\neq f[s]$ for all $s\in S$;

add $s_{1}\cdot$ a to S ;
For each $t\in(S\cup S\cdot\Sigma-(S-s_{1}\cdot a)\cup(S-s_{1}\cdot a)\cdot\Sigma)\cdot E$ do

ans_{1} $:=MEM_{-}MAT(t)$; ans$2:=MEMBB(t)$;
If $ans_{1}\neq ans_{2}$ then halt and output ‘incorrect’

end
extend T to $(S\cup S\cdot\Sigma)\cdot E$

end
If (S, E,T) is not consistent then do

find $s_{1},$ $s_{2}\in S,$ $a\in\Sigma$ and $e\in E$ such that
$f[s_{1}]=f[s_{2}]$ and $T(s_{1}\cdot a\cdot e)\neq T(s_{2}\cdot a\cdot e)$;

add $a\cdot e$ to E ;
For each $t\in(S\cup S\cdot\Sigma)\cdot a\cdot e$ do

ans_{1} $:=MEM_{-}MAT(t);ans_{2}$ $:=MEMBB(t)$;
If $ans_{1}\neq ans_{2}$ then halt and output ‘incorrect ‘

end
extend T to $(S\cup S\cdot\Sigma)\cdot E$

end
end
Make the conjecture M_{C} $:=M(S, E, T)$;
If the number of the states of M_{c} is less than n then do

$c:=CE_{-}MAT(M_{C});P:=$ { c and all its prefixes};
add aU elements of P to S ;
For each $t\in(S\cup S\cdot\Sigmaarrow(S-P)\cup(S-P)\cdot\Sigma)\cdot E$ do

ans_{1} $:=MEMmAT(t);ans_{2}$ $:=MEMBB(t)$;
If $ans_{1}\neq ans_{2}$ then halt and output ‘incorrect ‘

end
extend T to $(S\cup S\cdot\Sigma)\cdot E$

end
Until the number of states of $M_{C_{-}}$ is n ;
halt and output ‘correct’

Figure 1: The Algorithm for Detecting n-DFA, $DETECT_{-}nDFA$

7

32

2. MEM-MAT : the input is an instance a , and the output is yes if $a\in\Phi_{TM}(d)$ and no

otherwise.

3. CE-MAT : the input is a representation $r’\in R_{-dfa}$, and the output $\perp if\Phi_{TM}(r)\oplus$

$\Phi_{TM}(r’)=\emptyset$ and a counterexample $t\in\Phi_{TM}(r)\oplus\Phi_{TM}(r’)$ otherwise.

MEMBB is realized by using the oracle for membership queres of c . MEM-MAT takes a as
inputs and simulates a dfa represented by r . Given $r’$ as input, CE-MAT constructs a dfa
exactly accepting $\Phi_{TM}(r)\oplus\Phi_{TM}(r$ ‘ $)$ and checks whether the accepting set of the dfa is empty
or not. If the dfa accepts any string, CE.MAT outputs a couterexample in $\Phi_{TM}(r)\oplus\Phi_{TM}(r’)$.
These three procedures run in polynomial time.

Angluin introduced the concept the CCOT and proved the Lemma 4.2[2]. An observation
table is a triple (S, E, T) consists of 1-3 as follows:

1. S is a nonempty finite prefix-closed set,

2. E is a nonempty finite suffix-closed set,

3. T is a finite function mapping $((S\cup S\cdot\Sigma)\cdot E)$ to $\{0,1\}$.

(A set is preffi-closed if and only if every prefix of every member of the set is also a member
of the set. Suffix-closed is defined analogously.)

An observation table can be visualised as 2-demensional matrix with rows labelled by
elements of $S\cup S\cdot\Sigma$, columuns labelled by elements of E , and entry for row s and column
e equal to $T(s\cdot e)$. For $s\in S\cup S\cdot\Sigma$, let $f[s]$ denote a function such that

$f[s]:Earrow\{0,1\})f[s](e)=T(s\cdot e)$

An observation table is closed if for each $t\in S\cdot\Sigma$ there exist an $s\in S$ such that
$f[t]=f[s]$. An observation table is consistent if whenever $s_{1},$ $s_{2}\in S$ are elements of S such
that $f[s_{1}]=f[s_{2}]$, for all $a\in\Sigma,$ $f[s_{1}\cdot a]=f[s_{2}\cdot a]$.

Let (S, E, T) is a closed consistent observation table (CCOT for short). The corresponding
$dfaM(S, E, T)$ over Σ constructed from (S, E, T) is defined with the state set Q , the set of
final states F, and the state transition function 6 as follows:

$Q=\{f[s]|s\in S\}$,
$q_{0}=f[\lambda|$,
$F=$ {$f[s]|s\in S$ and $T(s)=1$},
$S(f[s],a)=f[s\cdot a]$.

Lemma 4.2 Let (S, E, T) be a CCOT. The $dfaM(S, E, T)$ defined above satisfied the
following three conditions.

1. M is well-defined.
2. M is consistent with the finite junction T. That is, for every $x\in(S\cup S\cdot\Sigma)\cdot E$,

$S(q_{0}, x)\in F$ if and only if $T(x)=1$.
S. Suppose that M has n states. If M is any dfa consistent with T that has n or fewer

states, then $M’$ is isomorphic to M .

8

33
The following lemma is proved by modifying a Lemma in [2].

Lemma 4.3 In running of $DETECT_{-}nDFA$, the number of states of the $dfaM(S, E, T)$

increases monotonic.

Lemma 4.4 For all $r\in R_{dla}$ and all $c\in\Phi_{TM}(R_{n-dfa},$ $DETECT. DFA$ halts in time
polynomial in n and answers whether c is correct with respect to r.
Proof of Lemma 4.4. Consider $DETECT_{-}nDFA$ takes $r\in R_{n-dfa}$ and an access for
membership queries of $c\in\Phi_{TM}(R_{n-dfa})$ and tries c is correct with respect r . Suppose
$DETECT_{-}nDFA$ has an ovsevation table (S, E,T) . Let $M(S, E, T)$ be the corresponing dfa
to (S, E, T) . Note r is always consistent with T .
1) In the case c is correct with respect to r :Since $c=\Phi_{TM}(r),$ $ans_{1}\neq ans_{2}$ never happens.
Therefore Acan’t output ‘incorrect’.

By Lemma 4.3 and Lemma 4.2, after at most n-th iterations, the number of states of
$M(S, E^{-},T)$ is n and halts and output ‘correct’. By the difinition of T , the $\Phi_{TM^{-1}}(c)$ and r are
consistent with T. Therefore $\Phi_{TM^{-1}}(c),$ r , and $M(S, E, T)$ are descriptions of dfa consistent
with T with n states. By Propositon 4.2, $\Phi_{TM^{-1}}(c),$ r , and $M(S, E, T)$ are isomorphic.
2) h the case c is correct with respect to $r:\Phi_{TM}(r)\oplus\neq\emptyset$. We caU an element of $\Phi_{TM}(r)\oplus c$

is witness. When Aconstructs.an observation table, for each $a\in(S\cup S\cdot A)\cdot E$, membership
queries for $\Phi_{TM}(r)$ and c are done. If awitness a contained in the observation table, $ans_{1}\neq$

ans_{2} . Then Ahalts and outputs ‘incorrect’. Assume any witness a is not contained in the
observation table and then $M(S, E, T)$ with n states is constructed. By $|\Phi_{TM^{-1}}(c)|=n$

and Proposition 4.2, $\Phi_{TM^{-1}}(c)$ and $M(S, E,T)$ are isomorphic. This contradicts to the
assumption. Therefore Amust find witness a and halt and output “incorrect”.

Angluin’slearning algorithm for DFA, $L^{*}[2]$ halts in time polynomial in n . DETECTDFA
halts also in time polymomial in n

\square

Proposition 4.5 $ktMDNF$ is polynomial time detecterbale.

Proof of proposition 4.5 is omitted. $($

4.3 DFA is not detectable
Here we consider the problem to detect DFA. Angluin showed there exist a deterministic
algorithm to learn DFA in polynomial time using MAT [2]. But we show followg theorem.

Theorem 4.6 DFA is not detectable unless there exists a deterministic algorithm to leam
DFA using membership que$\dot{n}es_{;}$

Proof. Assume DFA is detectable. Let $d_{1},$ $d_{2},$
$\ldots,$

$d_{i},$
\ldots be a natural enumeration of all

elements of R_{dfa} . Suppose we try to identify an unknown concept $c\in\Phi_{TM}(R_{dfa})$. Let i be
a nutural number such that $c=\Phi_{TM}(d:)$. Since DFA is detectable by assumption, there
exists a deterministic algorithm D to detect DFA. For every $d_{j}\in R_{dfa}$, given an access to
membership queries for $c,$ D can answer whether $\Phi(d_{k})=c$. If D is given d_{j} in enumeration
order D answers $c=\Phi_{TM}(d_{i})$ when $i=j$. We can identify the unknown concept $\Phi(d_{k})$ in
finite time. This is inconsistent to that there exist no deterministic algorithms to learn DFA
using membership.queries. \square

9

34

5 Concluding remarks
We characterize a subcollection of the representation classes that can be identified by using
MAT without requiring the role (1) of equivalence queries. It is open whether there exists
a characterization aU representaion classes that can be identified by using MAT without
requiring the role (1). It is unknown whether the collection of polynomial time detectable
representaion classes is equal to the collection of representation classes that is polynomial
time learnable using membership queries and SCEX.

Acknowledgement The author would like to express his sincere thanks to Professor
Hiroshi Noguchi of Waseda University for his kind advice. He also thanks to Dr. Tetsuro
Nishino of Tokyo Denki University, for his useful suggestions.

References
[1] Angluin, D. : Leaming k-term DNF formulas using queries and counterexamples. Te-

chinical Report, YALEU/DCS/RR-559, Department of Computer Science, Yale Univer-
sity (1987).

[2] Angluin, D. : Learning regular sets from queries and counterexamples, Infornation and
Computation, 75(1987), pp.87-106.

[3] Angluin, D. : Queries and concept learning, Machine Leaming, 2 (1987), pp.319-342.

[4] Angluin, D. : Negative Results for Equivalence Queries, Machine Learning, 5(1990),
pp.121-150.

[5] Nishino, T. : Learninig Logic Formulas and Programs Based in Their Models. Reserch
Report, TDU-.IS-19, Tokyo Denki University (1990).

[6] Pitt, L. and L. G. Valiant: Computational limitation on learning from examples, Jour-
nal of the $ACM,$ $S5$ (1988), pp.965-984.

[7] Sakakibara, Y. : Learning context-free grammars from structual data in polynomial
time, Proceedings of the 1988 Workshop on Computational Leming Theory, Morgan
Kaufmann (1988).

[8] Valiant, L. G. : A theory of the learnable, Communications of the $ACM_{t}l7$ (1984),
pp.1124-1142.

[9] Warmuth, M. : Towards representation independence in PAC learning, Lecture Notes
in AI 397, Springer-Verlag (1989), 78-103.

[10] Watanabe, 0 . : A formal study of learnabihity via queries, Automata, Languages and
Programing, 1990. Proccedings. Lecture Notes in Computer Science443, Springer-Varlag
(1990).

10

