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Abstract

In 1984, Raoult proposed a formalization of graph rewritings using a pushout in the
category of graphs and partial functions. We modified the matter more generally and
leaded another proof of the conditions to exist pushouts using the relational calculus.
This paper’s aim is not only to correct the Raoult’s proposition but also to introduce
a more general framework of graph rewritings and to give very simple proofs using the
relational calculus.

1 Introduction
There are many researches about graphs using the category theory. For an edge of a
directed graph, we can decide a source vertex and a destination vertex. We consider a
directed graph structure as a function from the set $E$ of edges to the product set $VxV$
of the source vertices set and destination vertices set. $Ehrig[4][3]$ characterize the graph
grammar and rewriting rules using two pushout squares in the category. The category
which object is a pair of a set $E$ of edges and a set $V$ of vertices together with those graph
structure is described as a functor category over the category of set and functions. So
it becomes a topos and have various useful properties. For a rewriting rule, whether we
can apply a rewriting rule to a graph is depend on an existence of pushout complement
in the category of graphs. The existing theorem of pushout complement in elementary
topos is generally proved by Kawahara[7].

Courcelle[1][2] introduced a method to denote a graph using expressions. He char-
acterize a graph rewriting by rewriting the expressions like term rewriting systems. He
showed the rewriting power of the method is equivalence to the Ehrigh’s rewritings.

Raoult[10] proposed a formalization of graph rewritings with different way of Ehrigh’s
rewritings. For a vertex, we can decide vertices which are destinations of edges from the
vertex. Drawing line up these vertices as a string, we can consider a function from a set
$V$ of the vertices to $V^{*}$ the set of strings of destinations. He considers the function as a
graph structure. Further he proposed a formalization of graph rewritings by one pushout
square using partial functions.

In this paper we developed the Raoult’s method. For a functor over the category Pfn
of sets and partial functions we consider a graph as a function $V$ – $TV$ from a vertex
set $V$ to $TV$ , where $T$ is a functor over Pfn. If we set a functor $T$ to $TV=V^{*}$ then
the theory is same as Raoult’s one. We proved the existing condition of pushouts in

’Email: ym@ces.kyutech.ac.jp

数理解析研究所講究録
第 754巻 1991年 267-273



268
our general category of graphs. By using the relational calculus, we simply proved the
properties avoiding many kind of conditional check and case divisions. The relational
calculus is a theory of binary relations which originally applied to the area of topology
and homological algebra in pure mathematics. Recently it has been used for representing
the notion of nondeterminism in automata theory, the theory of assertion semantics[6]
and characterization of pushouts in the theory of graph grammars[7].

Our generai result of the condition of existence of pushouts produce a little modi-
fication of Raoult’s result ([10]Proposition. 5) which lucked some conditions. We give
a counter example of his result and corrected conditions. Further we show that if we
choose a functor $T$ as the powerset functor $P$ then we are able to make a pushout in any
situations. That is, every graph rewriting rule is applicable to matched graph without
any conditions. In the category of graphs made by the powerset functor, we show an
example of a graph rewriting which does not hold Ehrigh’s gluing conditions.

2 Preliminary
In this section, we recall some relational notations, properties and some categorical prop-
erties of the category Set of set and functions and Pfn of set and partial functions.

Let $A,$ $B$ and $C$ be sets. When $\alpha$ is a subset of A $xB$ , we call $\alpha$ is a relation from
$A$ to $B$ and denote it by $\alpha$ : $A\neg B$ . For relations $\alpha$ : $A\neg B$ and $\beta$ : $B\neg C$ , we
define a composite relation $\alpha\cdot\beta$ : $A\neg C$ by $\alpha\cdot\beta$ $:=\{(a,c)\in A$ $xC|(a,b)\in\alpha,(b,c)\in$

$\beta$ for some $b\in B$ }. For relation $\alpha$ : $A\neg B$ , we define the inverse relation $\alpha\#$ : $B\neg A$

by $\alpha\#=\{(b, a)\in BxA|(a, b)\in\alpha\}$ . We identify a function $f$ : $Aarrow B$ with a relation
$\{(a, f(a))\in A xB|a\in A\}$ (the graph of $f$ ). A function from a set $X$ to one point set
$1=t*\}$ is denoted by $\Omega_{X}$ : $Xarrow 1$ . We define a subset $dom(\alpha)$ of $A$ for a relation
$\alpha$ : $A\neg B$ by $dom(\alpha)=\{a\in A|(a, *)\in\alpha\Omega_{A}\}$ and a relation $d(\alpha)$ : $A\neg$ $A$ by
$d(f)=\{(a,a)\in A xA|a\in dom(\alpha)\}$ . For two relations $\alpha,\beta$ : $A\neg B$ , we define $\alpha\cup\beta$

and $\alpha\cap\beta$ by set union and intersection respectively.

Lemma 2.1 For a relation $f$ : $Aarrow B$ ,

(1) $f$ is a partial function if and only if $f^{\#}f\subset id_{B}$ .
(2) $f$ is a (total) $fi_{1}nction$ if and only if $f^{\#}f\subset id_{B}$ and $id_{A}\subset ff\#$ .
(3) $f$ is $a$ injective function if and only if $f^{\#}f\subset id_{B}$ and $ff\#=id_{A}$ .
(4) $f$ is a surjective function if and only if $f^{\#}f=id_{B}$ and $ff^{\#}\supset id_{A}$ .

Lemma 2.2 For relations $\alpha,\alpha’$ : $A\neg B$ , and $\beta,\beta’$ : $B-C$, if $\alpha\subset\alpha’$ and $\beta\subset\beta’$ , then
$\alpha\beta\subset\alpha’\beta’,$ $\alpha\#\subset\beta^{\#}$ and $\alpha(\beta\cup\beta’)=(\alpha\beta)\cup(\alpha\beta’)$ .

Proposition 2.3 (Law of Puppe-Calenko) If $\alpha$ : $Aarrow B,$ $\beta$ : $B\neg C$ and $\gamma$ : $A\neg C$

are relations, then $\alpha\beta\cap\gamma\subset\alpha(\beta\cap\alpha^{\#}\gamma)$ .

Lemma 2.4 Let a : $A\neg B,$ $\beta$ : $A\neg B$ be relations. Then $d(\alpha)\subset d(\beta)$ if and only if
$\alpha\Omega_{A}\subset\beta\Omega_{B}$ .
Corollary 2.5 Let $f$ : $Aarrow B$ is a partial function. Then $f$ is a total function if and
only if $\Omega_{A}=f\Omega_{B}$ .

Fact 2.6 The category Set has coequalizers.
For two functions $f$ : $Aarrow B$ and $g:Aarrow B$ , there exist a function $e:Barrow Q$ such that
$fe=ge$ . For any function $x$ : $Barrow X$ satisfy$ingfx=gx$ , there exist a unique junction
$\hat{x}$ : $Qarrow X$ such that $e\hat{x}=x$ holds.
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Fact 2.7 The category Set has pushouts.
For two functions $f$ : $Aarrow B$ and $g$ : $Aarrow C$ , there exists a set $D$ and functions
$h:Barrow D$ and $k:Carrow D$ . For any junctions $x:Barrow S,$ $y:Carrow S$ satisfying $fx=gy$,
there exists a unique function $t:Darrow S$ such that $ht=x$ and $ht=y$ hold. The unique
function $t$ is expressed by $h\# x\cup k\# y$ .
Fact 2.8 The category Pfn has products and equalizers.

Fact 2.9 The category Pfn have coproducts.
For two objects $A$ and $B$ , the coproduct $A+B$ with inclusion functions $i_{A}$ : $Aarrow A+B$

and $i_{B}$ : $Barrow A+B$ in Set is also the coproduct in Pfn.

Fact 2.10 The category Pfn has coequalizers.
For two partial functions $f$ : $Aarrow B$ and $g$ : $Aarrow B$ , let $i$ : $dom(f)\cap dom(g)arrow A$ be
an inclusion junction. Let $e:Barrow Q$ be the coequalizer coeq(if, $ig$ ) in Set and $e_{0}$ is an
inclusion function for the subset

$E=Q-e(f(dom(f)-dom(g))\cup g(dom(g)-dom(f)))$

of Q. Then $ee_{0}^{\#}$ : $Barrow E$ is a coequalizer of $f$ and $g$ in Pfn,

Fact 2.11 The category Pfn have pushouts.

For a pushout square
$A$

$\underline{f}$
$B$

$g\downarrow$ $\downarrow h$

$C$
$arrow^{k}$

$D$

in Pfn, the domain of partial function $h$ is

$dom(h)=(B-f(A))\cup(f(A)-i_{B}^{-1}e^{-1}e(i_{B}f(dom(f)-dom(g))\cup i_{C}g(dom(g)-dom(f))))$.

Where $i_{B}$ : $Barrow B+C$ and $i_{C}$ : $Carrow B+C$ are inclusion functions of coproduct $B+C$ ,
and $e:B+Carrow D$ is a coequalizer of $fi_{B}$ and $gi_{C}$ .

3 Category of graphs over Pfn
In this section, we introduce an abstract definition of a category which represent graphs
and graph homomorphisms. Graph rewritings are defined by using a single pushout in
the category. We prove a necessary and sufficient condition to exist pushouts. Some
concrete categories of graphs including the Raoult’s[10] definitions are shown. We prove
and correct his proposition 5 using our general framework.

Lemma 3.1 Let $T:Pfnarrow Pfn$ be a functor, $a:Aarrow TA,$ $b:Barrow TB$ and $c:Carrow TC$

be functions and $f$ : $Aarrow B$ and $g:Barrow C$ be partial functions. If $fb=d(f)\cdot a\cdot Tf$ and
$gc=d(g)\cdot b\cdot Tg$ then $fgc=d(fg)\cdot a\cdot T(fg)$ .

Deflnition 3.2 For a functor $T:Pfnarrow Pfn,$ $a$ graph constructed by $T$ is a pair $(A,a)$

of a set $A$ and a function $a:Aarrow TA$ . For graphs $(A, a)$ and $(B,b)$, a partial funCtion
$f$ : $Aarrow B$ is $a$ graph morphism related to $T$ if $f$ satisfies $fb=d(f)\cdot a\cdot Tf$ .

Deflnition 3.3 For a functor $T:Pfnarrow Pfn$ , a graph category $G(T)$ is the category of
graphs constructed by $T$ and graph morphisms related to $T$ .
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Example 3.4 (Kleene functor) For a set $A$ , we define $TA=A^{*}$ the set of strings
over A. For a junction $f$ : $Aarrow B$ , we define $Tf$ : $A^{*}arrow B^{*}$ as follows:

$Tf(w)$ $=$ $f(a_{1})f(a_{2})\cdots f(a_{n})$ (where $w=a_{1}a_{2}\cdots a_{n}$ ),
$Tf(\epsilon)$ $=$ $\epsilon$ .

We denotes by $G(*)$ the category of graphs constructed by this functor. The category is
equivalent to that one considered by $Raoult[10J$.
Example 3.5 (powerset functor) For a set $A$ , we define $TA=P(A)$ the set of all
subsets $ofA$ . For a function $f$ : $Aarrow B$ , we define $Tf$ : $P(A)arrow P(B)$ by $Tf(X)=f(X)$ ,
$(X\subset A)$ . We denotes by $G(P)$ the category of graphs constructed by the functor $P$ .
Example 3.6 We define a set $N^{A}$ of functions from $A$ to the set $N=\{0,1, \ldots\}$ of
natural numbers by $N^{A}=$ { $f$ : $Aarrow N|\Sigma_{x\in A}f(a)$ is finite.}. We define the firnctor
$W$ : $Setarrow Set$ as follows. For an object $A$ in Set, we define $W(A)=N^{A}$ the set ofFor a
function $f$ : $Aarrow B$ , we define $Tf$ : $N^{A}arrow N^{B}$ by $Tf(\alpha)(y)=\Sigma\{\alpha(x)|f(x)=y, x\in A\}_{l}$

$(a\in N^{A},y\in B)$ . We denote by $G(W)$ the category of graphs constructed by the functor
$W$ .
Example 3.7 (L-labeled Kleene functor) We fix a set $L$ of labels for edges. For a
set $A$ , we define $TA=(LxA)^{*}$ the set of strings of pairs of a label and an element
of A. Other definition of the functor $T$ is similarly to the Example 3.4. We denote by
$G(Lx-)^{*})$ the category of graphs constructed by the functor $T$ .
Example 3.8 (L-labeled powerset functor) We similarly to define a functor $TA=$

$P(LxA)$ like Example S.7. We denote by $G(P(Lx-)$ the category of graphs constructed
by the functor $T$ .

We note that if $T=P$ or $T=W$ then $Tf$ : $TAarrow TB$ is a total function for any
partial function $f$ : $Aarrow B$ .
Theorem 3.9 Let $f$ : $(A,a)arrow(B,b)$ and $g$ : $(A, a)arrow(C, c)$ be morphisms and the
square

$g\downarrow A$

$\frac{f}{(1)}$
$B_{h}\downarrow$

$C$
$\overline{k}$

$D$

be a pushout in Pfn. There exists a unique partial function
$d=(h^{\#}\cdot b\cdot Th)\cup(k^{\#}\cdot c\cdot Tk)$

such that $hd=d(h)\cdot b$ . Th, $kd=d(k)\cdot c\cdot Tk$ . Further, the square $(Z)$

$(A_{g\downarrow}a)$

$\frac{f}{(2)}$
$(B,b)\downarrow h$

$(C, c)$ $arrow$ $(D, d)$
$k$

is a pushout if and only if $d$ is a total function.
Theorem 3.10 Under the situation of Theorem 3.9, the following $\omega nditions$ are equiv-
alent:

(1) $d=(h\#\cdot b\cdot Th)\cup(k\#\cdot c\cdot Tk)$ is a total function.
(2) $b(dom(h))\subset dom(Th)$ and $c(dom(k))\subset dom(Tk)$
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(3) $dom(h)\subset dom$ ( $b\cdot$ Th) and $dom(k)\subset dom(c\cdot Tk)$

Corollary 3.11 The categories $G(P),$ $G(W)$ have pushouts.

Deflnition 3.12 For two partial functions $f$ : $Aarrow B$ and $g$ : $Aarrow C$ , we define a
relation $p_{tfg)}$ : $Aarrow 1$ by $\Gamma_{(f,g)}=\cup$ { $\alpha$ : $Aarrow 1|ff^{\#}\alpha=\alpha$ and $gg^{\#}\alpha=\alpha$ }. That is $\Gamma_{\langle fg)}$

is the maximum relation satisfyin9 $ff\#\Gamma_{tf,g)}=\Gamma_{\{j,g)}$ and $gg^{\#}\Gamma_{\langle fs)}=\Gamma_{(\int,g)}$ .

Lemma 3.13 Let $f$

$(A,a)$ $arrow$ $(B,b)$

$(C,c)g\downarrow$

$\overline{k}$

$(D,d)\downarrow h$

be a pushout in $G_{1}(T)$ . Then $\Gamma_{(fg)}=fh\Omega_{D}(=gk\Omega_{D})$ .

We note that $\Gamma_{(f,g)}=fh\Omega_{D}$ means $f^{-1}(dom(h))=\{a\in A|(a, 1)\in\Gamma_{(f,g)}\}$ .

Lemma 3.14 $dom(h)=(B-f(A))uf(A’)$ where $A’=\{a\in A|(a, 1)\in\Gamma_{tfg)}\}$ .

Lemma 3.15 Under the situation of Theorem 3.9, and we consider the functor $T=*$ .
Then following three conditions are equivalent:

(1) $b(f(A’))\subset dom(Th)(=(dom(h))^{*})$,

(2) $Tf(a(A’))\subset(dom(h))^{*}$ ,

(3) $a(A’)\subset(A’)^{r}$ ,
where $A’=\{a\in A|(a, 1)\in\Gamma_{(j,g)}\}$ .
Proposition 3.16 A commutative diagram

$(A_{g\downarrow}a)(C’,c)$

$arrow\underline{f}$

$(D,d)(B,b)\downarrow h$

$k$

in $G_{1}(*)$ is a pushout if and only if following three conditions holds:

(1) $b(B-f(A))\subset(dom(h))^{*}$ ,

(2) $c(C-g(A))\subset(dom(k))^{*}$ , and

(3) $a(A’)\subset(A’)^{*}$

Where $A’=\{a\in A|(a, 1)\in\Gamma_{tf,9)}\}$ .
Example 3.17 Let $A=\{x_{1}arrow x_{2}, x_{3}\},$ $B=\{y_{I}arrow y_{2}\}$ and $C=\{z_{1}arrow z_{2}\}$ be graphs.
Define graph morphisms $f$ : $Aarrow B$ and $g:Aarrow C$ by $f(x_{1})=y_{1},$ $f(x_{2})=f(x_{3})=y_{2}$ ,
$g(x_{1})=z_{1}$ and $g(x_{2})=z_{2}$ . The value of $g(x_{3})$ is undefined(cf. Figure 1).

It is easy to check $A’=\{x_{l}\}$ . and the condition in Proposition 3.16(3) does not hold.
Conside$r$ the diagra$m$

$g\downarrow A$

$\underline{f}$

$B_{h}\downarrow$

$C$ $arrow$ $D$

$k$

in the category $Pfn$ , Since $D$ is $a$ one-point set, $h$ and $k$ are not graph morphisms.
This example is a counter example of Raoult’s proposition $5[J0]$.
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$g$ (X3) : undef ined

Figure 1:

4 Comment
A graph morphism $f$ : $(A,a)arrow(B,b)$ is considered as a rewriting rule. For a graph
$(C,c)$ , if there exist a graph morphism $g:(A,a)arrow(C,c)$ and a graph $(C,c)$ such that
the square

$(A_{g\downarrow}a)(C’,c)$ $arrow^{\underline fk}$ $(D,d)(B,b)\downarrow h$

is a pushout, we say that the rewriting rule $f$ is applicable and $(C, c)$ is rewritten to the
graph $(D,d)$ .

There is a natural correspondence between the category of Graph which is defined
by Ehrig[4] and our categories $G(*)$ and $G(P)$ , though there are critical differences which
we omit to show details in this paper.

Our rewriting ability seems to be less than Ehrigh $s$ one which use two pushout squares
in his category Graph of graphs (cf. Figure 2). But we show a example which does not
satisfies the gluing condition ([4]) but rewritable in our situation(cf. Figure 3).

We do not know completely the essential differences between Ehrigh’s rewritings and
our rewriting formulation yet.
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1 1 1 1

$2A_{3}$

$arrow$
$1$ $21\backslash _{3}$

$arrow^{f}$

$1$

$f13)$ : unde $f$ ined
$f13)$ : undefined

$g\dagger$ $g\dagger$

1 1 1 1

$A_{3}\backslash _{4}$ $21_{4}$ $1_{4}\backslash$, $21_{4}$

Figure 2: Figure 3:
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