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Schr\"odinger evolution equations and associated smoothing effect
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Department of Pure and Applied Sciences
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Abstract. We shall review auther’s recent results on the existence,
uniqueness, regularity and the smoothing property of a unitary propa-
gator $U(t, s)$ : $u(s)arrow u(t)$ in $H=L^{2}(R^{n})$ for time dependent Schr\"odinger
equations in an external electromagnetic field. Potentials are assumed
to be real and are possibly unbounded at infinity $|x|arrow\infty$ and scalar
potential can have local singularities.

1. Introduction, Assumptions and Theorems.
In this lecture we report author’s recent works [29],[30] and [31], improving

some results in [31], on the Cauchy problem for time dependent Schr\"odinger equa-
tions

(1.1) $i \frac{\partial u}{\partial t}=H(t)u=(\sum_{j=1}^{n}\frac{1}{2}(\frac{1}{i}\frac{\partial}{\partial x_{j}}-A_{j}(t, x))^{2}+V(t, x))u$ ,

where the real potentials $V(t,x)$ and $A(t, x)=(A_{1}(t, x),$ $\cdots,$ $A_{n}(t, x))$ are possibly
unbounded at infinity $|x|arrow\infty$ and $V(t, x)$ can have local singularities. We shall be
concerned with the existence, uniqueness, regularity and the smoothing property
of a unitary propagator $U(t, s):u(s)arrow u(t)$ in $H=L^{2}(R^{n})$ solving (1.1).

The existence of a unique dynamics associated with (1.1) is of fundamental
importance in quantum mechanics. When $H(t)=H$ is t-independent, this is
equivalent to the selfadjointness of $H$ , via celebrated Stone’s theorem, and various
satisfactory criteria have been known since Kato’s fundamental paper [14] (see $e:g$ .
[5], [23]). When $H(t)$ is genuinely time dependent, on the other hand, the situation
has been by far less satisfactory. We recall three common methods, among others,
for solving (1.1). One of them is to apply to (1.1) the abstract theory of evolution
equations (cf. e.g. [15]). The method has been widely and successfully employed
by many authors. The theory, however, has been originally designed for solving
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parabolic or hyperbolic equations and, when applied to Schr\"odinger equations,
it often imposes rather severe restrictions on the potentials, which exclude many
concrete and important physical examples out of its scope (cf. [30]). Another one,
which we call the method of semi-classical approximation, is to construct the prop-
agator $U(t, s)$ directly in the form of oscillatory integral operator using, so called,
semi-classical approximations. This method was introduced by Fujiwara([9] and
[10]) for Schrodinger equations and extended by Kitada-Kumanogo[22], which,
however, requires the potentials be $c\infty$ in the spatial variables. The third one
is to study (1.1) through its equivalent integral equation using the perturbation
technique.

Synthesizing the last two methods mentioned above, we first establish the follow-
ing existence and uniqueness theorem. For an interval $I,$ $L^{\ell,\theta}(I)=L^{\theta}(I, L^{\ell}(R^{n}))$

and $L_{loc}^{\ell,\theta}(I)=L_{loc}^{\theta}(I, L^{f}(R^{n}))$ . $|\cdot|$ denotes the norm of matrices as operators on
$C^{n}$ as well as the Euclidean norm of vectors. $\partial_{x}=(\partial/\partial x_{1}, \cdots, \partial/\partial x_{n})$ and for a
multi-index $\alpha=(\alpha_{1}, \cdots, \alpha_{n}),$ $\partial_{x}^{\alpha}=(\partial/\partial x_{1})^{\alpha_{1}}\cdots(\partial/\partial x_{n})^{\alpha_{n}}$ . We sometimes write
$\partial/\partial x_{j}=\partial_{x_{j}}$ .

ASSUMPTION (A): (1) For $j=1,$ $\cdots,n,$ $A_{j}(t, x)$ is a real function of $(t, x)\in R^{n+1}$

such that $\partial_{x}^{\alpha}A_{j}(t, x)\in C^{1}(R^{n+1})$ for any $\alpha$ . There exists $\epsilon>0$ such that

(1.2) $|\partial_{x}^{\alpha}B(t, x)|\leq C_{\alpha}(1+|x|)^{-1-\epsilon}$ , $|\alpha|\geq 1$ ,
(1.3) $|\partial_{x}^{\alpha}A(t, x)|+|\partial_{x}^{\alpha}\partial_{t}A(t, x)|\leq C_{\alpha}$ , $|\alpha|\geq 1$ , $(t, x)\in R^{n+1}$ ,

where $B(t, x)$ is the strength tensor of the magnetic field, i.e. the skew symmetric
matrix with $(j, k)$-component $B_{jk}(t, x)=(\partial A_{k}/\partial x_{j}-\partial A_{j}/\partial x_{k})(t, x)$ .
(2) $V(t, x)$ is a real function of $(t, x)\in R^{n+1}$ such that $V\in L^{p,\alpha}(R^{1})+L^{\infty,1}(R^{1})$

for some $p>n/2$ with $p\geq 1$ and $\alpha=2p/(2p-n)$ .

For $k=0,1,$ $\cdots,$ $\Sigma(k)=\{u\in L^{2}(R^{n}) : \sum_{|\alpha|+|\beta|\leq k}\Vert x^{\beta}\partial_{x}^{\alpha}u\Vert^{2}=\Vert u\Vert_{\Sigma(k)}^{2}<\infty\}$

and $\Sigma(-k)$ is the dual space of $\Sigma(k)$ . For Banach spaces $X$ and $Y,$ $B(X, Y)$ stands
for the set of bounded operators from $X$ to $Y,$ $B(X)=B(X, X)$ . We use $C_{*}$ to
indicate the strong continuity of operator valued functions, e.g. $C_{*}(I^{2}, B(X, Y))$

is the set of strongly continuous $B(X, Y)$-valued functions on $I^{2}$ .

THEOREM 1. Let Assumption $(A)$ be satisfied, $q=2p/(p-1)$ and $\theta=4p/n$ . Then,
$H(t)\in B(H\cap L^{q}(R^{n}), \Sigma(-2))$ and its part in $H$ is selfadjoin$t$ for $a$ . $e$ . $t\in R^{1}$ . There
exists a un$i$que propagator $\{U(t, s):t, s\in R^{2}\}$ with the following properties.
(1) $U(t, s)$ is unitary in $H$ with $U(t, s)U(s, r)=U(t, r)$ .
(2) $U(\cdot, \cdot, h)\in C_{*}(R^{2}, B(H))$ .
(3) For any $s\in R^{1}$ and $f\in H,$ $U(\cdot, s)f\in L_{loc}^{q,\theta}(R^{1})$ and with constant $C>0$
independent of $s,$ $f$ and compact intervals $I$ ,

(1.4) $\Vert U(\cdot, s)f\Vert_{L^{q,\theta}(I)}\leq C(1+|I|)^{1/\theta}$Hfll.
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(4) If $f\in H,$ $u(t)=U(t, s)f$ is $\Sigma(-2)$ -valued absolutely continuous in $t$ and
satisfies th$e$ equation (1.1) in $\Sigma(-2)$ at almost every $t\in R^{1}$ .

In what follows, the exponents $p>n/2,$ $q=2p/(p-1)$ and $\alpha=2p/(2p-n)$

are reserved to denote those appeared in Assumption (A) and Theorem 1.
Several remarks are in order.

REMARK(A): If $G(t, x)$ is real smooth and $T$ is the gauge transformation:

(1.5) Tu$(t, x)=\exp(-iG(t, x))u(t, x)$ ,

then $T$ transforms (1.1) into the one with $A+\partial_{x}G$ and $V-\partial_{t}G$ , in place of $A$

and $V$ respectively. In particular, by taking $G(t, x)= \int_{0}^{t}V(s, x)ds$ , smooth scalar
potentials may be eliminated from (1.1) by a gauge transformation by changing
$A$ to $A+ \int_{0}^{t}\partial_{x}V(s, x)ds$ . This is the reason why we assumed in Assumption (A)
that $V(t, x)$ is bounded at infinity in a certain $L^{p}$ norm, which allows us to regard
(1.1) as a perturbed equation of

(1.6) $i \frac{\partial u}{\partial t}=H_{0}(t)u=\sum_{j=1}^{n}\frac{1}{2}(\frac{1}{i}\frac{\partial}{\partial x_{j}}-A_{j}(t, x))^{2}u$.

It should be also clear that, if $V_{0}(t, x)$ is a real function such that $\partial_{x}^{\alpha}V_{0}(t, x)$ is
continuous in $(t, x)$ for all $|\alpha|\geq 0$ and $|\partial_{x}^{\alpha}V_{0}(t, x)|\leq C_{\alpha},$ $|\alpha|\geq 2$ , then, Theorem
1 remains to hold for (1.1) with $V(t, x)+V_{0}(t, x)$ in place of $V(t, x)$ , the latter
being assumed to satisfy Assumption (A). Similar remark will apply to theorems
to follow, though we shall not mention it explicitly any more.

REMARK (B): (1.4) implies that for every $f\in H$ and $s\in R,$ $U(t, s)f\in H\cap L^{q}(R^{n})$

for $a.e.t\in R^{1}$ and manifests the smoothing effect of the propagator $U(t, s)$ in
the sense that it improves $L^{p}$-smoothness. This is an improvement of Strichartz’
inequality

(1.7) $( \int\{\int|e^{it\Delta}f(x)|^{p}dx\}^{\theta/p}dt)^{1/\theta}\leq C\Vert f\Vert$ , $f\in L^{2}(R^{n})$

for $0\leq 2/\theta=n(1/2-1/p)<1$ (cf. [11]). Note that (1.7) is an estimate global
in time and manifests simultaneously the local decay property (as $|t|arrow\infty$ ) of
$\exp(it\Delta)f$ (which, incidentally, implies the existence of the restriction of Fourier
transforms of $L^{p’,\theta’}$ -functions on the quadratic surface $\eta=\xi_{1}^{2}+\cdots+\xi_{n}^{2}$ , cf. [26]).
This is in contrast to (1.4) where the right hand side increases with the length of
the time interval. This is, of course, natural because bound states exist in general
which never decay as $tarrow\pm\infty$ .

REMARK(C): If $V(t, x)=V(x)$ satisfies (2) of Assumption (A) with some $p_{0}>$

$n/2$ , it does so with any $n/2<p\leq p_{0}$ . Hence $U(\cdot, s)f\in L_{loc}^{\ell,\theta}(R^{1})$ for any
$2\leq l<2n/(n-2)$ and $1\leq\theta\leq 4\ell/n(P-2)$ .
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REMARK(D): The $L^{p}$-smoothing property of the propagator is expected to hold,
at least in a weaker form, for Schr\"odinger equations with faster increasing scalar
potentials. In fact, if $H=-d^{2}/dx^{2}$ on $[0,1]$ with Dirichlet conditions at $x=0,1$ ,
which is an extreme case that $V_{0}(x)=\infty$ for $x\in(-\infty, 0)U(1, \infty)$ in the termi-
nology of Remark (a), it can be easily checked by an explicit computation using
Fourier series expansions that $\exp(-itH)u\in L_{loc}^{4}(R^{1}, L^{4}([0,1]))$ , for $u\in L^{2}([0,1])$

and $\exp(-itH)$ does possess certain smoothing effect even in this extreme case.
(This is a result of Zygmund [33].) In view of Zelditch’s work ([32]), we note that
faster increase of scalar potential implies increasing number of caustics for higher
momentum which suggests stronger singularities in the integral kernel of the prop-
agator $U(t, s)$ . We suspect that the smoothing effect may be used for measuring
the strength of its singularity.

REMARK (E): When $H(t)=H$, the $L^{p}$-smoothing property implies an interesting
result on change of phases of Fourier coefficients in (generalized) eigenfunction
expansions associated with $H$ . The following is an obvious consequence of (1.4)
and the fact that $\{u\in H : (-i\partial_{x}-A(x))u\in H^{n}\}\subset L^{q}(R^{n})$ . We refer to Edward[8]
for informations on related results for the ordinary Fourier series.

COROLLARY 2. Let $A$ and $V$ be independent of $t$ and satisfy Assumption $(A)$ and
let $H=H(t)$ be the selfadjoint operator in $H$ defined by the Friedrichs extension:

$D(H)=\{u\in H:(-i\partial/\partial x_{j}-A_{j}(x))u\in H, j=1, \cdots,n, Hu\in H\}$ .

Suppose that $H$ has only pure point spectrum $\{\lambda_{j}\}_{j1}^{\infty_{=}}$ and let $\{\phi_{j}\}_{j}^{\infty_{=1}}$ be the
associated complete set of orthonormal eigenfunctions of H. Then for any $\{c_{j}\}\in$

$l^{2}$ , we have $\sum_{j1}^{\infty_{=}}\exp(-it\lambda_{j})c_{j}\phi_{j}(x)\in L^{\ell},$ $a.e.t\in R^{1}$ for $2\leq P<2n/(n-2)$ .

REMARK(F): The $L^{p}$-smoothing property of $e^{it\Delta/2}$ has wide applications in the
study of non-linear Schr\"odinger equations $i\partial_{t}u=-(1/2)\Delta u+F(u)$ (cf. e.g.
[11] and [17]). Theorem 1 (and Theorems 7 and 8 to follow) may be used to
extend some of their results to more general non-linear Schr\"odinger equations
$i\partial_{t}u=H(t)u+F(u)$ , with $H(t)$ as in (1.1) (cf. [7]).

The propagator $U(t, s)$ has not only $L^{p}$-smoothing property but also the differ-
entiability improving property, which is the content of the following two theorems.
Because of a technical difficulty, we were forced to assume either $A(t, x)$ or $V(t, x)$

vanishes identically. If Theorems 3 and 4 are true under the conditions of Theorem
1 is still an open question.

THEOREM 3. Let Assumption $(A)$ be satisfied and $\mu>1/2$ . Suppose either
$A(t, x)=0$ or $V(t, x)=0$ . Then, there exists a constant $C_{\mu}>0su$ch that for
$s\in R^{1}$ and $T>0$

(1.7) $\int_{s-T}^{s+T}\Vert(x\rangle^{-\mu}\{D\rangle^{1/2}U(t, s)f\Vert^{2}dt\leq C_{\mu}(1+T)\Vert f\Vert^{2},$ $f\in S(R^{n})$ .
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THEOREM 4. Let Assumption $(A)$ be satisfied, $2\leq p\leq q=2p/(p-1),$ $0\leq$

$2\sigma+n(1/2-1/\ell)\leq 2/\theta<1$ and $\mu>1/2$ . Suppose either $A(t, x)=0$ or
$V(t, x)=0$. Then, there exists a constant $C_{l\theta\sigma}>0$ such that for $s\in R^{1}$ and
$T>0$

(1.8) $\int_{s-T^{T}}^{+}\Vert\langle x\rangle^{-2\mu\sigma}(D\rangle^{\sigma}U(t, s)f(x)||_{L^{1}}^{\theta}dt\leq C_{\ell\theta\sigma}(1+T)\Vert f||^{\theta},$ $f\in S(R^{n})$ .

REMARK (G): As in Remark(c), if $V(t, x)=V(x)$ , the condition $2\leq\ell\leq q=$

$2p/(p-1)$ in Theorem 4 may be replaced by $2\leq\ell<2n/(n-2)$ .
It was Kato [16] who discovered that a certain unitary group in $L^{2}$ can improve

the differentiability property: The solutions of the $KdV$ equation

$\partial_{t}u+\partial_{x}^{3}u+a(u)\partial_{x}u=0$ , $t>0,$ $x\in R^{1}$

with $u(O)=f\in L^{2}(R^{1})$ satisfy

$\int_{0}^{T}\int_{-R}^{R}|\partial_{x}u(t, x)|^{2}dxdt\leq K(||f\Vert,T, R)$

if $\lim\sup_{|\lambda|arrow\infty}|\lambda|^{-4}a(\lambda)\leq 0$ . Later it was found (cf. [25], [4] and [19]) that
such property is common for unitary groups generated by dispersive differential
equations with constant coefficients and, in particular, for the free Schr\"odinger
propagator they proved

(1.9) $\int_{R^{1}}\int_{R^{n}}|\phi(t, x)(1-\Delta)^{1/4}e^{it\Delta}u(x)|^{2}dxdt\leq C\Vert u||^{2}$ , $u\in L^{2}(R^{n})$

and for $1\leq q\leq 2,$ $r\geq 2$ and $\alpha<1/r-n(1/q-1/r)$ ,

(1.10) $[ \int_{R^{1}}\int_{R^{n}}|\phi(t, x)(1-\Delta)^{\alpha/2}e^{it\Delta}u(x)|^{r}dxdt]^{1/r}\leq C\Vert u\Vert_{L^{q}}$ , $u\in L^{q}(R^{n})$ ,

where $\phi\in C_{0^{\infty}}(R^{n+1})$ (see also [18] and [24] where $\phi$ in (1.9) is replaced by
$(x\}^{-1/2-\epsilon}, \epsilon>0)$ .

Theorem 3 and Theorem 4 are extensions of (1.9) and (1.10) (with $q=2$) to
differential equations with variable coefficients, however, by the same reason as
in (1.4), the right hand sides of (1.7) and (1.8) increase linearly in time length
$T$ in contrast to (1.9) and (1.10) which imply also the local decay as $|t|arrow\infty$

of $\exp(it\Delta)f$ in the local Sobolev norm. In this connection we should mention
that Ben-Artz and Klainermann [2] have recently shown, in the case.$H(t)=H$
and $A=0$ and $|V(x)|\leq C(1+|x|)^{-2-\epsilon},$ $\epsilon>0$ , that, if zero is not a resonance
energy of $H$ , the estimate global in time of type (1.9) is valid for $u$ belonging to
the continuous spectral subspace of $H$ (cf. also [4]). We should emphasize that
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Theorem 4 is an improvement of (1.10) (with $q=2$) even when $A(t, x)\equiv 0$ and
$V(t, x)\equiv 0$ as far as the smoothness is concerned. It uses different $L^{p}$-norms for
space and time variables in the first place and when $\theta=p,$ $\sigma$ in (1.8) can be as
big as $1/p-(n/2)(1/2-l/p)$ whereas in (1.10), $\sigma<1/p-n(1/2-1/p)$ .

We record two consequences of Theorem 3. One is the maximal inequality
of Schr\"odinger type and the other is on the almost everywhere convergence of
$U(t, s)f(x)$ as $tarrow s$ .

THEOREM 5. Assume the condition of Theorem 3, $\gamma>1/2$ and $\delta>2\gamma+1/2$ .
Then there exists a constant $C>0$ such that

(1.12) $\int\sup_{|t-s|<T}|\{x\}^{-\delta}U(t, s)f(x)|^{2}dx\leq C\Vert f\Vert_{H^{\gamma}}^{2}$ , $f\in S(R^{n})$ .

THEOREM 6. Let Assumption $(A)$ be satisfied and $f\in H^{\gamma}(R^{n})\cap L^{1}(R^{n})$ with
$\gamma>1/2$ . Then for any $s\in R^{1}$

(1.13) $\lim_{tarrow s}U(t, s)f(x)=f(x)$ , $a.e.x\in R^{n}$ .

Note that, when $H(t)=H$, Theorem 6 gives a summability theorem for (gen-
eralized) eigenfunction expansions associated with $H$ . For $\exp(it\Delta)$ Carleson [3]
proved the summability theorem with $\gamma=1/4$ when $n=1$ . This result is shown
to be sharp by Dahlberg and Kenig [6]. Again for $n=1$ , Kenig and Ruiz[20]
showed that the maximal inequality (1.9) is satisfied with $\gamma=1/4$ and that the
estimate is sharp. These one-dimensional results were subsequently extended by
Sj\"olin [25] and Kenig-Ponce-Vega [19] to higher dimensions. It seems still open,
however, if these estimates are sharp or not in general.

We close this section with three theorems on the regularity of the solutions of
(1.1). The solution $u(t)=U(t, s)f,$ $f\in H$ , obtained in Theorem 1 is a weak
solution in the sense that it satisfies (1.1) only in $\Sigma(-2)$ for a.e.t $\in R^{1}$ , and it
is natural to ask the following question: When data $f$ is nice, say $f\in\Sigma(2)$ , is
$u(t)=U(t, s)f$ a strong solution, that is, does $u\in C^{1}(R^{1}, H),$ $u(t)\in D(H(t))$ for
every $t\in R^{1}$ and satisfy (1.1) in $H$ ? This is equivalent to finding an invariant
subspace $\mathcal{D}\subset D(H(t))$ for $U(t, s):U(t, s)\mathcal{D}=\mathcal{D}$ such that $U(\cdot, \cdot)f\in C^{1}(R^{2}, H)$

for $f\in \mathcal{D}$ . This turns out to be a rather subtle and difficult question in general
and we shall study this problem only under certain stronger conditions on $A(t, x)$

and $V(t, x)$ .
When $V(t, x)$ is smooth in the spatial variables, the gauge transformation (1.5)

eliminates it from (1.1) reducing it to the form (1.6). For (1.6) we can construct
the propagator $U_{0}(t, s)$ in the form of oscillatory integral operator(OIO) by the
method of semi-classical approximation and derive much information out of it. In
particular, $\Sigma(2)$ is an invariant subspace for $U_{0}(t, s)$ . We should recall (cf. [13])
that $H_{0}(t)$ is essentially selfadjoint on $C_{0^{\infty}}’(R^{n})$ and its closure, which we denote
by the same symbol, is identical with its maximal extension. Thus

$\Sigma(2)\subset D(H_{0}(t))=\{u\in H:H_{0}(t)u\in H\}$ , $t\in R^{1}$ .
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In virtue of (1.5), the following theorem is an extension of Fujiwara $[9],[10]$ , Kitada
[21] and Kitada-Kumanogo [22] to the case with general magnetic potentials.

THEOREM 7. Let Assumption $(A)$ be satisfied and $H(t)=H_{0}(t)$ . Then the prop-
agator $U(t,s)=U_{0}(t,s)$ of Theorem 1 satisfies the following additional properties.
(1) $U_{0}(\cdot, \cdot)\in C_{*}(R^{2}, B(\Sigma(k)))\cap C_{*}^{1}(R^{2}, B(\Sigma(k), \Sigma(k-2)))$ for $k=0,$ $\pm 1,$ $\cdots$ .
(2) If $f\in\Sigma(2)$ , then $U_{0}(t, s)f$ satisfies

$i(\partial/\partial t)U_{0}(t, s)f=H_{0}(t)U_{0}(t, s)f\in C(R^{2}, H)$ ,

$i(\partial/\partial s)U_{0}(t, s)f=-U_{0}(t, s)H_{0}(s)f\in C(R^{2}, H)$ .

(3) $U_{0}(t, s)$ is an isomorphism of the Schwartz space $S(R^{n})$ .
(4) For a small $T>0,$ $U_{0}(t, s),$ $0<|t-s|\leq T$, can be written in the form of an
OIO:

(1.14) $U_{0}(t, s)f(x)=(2 \pi i(t-s))^{-n/2}\int e^{iS()}t,sx,y)b(t, s, x, y)f(y)dy$,

where $S(t, s, x, y)$ and $b(t, s, x, y)$ satisfy the following properties.
(4.a) $S(t, s, x, y)$ is a real solution of Hamilton-Jacobi $eq$uation

(1.15) $(\partial_{t}S)(t, s, x, y)+(1/2)((\partial_{x}S)(t, s, x, y)-A(t, x))^{2}=0$ .

It is $C^{1}$ in $(t, s, x, y),$ $c\infty$ in $(x, y)$ and satisfies the estimate

(1.16) $| \partial_{x}^{\alpha}\partial_{y}^{\beta}\{S(t, s, x, y)-\frac{(x-y)^{2}}{2(t-s)}\}|\leq C_{\alpha\beta}$, $|\alpha+\beta|\geq 2$ .

$($4. $b)$ For any $\alpha$ and $\beta,$ $\partial_{x}^{\alpha}\partial_{y}^{\beta}b(t, s, x, y)$ is $C^{1}$ in $(t, s, x, y)$ and satisfies

(1.17) $|\partial_{x}^{\alpha}\partial_{y}^{\beta}b(t, s, x, y)|\leq C_{\alpha\beta}$ , $|\alpha+\beta|\geq 0$ .

When $V(t, x)$ is singular, we take a perturbation point of view and consider the
case $H(t)=H_{0}(t)+V(t)$ with $H_{0}(t)=H_{0}$ first. We give a sufficient condition on
$V(t, x)$ so that $D(H_{0})$ becomes an invariant subspace. Recall that $p>n/2$ with
$p\geq 1$ is fixed as in Assumption (A) and $q=2p/(p-1)$ .

ASSUMPTION (B): $V(t, x)$ satisfies $V\in C(R^{1}, L^{\tilde{p}}(R^{n}))+C(R^{1}, L^{\infty}(R^{n}))$ and
$\partial_{t}V\in L^{p_{1},\alpha_{1}}(R^{1})+L^{\infty,1}(R^{1})$ for $p= \max(p, 2),$ $p_{1}=2np/(n+4p)(n\geq 5)$ ,
$p_{1}>2p/(p+1)(n=4),$ $p_{1}=2p/(p+1)(n\leq 3)$ and $\alpha_{1}=4p/(4p-n)$ .
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THEOREM 8. Let Assumptions $(A)$ and $(B)$ be satisfied and $H_{0}(t)=H_{0}$ is inde-
pendent oft. Then, $H(t)$ is esseniially selfadjoin$t$ on $C_{0}^{\infty}(R^{n})$ and its closure, which
will be denoted by the $S\partial Jne$ symbol, has constant domain $D(H(t))=D(H_{0})$ . The
propagator $U(t, s)$ satisfies the following properties:
(1) $U(\cdot, \cdot)\in C_{*}(R^{2}, B(D(H_{0})))\cap C_{*}^{1}(R^{2}, B(D(H_{0}), H))$ .
(2) If $f\in D(H_{0})$ , then

(1.18) $i\partial_{t}U(\cdot, s)f=H(\cdot)U(\cdot, s)f\in C(R^{1}, H)\cap L_{loc}^{q,\theta}(R^{1})$ ,

(1.18) $i\partial_{s}U(\cdot, s)f=-U(\cdot,s)H(s)f\in C(R^{1}, H))\cap L_{loc}^{q,\theta}(R^{1})$ ,

where we have $eq$uipped $D(H_{0})$ wiih graph norm and $\theta=\theta(q)=4p/n$ .

When $H_{0}(t)$ is genuinely t-dependent, $D(H_{0}(t))$ is in general wildly changing
with $t$ , and it is too ambitious to expect $U(t, s)D(H(s))\subset D(H(t))$ even when
$H(t)=H_{0}(t)$ . However, we know by Theorem 7 that $\Sigma(2)\subset D(H_{0}(t))$ is an
invariant subspace for $U_{0}(t, s)$ , and this suggests we try to find conditions on
$V(t, x)$ such that $\Sigma(2)$ be also an invariant subspace for $U(t, s)$ . The next theorem
shows that this is indeed the case, if $V(t, x)$ suitably decays at infinity. We write
$\langle x\}=(1+|x|^{2})^{1/2}$ .

ASSUMPTION (C): $V(t, x)$ satisfies $V\in\{x)^{-3}C(R^{1}, L^{\overline{p}}(R^{n}))+\{x\}^{-\beta}C(R^{1}, L^{\infty}(R^{n}))$

and $\partial_{t}V\in\{x\}^{-2}L^{p_{1)}\alpha_{1}}(R^{1})+(x)^{-\gamma}L^{\infty,1}(R^{1})$ for $\tilde{p}=\max(p, 2),$ $2<\beta<3$ ,
$p_{1}=2np/(n+4p)(n\geq 5),$ $p_{1}>2p/(p+1)(n=4),$ $p_{1}=2p/(p+1)(n\leq 3)$ ,
$\gamma>0$ and $\alpha_{1}=4p/(4p-n)$ .

THEOREM 9. Let Assumptions $(A)$ and $(C)$ be satisfied. Then,
(1) $U(\cdot, \cdot)\in C_{*}(R^{2}, B(\Sigma(2)))\cap C_{*}^{1}(R^{2}, B(\Sigma(2), H))$ .
(2) If $f\in\Sigma(2)$ , then $U(t, s)f$ satisfes (1.18) and (1.19) of Theorem 8.

The proofs of Theorems 1 and 7 to 9 can be found in [30] and those of Theorem
3 to 6 are given in [31] for the case $V(t, x)=0$ . Theorems 3 to 6 for the case
$A(t, x)=0$ with singular potentials are new materials here.

We shall review the outline of the proofs of Theorem 1 and 7 in section 2. In
section 3 we shall prove Theorems 3 and 4 for the case $A(t, x)=0$ . Since the
proofs of Theorems 5 and 6 for this case are identical with the corresponding ones
in [31] for the case $V(t, x)=0$, we omit it here.

\S 2. Strategy of the proof of Theorems 1 and 7.
Since the proof of Theorem 1 heavily relies on Theorem 7, we begin with a

sketch of the proof of the latter theorem.
We denote the classical mechanical Hamiltonian associated with (1.12) by

$H_{0}(t, x, \xi)=(1/2)\sum_{j=1}^{n}(\xi_{j}-A_{j}(t, x))^{2}$
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and by $(x(t, s, y, \eta), \xi(t, s, y, \eta))$ the solutions of Hamilton’s equations

(2.1) $dx/dt=\partial H_{0}/\partial\xi$ , $d\xi/dt=-\partial H_{0}/\partial x$

with the initial conditions $(x(s), \xi(s))=(y, \eta)$ . To make the dimension same, we
introduce new variables and set

$\tilde{x}(t, s, y, \eta)=x(t, s, y, \eta/(t-s))$, $\tilde{\xi}(t, s, y, \eta)=(t-s)\xi(t, s, y, \eta/(t-s))$

for $t\neq s$ and $\tilde{x}(t,t, y, \eta)=y+\eta$ , $\tilde{\xi}(t,t,y, \eta)=\eta$ .

LEMMA 2.1. $(\tilde{x}(t, s,y, \eta),\tilde{\xi}(t, s,y, \eta))$ exists globally for $t,$ $s\in R^{1}$ and, for every $\alpha$

and $\beta,$ $\partial_{y}^{\alpha}\partial_{\eta}^{\beta}\tilde{x}$ and $\partial_{y}^{\alpha}\partial_{\eta}^{\beta}\xi$ are $C^{1}$ functions of $(t, s, y, \eta)$ . For $|t-s|\leq 1$

(2.2) $|\partial_{y}^{\alpha}\partial_{\eta}^{\beta}(\partial\tilde{x}_{j}/\partial y_{k}-\delta_{jk})|+|\partial_{y}^{\alpha}\partial_{\eta}^{\beta}(\partial\tilde{x};/\partial\eta_{k}-\delta_{jk})|$

$+|\partial_{y}^{\alpha}\partial_{\eta}^{\beta}(\partial\tilde{\xi}_{j}/\partial y_{k})|+|\partial_{y}^{\alpha}\partial_{\eta}^{\beta}(\partial\tilde{\xi}_{j}/\partial\eta_{k}-\delta_{jk})|\leq C_{\alpha\beta}|t-s|$ ,

where $\delta_{jk}$ is Kronecker’s delta;

(2.3) $|\tilde{\xi}(t, x, y, \eta)-\eta|+|\tilde{x}(t, s,y, \eta)-y-\eta|\leq C|t-s|(1+|y|+|\eta|)$.

It can be deduced from (2.2) that there exists $T>0$ such that, for every fixed
$|t-s|<T$ and $y\in R^{n},$ $R^{n}\ni\etaarrow x=\tilde{x}(t, s, y, \eta)\in R^{n}$ is a global diffeomorphism
of $R$ “. Write $\tilde{\eta}(t, s, y, x)$ for its inverse. Then

(2.4) $(x(\tau), \xi(\tau))=(x(\tau, s, y, (t-s)^{-1}\tilde{\eta}(t, s, y, x)),\xi(\dot{\tau}, s, y, (t-s)^{-1}\tilde{\eta}(t, s, y, x)))$

is a unique solution of (2.1) such that $x(t)=x$ and $x(s)=y$ . We denote by
$S(t, s, x, y)$ the action integral along this path:

$S(t, s, x, y)= \int_{s}^{t}\{(\partial_{\xi}H_{0})(\tau, x(\tau), \xi(\tau))\cdot\xi(\tau)-H_{0}(\tau, x(\tau), \xi(\tau))\}d\tau$ .

LEMMA 2.2. $S(t, s, x, y)$ satisfies the property (a) of Theorem 7, $i.e$ . it satisfies
Hamilton-Jaco$bi$ equation (1.15) and the estimate (1.16). Moreover,

(2.5) $(t-s)(\partial_{x}S)(t, s, x, y)=\tilde{\xi}(t, s, y,\tilde{\eta}(t, s, y, x))$ ,
(2.6) $(t-s)(\partial_{y}S)(t, s, x, y)=-\tilde{\eta}(t, s, y,\dot{x})$ .

Note that (1.16) shows that $S(t, s, x, y)$ has the properties of phase functions of
OIOs studied in [1]. We let $e(t, s, x, y)$ be the solution of the transport equation

$\partial_{t}e+(\nabla_{x}S-A(t, x))\nabla_{x}e+\frac{1}{2}(\Delta_{x}S-\frac{n}{t-s}-div_{x}A(t, x))e=0$

associated with $S(t, s, x, y)$ with the initial condition $e(s, s, x, y)=1.$ For $T>0$
small enough (to be specified below) we write $\triangle(T)=\{(t, s)\in R^{2} : |t-s|\leq T\}$ .
$\mathcal{B}(R^{m})=\{f : \Vert f\Vert_{\mathcal{B}^{k}}=\sup_{x\in R^{m}}\sum_{|\alpha|<k}|\partial_{x}^{\alpha}f(x)|<\infty, k=0,1,2, \ldots\}$ is Fr\’echet
space of bounded $c\infty$ functions with bounded derivatives.
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LEMMA 2.3. $e(t, s, \cdot, \cdot)\in C(\triangle(T), B(R^{n}\cross R^{n})$ and satisfies

(2.7) $|\partial_{x}^{\alpha}\partial_{y}^{\beta}(e(t, s, x, y)-1)|\leq C_{\alpha}\rho|t-s|$ .

Using $S$ of Lemma 2.2 and $e$ of Lemma 2.3, we define the (first order) semi-
$cla$ssical approximation $E(t, s)$ of the propagator by

$E(t, s)f(x)=(2 \pi i(t-s))^{-n/2}\int e^{iS(t,s,x,y)}e(t, s, x, y)f(y)dy$.

When $a(t, s, x, y)$ (resp. $p(t,$ $s,$ $x,$ $\xi,$ $y)$ ) is continuous in $(t, s)\in\triangle(T)$ with values
in $\mathcal{B}(R^{n}\cross R^{n})$ (resp. $\mathcal{B}(R^{n}\cross R^{n}\cross R^{n})$), we say $a\in Amp$ (resp. $p\in Sym_{0}$ ).
$I(t, s, a)$ is the $OIO$ with the phase $S(t, s, x, y)$ and amplitude $a(t, s, x, y)$ :

(2.8) $I(t, s, a)f(x)=(2 \pi i(t-s))^{-n/2}\int e^{iS()}t,s,xy)a(t, s, x, y)f(y)dy$

and $\Psi DO(t, s)$ is the set of all v-pseudo-differential operators

$p(t, s, x, \nu D, x)f(x)=(2\pi\nu)^{-n}\int e^{i(x-y)\xi/\nu}p(t, s, x, \xi, y)f(y)dyd\xi$

with symbols $p\in Sym_{0},$ $\nu=t-s$ .
Operators of the form (2.8) are of class Asada and Fujiwara[l] and the following

lemma summarizes their properties to be used in what follows.

LEMMA 2.4. There exists $T>0$ such that for $(t, s)\in\triangle(T)$ the following state-
ments are satisfied:
(1) For $k=0,1,$ $\cdots$ , there exists a constant $C_{k}$ such that

(2.9) $\Vert I(t, s, a)f\Vert_{\Sigma(k)}\leq C_{k}\Vert a(t, s, \cdot, \cdot)\Vert_{B^{M}(k)(R^{2n})}\Vert f\Vert_{\Sigma(k)}$ , $a\in Amp$ ,

where $M(k)=2n+k+1$ .
(2) $I(t, s, a)$ is a continuous operator on $S(R^{n})$ .
(3) For $a,$ $b\in Amp$ and $p\in Sym_{0}$ , there exist $c,$ $d,$ $f,$ $g\in Amp$ and $q\in Sym_{0}$ such
that

(2.10) $I(t, s, a)^{*}=I(s, t, c)$ , $I(t, r, a)I(r, s, b)=I(t, s, d)$ .

(2.11) $I(t, s, a)p(t, s, x, \nu D, x)=I(t, s, f)$ , $p(t, s, x, \nu D, x)I(t, s, a)=I(t, s, g)$ .

(2.12) $I(t, s, a)I(s,t, b)=q(t, s, x, \nu D, x)$ .

10



103

Moreover $c,$ $d,$ $f,$ $g\in Amp$ and $q\in Sym_{0}$ in (2.10) to (2.12) depend continuously
on $a,$

$b$ and $p$ in the topology of $\mathcal{B}(R^{2}$
“

$)$ or $\mathcal{B}(R^{3n})$ .
(4) For subdivision $\Omega$ : $s=s_{0}<s_{1}<\cdots<S_{L}=t$ and $a_{1},$ $a_{2},$ $\cdots,$ $a_{L}\in Amp$

there exists $a\in Amp$ such that $I(t, s_{L-1}, a_{L})\cdot I(s_{L-1}, s_{L-2}, a_{L-1})\cdots I(s_{1}, s, a_{1})=$

$I(t, s, a)$ . For $m=0,1,$ $\cdots$ ,

(2.13) $||a(t, s, \cdot, \cdot)\Vert_{B^{m}(R^{2n})}\leq\kappa(m)^{L}\prod_{j=1}^{L}\Vert a_{j}(s_{j}, s_{j-1}, \cdot, \cdot)||_{B^{R(m)}(R^{2n})}$ ,

where constants $\kappa(m)$ and $R(m)$ are independent of $L$ , subdivision $\Omega$ , functions
$a_{j}\in Amp,$ $1\leq j\leq L$ and $\nu$ .

In what follows $T>0$ will be always assumed to be sufficiently small so that
Lemma 2.4 is satisfied. In virtue of standard semi-group theory, it suffices to prove
Theorems 1 and 7 for $|t-s|<T$ .

PROOF OF THEOREM 7: A simple computation shows that

(2.14) $iG(t, s)f(x)\equiv(-i\partial_{t}+H_{0}(t))E(t, s)f(x)$

$=-(2 \pi i\nu)^{-n/2}\int e^{i\overline{S}(t,s,x,y)/\nu}(1/2)\Delta_{x}a(t, s, x, y)f(y)dy$ ,

where $\tilde{S}(t, s, x, y)=(t-s)S(t, s, x, y)$ and $\nu=t-s$ . In virtue of Lemma 2.4 and
(2.7) it follows that $E(t, s)$ and $G(t, s)$ satisfy the following properties:
(1) For $t\neq s,$ $E(t, s)$ and $G(t, s)$ are continuous operators both in $\Sigma(k)$ and $S(R^{n})$ ,
and

(2.15) $\Vert E(t, s)f\Vert_{\Sigma(k)}\leq C\Vert f\Vert_{\Sigma(k)}$ , I $G(t,s)f\Vert_{\Sigma(k)}\leq C|t-s|\Vert f\Vert_{\Sigma(k)}$ .

(2) For $f\in\Sigma(k),$ $\Vert E(t, s)f-f\Vert_{\Sigma(k)}arrow 0$ as $tarrow s$ and if we set $E(t, t)f=f$ and
$G(t,t)f=0$ , then $E(\cdot, \cdot)$ and $G(\cdot, \cdot)\in C_{*}(\triangle(T), B(\Sigma(k)))$ .
(3) If $f\in S(R^{n})$ , then $E(t, s)f$ and $G(t, s)f$ are continuous in $S(R^{n})$ for $(t, s)\in$

$\triangle(T)$ .
Using properties (1) to (3) above, we see that, if $U_{0}(t, s)$ is the propagator with

the properties of Theorem 7, then (2.14) may be solved for $E(t, s)$ in the form:

(2.16) $E(t, s)f=U_{0}(t, s)f- \int_{s}^{t}U_{0}(t, r)G(r, s)fdr$.

For constructing $U_{0}(t, s)$ we regard (2.16) as an operator equation for $U_{0}(t, s)$ and
solve it by successive approximation:

(2.17) $U_{0}(t, s)=E(t, s)+(E*G)(t, s)+(E*G*G)(t, s)+\cdots$ ,
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where $(F*G)(t, s)= \int_{s}^{t}F(t, r)G(r, s)dr$ . $(2.15)$ implies

$||E*G*G* \cdots*G\Vert_{B(\Sigma(f))}\leq C_{f}^{k}|t-s|^{2k}\frac{1}{\Gamma(2(k+1))}$

and, for every $p=0,1,$ $\cdots$ , the series (2.17) converges in operator norm of $B(\Sigma(P))$

uniformly in $(t, s)\in\triangle(T)$ to define $U_{0}(\cdot, \cdot)\in C_{*}(\triangle(T), B(\Sigma(\ell)))$ , which clearly
satisfies (2.16), hence (1) to (3) of Theorem 7.

Moreover, by (2.13), we see that $(E*G*\cdots*G)(t, s)=I(t, s, c_{Nk})$ with
$c_{Nk}(t, s, x, y)$ satisfying

(2.18) $\Vert c_{k}\Vert_{B^{m}}\leq C_{m}^{k+1}\frac{|t-s|^{2k}}{\Gamma(2k+1)}$ , $m=0,1,$ $\cdots$ .

Thus, the sequence $b(t, s, x, y, h)= \sum_{k0}^{\infty_{=}}c_{Nk}(t, s, x, y, h)$ converges in $\mathcal{B}(R^{2n})$

uniformly in $\triangle(T)$ and $U_{0}(t, s)=I(t, s, b)$ . This implies that $U_{0}(t, s)$ satisfies (4)
of Theorem 7.

PROOF OF THEOREM 1:
We first remark that the multiplication operator $V(t)$ with $V(t, x)$ is $H_{0}(t)-$

form bounded with bound $0$ and the Friedrich extension of $H(t)=H_{0}(t)+V(t)$

coincides with the part of $H(t)\in B(H\cap L^{q}(R^{n}), \Sigma(-2))$ in H.
We solve (1.1) via the equivalent integral equation:

(2.19) $u(t)=U_{0}(t, s)f-i \int_{s}^{t}U_{0}$ ( $t$ , r)V(r)u(r)dr.

We set, for the parameter $p$ with $0\leq 2/\theta=n(1/2-1/P)<1$ , the function spaces

$X(I,\ell)=C_{b}(I, H)\cap L^{t,\theta}(I)$ , $X^{*}(I,\ell)=L^{2,1}(I)+L^{\ell’\theta’})(I)$ ,

and solve (2.19) in $X(I, q),$ $q=2p/(p-1)$ with a small interval $I$ , where $\ell’$ and
$\theta$ ‘ are indices conjugate to $p$ and $\theta$ . We say $u\in X_{loc}(I,\ell)$ if $u\in X(I’,\ell)$ for any
compact subinterval $I’$ of $I$ . We need the following four lemmas. The first lemma
is an immediate consequence of (2.9) and the complex interpolation theory.

LEMMA 2.5. Let $a\in Amp$ . Then:
(1) There exists a constant $C$ depending only on $n$ such that for any $2\leq P\leq\infty$

and $t,$ $s\in\triangle(T)\backslash \triangle$ ,

(2.20) I $I(t, s, a)f\Vert\ell\leq C\Vert a(t, s, \cdot, \cdot)\Vert_{B^{4n+1}}|t-s|^{-n(1/2-1/l)}\cdot\Vert f\Vert_{1’}$ .

(2) For $f\in L^{\ell’}(R^{n}),$ $I(t, s, a)f\in C(\triangle(T)\backslash \triangle, L^{\ell}(R^{n}))$ .

The next lemma can be proved by using (2.20) and the Hardy-Littlewood-
Sobolev inequality.
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LEMMA 2.6. Let $0\leq 2/\theta(P)=n(1/2-1/\ell)<1$ and let $Z(t, s)$ be $B(H)$ -valued
measurable function of $(t, s)\in R^{2}whicb$ satisfies the following conditions:
(a) For any $f\in H$ and $t_{0}\in R^{1},$ $Z(t, s)f$ and $Z(s, t)^{*}f$ are continuous in $H$ with
respect to $t$ at $t=t_{0}$ for almost all $s\in R^{1}$ .
(\’o) For $f\in L^{f’}(R^{n})\cap H$ and $(t,s)\not\in\triangle,$ $Z(t, s)f\in L^{f}(R^{n})$ and

$\Vert Z(t,s)f\Vert_{f}\leq C|t-s|^{-n(1/2-1/l)}\Vert f\Vert_{f’}$

with constant $C>0$ independent of $t,$ $s$ and $f$ .
$(c)$ For any $r\in R^{1}$ and $(t, s)\not\in\triangle,$ $Z(r,t)^{*}Z(r, s)$ and $Z(t, r)Z(s, r)^{*}$ deffied on
$L^{f’}(R^{n})\cap H$ can be extended to $bo$un$ded$ operators from $L^{f’}(R^{n})$ to $L^{f}(R^{n})$ and

$\Vert Z(r, t)^{*}Z(r, s)f\Vert_{1}\leq C|t-s|^{-n(1/2-1/f)}\Vert f\Vert_{l’}$ ,
$\Vert Z(t,r)Z(s, r)^{*}f\Vert_{l}\leq C|t-s|^{-n(1/2-1/f)}\Vert f\Vert_{\ell’}$ .

Then:
(1) For any $f\in H$ and $s,$ $u(\cdot)=Z(\cdot, s)f\in L^{f\theta}(R^{1})$ and with constant $C$ indepen-
dent of $s$ and $f$ ,

$\Vert Z(\cdot, s)f\Vert_{l,\theta}\leq C\Vert f\Vert$ .
(2) The integral operator $Ju(t)= \int_{-}^{\infty_{\infty}}Z(t, s)u(s)ds$ is boun$ded$ from $X^{*}(R^{1},l)$ to
X$(R^{1},\ell)$ :

$\Vert Ju\Vert_{X(R^{1},l)}\leq C\Vert u\Vert_{X^{*}(R^{1},f)}$ .
Since $U_{0}(t, s)=I(t, s, b)$ with $b\in Amp$ , it obviously satisfies Lemma 2.5, hence

the conditions (a) to (c) of Lemma 2.6. Accordingly, Lemma 2.6 implies the
following

LEMMA 2.7. Let $0\leq 2/\theta=n(1/2-1/l)<1$ . Then there exists a constant $C>0$
such that th$e$ following estimates are satisfied for any $R>0$ and $a\in R^{1}$ .
(1) For $f\in H,$ $U_{0}(\cdot, a)f\in L_{loc}^{t,\theta}(R^{1})$ and

$\Vert U_{0}(\cdot, a)f\Vert_{L^{l,\theta}([a-R,a+R])}\leq C(1+R)^{1/\theta}\Vert f\Vert$ , $f\in H$ .

(2) Let $G_{a}$ be the integral opera$tor$ defined by $G_{a}u( A)=\int_{a^{t}}U_{0}(t, s)u(s)ds$ . Then
$G_{a}$ is a bounded operator from $X^{*}([a-R, a+R],l)$ to $X([a-R, a+R],l)$ and

11 $G_{a}u\Vert_{X([a-R,a+R],1)}\leq C(1+R)^{2/\theta}$ Il $u\Vert_{X^{*}([a-R,a+R],f)}$ .

If we define a Banach space for potentials by $M(I)=L^{p_{)}\alpha}(I)+L^{\infty,1}(I)$ with
the standard norm:

$\Vert u\Vert_{M(I)}=\inf\{\Vert V_{1}\Vert_{L^{p,\alpha}}(I)+\Vert V_{2}\Vert_{L^{\infty,1}}(I):V=V_{1}+V_{2}\}$,

where $p$ and $\alpha$ are the exponents in Assumption (A), then H\"older’s inequality
implies that the multiplication operator $V$ satisfies the following properties.
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LEMMA 2.8. Let $q=2p/(p-1)$ . Then:

$\Vert$ Vu $\Vert_{X^{*}(I,q)}\leq\Vert V\Vert_{M(I)}\cdot\Vert u\Vert_{X(I,q)}$ .

Setting $Q_{s}f(t)=U_{0}(t,s)f$ , we write the integral equation (2.19) in the form

(2.19’) $u(t)=Q_{s}f(t)+G_{s}Vu(t)$ .

As in the proof of Theorem 3, we only have to consider in a small interval
$I=[t_{0}-T/2,t_{0}+T/2]$ . Lemma 2.7 and 2.8 show that $Q_{s}\in B(H, X(I, q))$

and $G_{s}V\in B(X(I, q))$ , both depending on $s$ continuously in the strong topol-
ogy of operator valued func.tions. Moreover, if we take $T>0$ sufficiently small,
$G_{s}V$ is a contraction on $X(I, q)$ . It follows that (2.19’) can be uniquely solved for
$u\in X(I, q)$ :

$u=(1-G_{s}V)^{-1}Q_{s}f= \sum_{k=0}^{\infty}(G_{s}V)^{k}Q_{s}f$.

We define $U(t, s)$ , for $t,$ $s\in I$ , by $U(t, s)f=u(t)$ , that is, $U(t, s)=\Gamma_{t}(1-$

$G_{s}V)^{-1}Q_{s}$ , where $\Gamma_{t}\in B(X(I, q),$ $H$ ) is the evaluation functional defined by $\Gamma_{t}u=$

$u(t)$ . Clearly $U(\cdot, \cdot)\in C_{*}(I^{2}, B(H))$ and $u(\cdot)=U(\cdot, s)f\in L^{q,4p/n}(I)$ for any $f\in H$ ,
and, as can be easily shown from its construction, this is the desired propagator
for (1.1) satisfying the properties on Theorem 1.

\S 3. Proof of Theorem 3, and 4 for the case $A(t, x)=0$ .
In virtue of the complex interpolation theory for weighted Sobolev spaces (cf.

e.g. [28]), it is well known that

(3.1) $[W^{k_{1},p_{1}}(R^{n}, \{x\rangle^{\mu_{1}}dx), W^{k_{2},p_{2}}(R^{n}, \{x\}^{\mu_{2}}dx)]_{\theta}=W^{k_{\theta},p_{\theta}}(R^{n}, (x\}^{\mu_{\theta}}(x)dx)$ ,

where $k_{\theta}=(1-\theta)k_{1}+\theta k_{2},1/p_{\theta}=(1-\theta)/p_{1}+\theta/p_{2}$ and $\mu_{\theta}=(1-\theta)\mu_{1}+\theta\mu_{2}$ ,
$0\leq\theta\leq 1$ . Hence Theorem 4 is a consequence of Theorem 3 and Theorem 1, (3).

We prove Theorem 3 for the case $A(t, x)=0$ . We assume $s=0$ and suppress
the index $s$ . In this case $U_{0}(t, s)=\exp(i(t-s)\Delta/2)$ and (2.19) reads

$u(t)=Qf(t)+GVu(t)= \exp(it\Delta/2)f-i\int_{0}^{t}\exp(i(t-s)\Delta/2)V(s)u(s)ds$ .

We let $F_{\epsilon}(\xi)=\{\xi\}^{1/2}/(1+\epsilon\xi^{2})$ and write, with a little abuse of notation, $F_{\epsilon}(D_{j})=$

$(1+D_{j}^{2})^{1/4}/(1+\epsilon D_{j}^{2}),$ $\epsilon>0$ , and $\phi(t)=(1+t^{2})^{-\mu/2},$ $t\in$ R. The commutators
$[F_{\epsilon}(D), \langle x\}^{-\mu}]$ and $F_{\epsilon}(D_{j})[\phi^{2}(x_{j}),F_{\epsilon}(D_{j})]$ are uniformly bounded in $H$ for $\epsilon>0$ ,
$j=1,$ $\cdots,$ $n$ . Hence we have

$\Vert F_{\epsilon}(D)\{x)^{-\mu}v\Vert^{2}\leq\sum_{j=1}^{n}\Vert F_{\epsilon}(D_{j})\langle x\}^{-\mu}v\Vert^{2}\leq\sum_{j=1}^{n}$ II $\phi(x_{j})F_{\epsilon}(D_{j})v\Vert^{2}+C\Vert v\Vert^{2}$ ;
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$\Vert\phi_{j}(x)F_{\epsilon}(D_{j})v\Vert^{2}=(F_{\epsilon}(D_{j})\phi^{2}(x_{j})F_{\epsilon}(D_{j})v, v)$

$=(F_{\epsilon}(D_{j})^{2}\phi^{2}(x_{j})v, v)+O(\Vert v\Vert)$, $v\in H$ .

It follows that with a constant $C>0$ independent of $\epsilon>0$

(3.2)

$\int_{0}^{T}\Vert\{x\}^{-\mu}F_{\epsilon}(D)u(t)\Vert^{2}dt\leq\sum_{j=1}^{n}\int_{0}^{T}\Vert\phi(x_{j})F_{\epsilon}(D_{j})u(t)\Vert^{2}dt+C\Vert f\Vert^{2}$

$\sum_{j=1}^{n}\int_{0}^{T}(F_{\epsilon}(D_{j})^{2}\phi^{2}(x_{j})u(t), u(t))dt+O(\Vert f\Vert^{2})$ .

Here we used $\Vert u(t)\Vert=\Vert f\Vert$ . Introducing the notation

$g(t)=e^{-it\Delta/2}GVu(t)= \int_{0}^{t}e^{-is\Delta}V(s)u(s)ds$

and
$\Phi_{j}(T, x, D)=\int_{0}^{T}e^{-it\Delta/2}F_{\epsilon}(D_{j})^{2}\phi^{2}(x_{j})e^{it\Delta/2}dt$ ,

we write the integral in the right of (3.2) in the form

(3.3) $( \Phi_{j}(T, x, D)f, f)+\int_{0}^{T}(\Phi_{j}’(t, x, D)f, g(t))dt$

$+ \int_{0}^{T}(\Phi_{j}’(t, x, D)g(t), f)dt+\int_{0}^{T}(\Phi_{j}’(t, x, D)g(t), g(t))$,

where $\Phi_{j}’(t, x, D)=e^{-it\Delta/2}F_{\epsilon}(D_{j})^{2}\phi^{2}(x_{j})e^{it\Delta/2}$ is the t-derivative of $\Phi_{j}(t, x, D)$ .
We use the following

LEMMA 3.1. For every $j=1,$ $\cdot\cdot$ $n$ and $t\in R$ , the operator $\Phi_{j}(t, x, D)$ , is a
boun$ded$ operator of $L^{f}(R^{n})$ for every $1<p<\infty$ . Its operator norm is boun$ded$

uniformly in $|t|\leq T,$ $T>0$ , and $\epsilon>0$ .

(3.4) $e^{it\Delta/2}\Phi_{j}(t, x, D)e^{-it\Delta/2}=-\Phi_{j}(-t, x, D)$.

PROOF: (3.4) is obvious and we prove the boundedness only. Since $F_{\epsilon}(D_{j})^{2}$ and
$e^{-it\Delta/2}$ commutes, we have

$e^{-it\Delta/2}F_{\epsilon}(D_{j})^{2}\phi^{2}(x_{j})e^{it\Delta/2}=F_{\epsilon}(D_{j})^{2}\phi^{2}(x_{j}+tD_{j})$

and $\phi^{2}(x_{j}+tD_{j})$ is Weyl operator with the symbol $\phi^{2}(x_{j}+t\xi_{j})$ . It is esay to
see that $(1+\epsilon D_{j}^{2})^{-1}$ has $L^{1}$ convolution integral kernel with uniform $L^{1}$ -norm in
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$x_{j}$ -variable, hence, is a uniformly bounded operator in every $L^{\ell}(R^{n}),$ $1\leq p\leq\infty$ .
Take $\chi(\xi)\in C_{0^{\infty}}(R)$ such that $\chi(\xi)=1$ near zero and split

$(1+\xi_{j}^{2})^{1/2}=(1+\xi_{j}^{2})^{1/2}\chi(\xi_{j})+(1+\xi_{j}^{2})^{1/2}(1-\chi(\xi_{j}))\xi_{j}^{-1}\cdot\xi_{j}$ .

Here $(1+D_{j}^{2})^{1/2}\chi(D_{j})$ is obviously $L^{f}$-bounded and the standard result of pseudo-
differntial operators shows that $(1+D_{j}^{2})^{1/2}(1-\chi(D_{j}))D_{j}^{-1}$ is also bounded in
$L^{f}(R^{n}),$ $1<p<\infty$ . (This is essentially the Hilbert-Transform.) Hence it suffices
to prove the boundedness of $\int_{0}^{T}\phi^{2}(x_{j}+tD_{j})dt$ and $\int_{0}^{T}D_{j}\phi^{2}(x_{j}+tD_{j})dt$ , the latter
being the Weyl operator with the symbol

(3.5) $\int_{0}^{T}\phi^{2}(x_{j}+t\xi_{j})\xi_{j}dt-(i/2)\int_{0}^{T}(\phi^{2})’(x_{j}+t\xi_{j})dt$

Note that in general

(3.6) $g(x+tD)f(x)=(2 \pi)^{-n}\int e^{i(x-y)\cdot\xi}g((x+y)/2+t\xi)f(y)dyd\xi$

$=e^{-ix^{2}/2t}(g(tD)e^{iy^{2}/2t}f)(x)$

It follows that $\phi^{2}(x_{j}+tD_{j})$ and $(\phi^{2})’(x_{j}+tD_{j})$ , hence the Weyl operator of which
the symbol given by the second integral of (3.5) are uniformly bounded in $L^{f}$ for
every $1\leq P\leq\infty$ . Writing the first integral of (3.5) as

$\int_{0}^{T}\phi^{2}(x_{j}+t\xi_{j})\xi_{j}dt=\int_{x_{j}}^{x_{j}+T\xi_{j}}\phi^{2}(t)dt=\Psi(x_{j}+T\xi_{j})-\Psi(x_{j})$

with $\Psi(t)=\int_{0}^{t}\phi^{2}(s)ds$ , we see by (3.6) that the Weyl operator with the symbol
$\int_{0}^{T}\phi(x_{j}+t\xi_{j})^{2}\xi_{j}dt$ is given by

(3.7) $\Psi(x_{j}+TD_{j})f(x)-\Psi(x_{j})=e^{-ix_{i^{2}}/2\tau_{(\Psi(TD_{j})e^{iy_{i}^{2}/2T}f)(x)-\Psi(x_{j})f(x)}}$ .

Since $\Psi(t)$ is bounded and its derivatives satisfies

$|d^{k}\Psi/dt^{k}(t)|\leq C_{k}\langle t\}^{-\mu+1-k}$ , $k=1,2,$ $\cdots$

the classical theorem for $L^{\ell}$-multiplier theorem (cf. e.g. [27]) implies that $\Psi(TD_{j})$

is $L^{f}$-bounded for $1<P<\infty$ . This completes the proof of the lemma. 1
By integration by parts we rewite (3.3) into the following form with $\Phi_{j}(t)=$

$\Phi_{j}(t, x, D)$ :

$(\Phi_{j}(T)f, f)+(\Phi_{j}(T)f, g(T))+(\Phi_{j}(T)g(T), f)+(\Phi_{j}(T)g(T), g(T))$

$+ \int_{0}^{T}(\Phi_{j}(-t)e^{-it\Delta}f, (Vu)(t))dt+\int_{0}^{T}(\Phi_{j}(-t)(Vu)(t), e^{-it\Delta}f)dt$

$+ \int_{0}^{T}(\Phi_{j}(-t)(Vu)(t), (GVu)(t))dt+\int_{0}^{T}(\Phi_{j}(-t)(GVu)(t), (Vu)(t))dt$ .
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Each term above can be estimated by $C||f\Vert^{2}$ by applying Lemma 3.1 and the
estimates

(3.8) $||g(T)\Vert\leq C\Vert f\Vert$ ;

(3.9) $\Vert e^{-it\Delta}f\Vert_{L^{4p/\mathfrak{n}}(I,L^{q})}\leq C\Vert f\Vert$, $\Vert Vu\Vert_{L^{4p/n}(I,L^{q})^{*}}\leq C\Vert f\Vert$ ;

and

(3.10) $\Vert GVu\Vert_{L^{4p/n}}(I,L^{q})\leq C\Vert f\Vert$

which are the results of Lemma 2.7 and 2.8. (3.8) and Lemma 3.1 show that the
first four terms are bounded by $C||f\Vert^{2}$ ; (3.9) and Lemma 3.1 show the following
two terms are bounded by $C\Vert f\Vert^{2}$ ; and (3.10) implies that the last two terms are
also bounded by $C\Vert f\Vert^{2}$ . This completes the proof of Theorem 3.

REFERENCES

1. Asada, K. and D. Fujiwara, On some oscillatory integral transformations in
$L^{2}(R^{n})$ , Japan. J. Math. 4 (1978), 299-361.

2. Ben-Artzi, M. and S. Klainerman, Decay and regurality for the Schrodinger
equation, preprint, Hebrew University of Jerusalem.

3. Carleson, L., Some analytical problems related to statistical mechanics, in “Eu-
clidean Harmonic Analysis,” Lecture Notes in Math. 799, Springer-Verlag,
Berlin and New York, 1979, pp. 5-45.

4. Constantin, P. and J. C. Saut, Local smoothing properties of dispersive equa-
tions, J. of Amer. Math. Soc. 1 (1988), 413-439.

5. Cycon, H. L., R. G. Froese, W. Kirsch and B. Simon, “Schr\"odinger opera-
tors with application to quantum mechanics and global geometry,” Springer,
Berlin-Heidelberg, 1987.

6. Dahlberg, B. E. J. and C. E. Kenig, A note on the almost everywhere behavior
of solutions to the Schrodinger equation, in “Lecture Notes in Math. 908,”
Springer-Verlag, Berlin and New York, 1982, pp. 205-208.

7. De Bouard, A., Nonlinear Schrodinger equations with magnetic field, preprint,
Univ. Paris-Sud, 1990.

8. Edward, R. E., “Fourier series, a modern introduction. Vol. 2, ) Springer-Verlag,
Berlin-Heidelberg-New York, 1982.

9. Fujiwara, D., A construction of the fundamental solution for the Schrodinger
equation, J. d’Analyse Math. 35 (1979), 41-96.

10. Fujiwara, D., Remarks on convergence of the Feynman path integrals, Duke
Math. J. 47 (1980), 559-600.

17



110

11. Ginibre, J. and G. Velo, The global Cauchy problem for non-linear Schrodinger
equation revisited, Ann. Inst. H. Poincar\’e, Anal. Nonlin\’eare 2 (1985), 309-327.

12. Howland, J. S., Stationary scattering theory for time dependent Hamiltonians,
Math. Ann. 207 (1974), 315-335.

13. Ikebe,. T. and T. Kato, Uniqueness of self-adjoint extension of singular elliptic
differential operators, Arch. Rat. Mech. Anal. 9 (1962), 77-92.

14. Kato, T., Fundamental properties of Hamiltonian operators of Schrodinger
type, Trans. Amer. Math. Soc. 70 (1951), 195-211.

15. Kato, T., Linear evolution equations of “hyperbolic “ type, J. Fac. Sci. Univ.
Tokyo Sec. I 17 (1972), 241-258.

16. Kato, T., On the Cauchy problem for the (generalized) Kortweg-de Vries equa-
tion, Studies in Appl. Math. Adv. in Math. Supplementary Studies 18, 93-128.

17. Kato, T., On nonlinear Schrodinger equations, Ann. Inst. H. Poincar\’e Phys.
Theor. 46 (1987), 113-129.

18. Kato, T. and K. Yajima, Some examples of smooth operators and the associ-
ated smoothing effect, Reviews in Math. Physics, 1 (1990), 481-496.

19. Kenig, C. E. and G. Ponce and L. Vega, Oscillatory integrals and regularity
of dispersive equations, preprint, Univ. Chicago, 1989.

20. Kenig, C. E. and A. Ruiz, A strong type (2, 2) estimate for a maximal operator
associated to the Schrodinger equation, Trans. Amer. Math. Soc. 280 (1983),
239-246.

21. Kitada, H., On a construction of the fundamental solution for Schrodinger
equation, J. Fac. Sci. Univ. Tokyo Sec. IA 27 (1980), 193-226.

22. Kitada, H. and H. Kumanogo, A family of Fourier Integral operators and the
fundamental solution for a Schrodinger equation, Osaka J. Math. 18 (1981),
291-360.

23. Reed, M. and B. Simon, “Methods of modem mathematical physics, Vol.II.
Fourier analysis and selfadjointness,” Academic Press, New York, 1977.

24. Simon, B., Best constants in some operator smoothness estimates, preprint,
Caltech, 1990.

25. Sj\"olin, P., Regularity of solutions to the Schrodinger equation, Duke Math. J.
55 (1987), 699-715.

26. Strichartz, R. S., Restrictions of Fourier transforms to quadratic surfaces and
decay of solutions of wave equations, Duke Math. J. 44, 705-714.

27. Taylor, M. E., “Pseudo-differential operators,” Princeton Univ. Press, Prince-
ton, New Jersey, 1981.

28. Triebel, H., “Interpolation theory, function spaces, differential operators,”
North Holland, Amsterdam, New York, Oxford, 1978.

29. Yajima, K., Existence of solutions for Schrodinger evolution equations, Com-
mun. Math. Phys. 110 (1987), 415-426.

30. Yajima, K., Schrodinger evolution equation with magnetic fields, in press, J.
d’Analyse Math..

18



111

31. Yajima, K., On smoothing property of Schrodinger propagators, in “Lecture
Notes in Math. 1450,” Springer-Verlag, Berlin and New York, 1990, pp. 20-35.

32. Zelditch, S., Reconstruction of singularities for solutions of Schrodinger’s
equation, Commun. Math. Phys. 90 (1983), 1-26.

33. Zygmund, A., On Fourier coefficients and transforms offunctions of two vari-
ables, Studia Math. 50 (1974), 189-201.

19


