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A Parabolic Inverse Problem in Chromatography

Tuyoshi KIMURA1 and Takashi SUZUKI2

1 Introduction

In this talk we shall prove a uniqueness result for a parabolic inverse problem arisen in GPC (Gel

Permeation Chromatography), the fundamental technology to measure the size of moleculars. The

mathematical model of GPC is proposed by Deisler-Wilhelm [1] in 1953. They derived a system

of parabolic equations about the concentration of the “mobil phase” and of the ”gel phase“ with

the interaction term between both phases at the interface of the solute and the gel.

In the present paper we neglect the interaction and pick up the mobile phase only. We also

suppose that the flow and the diffusion is one-dimensional, and that the column I may be regarded

as an interval $[0, l]$ .
Then the equation of continuity is exprssed as

$\frac{\theta u}{\partial t}+\frac{\partial j}{\partial\epsilon}=0$ $(0<x<\infty)$ ,

where $j$ denotes the flux so that

$j=-D(x) \frac{\partial u}{\partial r}+1^{\gamma}(x)u,\sim$

where $D$ is the diffusion coefficicnt. The Pedet number, assumed to be a constant in the case of

low Reinold’s number, is given as

$p=a\frac{V(x)}{D(x)}$ ,

where $a$ denotes the $s\dot{u}e$ of moleculars. Thus, our equation is given as

(L1) $\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\{t^{r}(x)(K\frac{\partial u}{\partial x}-u)\}$ $(0<x<\infty, 0<t<T)$

with $K=a/p$, where the input and the output of chromatographv are described as

(1.2) $VK \frac{\partial u}{\partial x}|_{x=0}l=f(t)$ $(0<t<T)$
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and

(1.3) $u|_{*=t}=g(t)$ $(0<t<T)$

respectively. We suppose that

(1.4) $u|_{\iota=0}=0$ $(0<x<\infty)$

and also

(1.5) $u\in O(1)$ (as $xarrow\infty$ )

Furthermore, we admit the discontinuity of the velocity $\gamma=V(x)$ at $x=l$ , in which case $\backslash \backslash \cdot e$

impose

(1.6) $u|_{z=t-0}=u|_{\Leftrightarrow=t+0}$ $(0<t<T)$

and

(1.7) $V \frac{\partial u}{\partial x}|_{\Leftrightarrow=l-0}=v\frac{\partial u}{\partial x}|_{z=t+O}$ $(0<t<T)$

as the interior boundary conditions. In the actual problem the ontput is desired to obey a sharp

$(pulse\cdot like)$ shape. Othervise we cannot measure the response time precisely. To thi$s$ end it is

believed that the gel should be located uniformly. For its examination it will be useful to know

the inside velocity $V=V(x)$ , which is desired to be constant. Thus, we want to determine

$V=V(x)$ $(0\leq r\leq l)$ by $f=f(t)$ $(0<t<T)$ and $g=g(t)$ $(0<t<T)$ . This $is$ a

parabolic inverse problem and our $uniquen\propto s$ theorem is stated as follows.

Theorem 1 Under the assumption that

(1.8)

$l^{l}\in C^{2}[0,$ $l|,$ $V(x)=c\sigma nstant(=Y’(l+0))$ on } $l,$ $+\infty$ ) and $1-(x)>0$ , $(x_{-}^{\epsilon}[0, \infty))$

the input

(1.9) $f\in L^{1}(O,T)$ with $f\not\equiv O$
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and the output

(1.10) $g$ : absddely continuaus on $[0, T]$ wit$h$ $g(O)=0$

$d$etermine the velocity $V=V(x)$ $(0\leq x<\infty)$ and the constant $K>0$ in $(1.J)-(1.7)$ .

We think that the assumptions (1.8) is reasonable at least as a first appro dmation. Our result

is related to the work of Pierce [4] in 1979, which has established the uniqueness of $(p, h, H)\in$

$C^{1}[0,1]xRxR$ in

(1.11) $\frac{\partial u}{\theta t}=\frac{\partial^{2}u}{\partial x^{2}}-p(x)u$ $(0<r<1,0<t<T)$

with

(1.12) $u|_{t=0}=0$ $(0<x<1)$

and

(1.13) $- \frac{\partial u}{\partial x}+hu|_{\Leftarrow 0}=0$ $(0<t<T)$ ,

from the input

(1.14) $\frac{\partial u}{\partial x}+Hu|_{\epsilon=1}=f(t)\not\equiv 0$ $(0<t<T)$

and the output

(1.15) $uL_{=\iota}=g(t)$ $(0<t<T)$ .

Main difEerences arc (i) location of inputs and outputs, (i1) order of unknown coefficients, and

(iil) discontinuity of unknown coeficients.

As for the point (ui), it should be noted that $V(x)$ is supposed to be constant outside the

column (i.e., $x\in[l,$ $\infty]$ ), and that the location of discontinuity $x=l$ is prescribed implicitly.

This would make the situation easier to assure the uniqueness in our inverse $problen\iota$ svith the

discontinuity.

As for the point (i1), we recall the work Murayama [3]. It has established the generic uniqueness

of $\alpha=\alpha(x)$ and $a=a(x)$ in

(1.16) $\frac{\partial u}{\partial t}=\frac{\partial}{\partial r}(\alpha(x)\frac{\partial u}{\partial x})$ $(0<x<1,0<t<T)$
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vith

(1.17) $u|_{\ell=0}=a(x)$

and

(1.18) $\frac{\partial u}{\partial x}|_{z=0,1}=0$

from the outputs

(1.19) $u|_{z=0}=f_{0}(t)$ and $u|_{z=1}=f_{1}(t)$ $(0<t<T)$

by prescribing the parameter

(1.20) $L= \int_{0}^{1}\frac{dx}{\sqrt{\alpha(x)}}$

We note that such a parameter as $L$ is not prescribed in our theorem. Finally, our problem

is rather more close to that of Suzuki [6] regarding the point (i). In fact, thc infinite degree of

nonuniqueness of $(p, h, H)$ is proven in

(1.21) $\frac{\partial u}{\partial t}=\frac{\partial^{2}u}{\partial x^{2}}-p(x)u$ $(0<x<1,0<t<T)$

with

(1.22) $u|_{\ell=0}=a(x)$ $(0<x<1)$

and

(1.23) $- \frac{\partial u}{\partial x}+hu|_{\epsilon=0}=\frac{\partial u}{\partial x}+Hu|_{*=\iota}=0$ $(0<t<T)$

for the outputs

(1.24) $u|_{\epsilon=0}=f_{0}(t)$ and $u|_{z=ae\iota}=f_{1}(t)$ $(0<t<T)$

$\backslash vithx_{1}\neq 1$ , in spite that the generic uniqueness of $(p, h, H, a)$ has $b_{\sim}\cdot en$ established in the $san_{\sim}^{\rho}$

problem of $x_{1}=1$ bv [3] or [5]. This suggests that uniqueness is rather crucial in our tbeorerrt.

The generic uniqueness actually holds for $x_{1}\geq 12$ by adding the output

(1.25) $g_{1}= \frac{\partial u}{\partial x}|_{z=x_{1}}$ $(0<t<T)$

to $f_{|.|}$ and $f_{1}$ in (1.24). However, it looks hard to pick up such an output $g_{1}$ in the actual

situation of ours.
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2 Spectral data

For $P=(p, h, H)\in C^{0}[0,1]xRxR$ , let Ap be the Sturm-Liouville operator $-d’\tau^{l}=^{\iota}+p(x)$

under the boundary condition $(- \frac{\ell}{\ }+h)\cdot|_{x=0}=(\frac{d}{dx}+H)\cdot|_{x=1}=0$. Its cigenvalues and

eigenfunctions are denoted by $\{\lambda_{\iota}\}_{n=0}^{\infty}$ and $\{\varphi_{n}$ (. ; $P$ ) $\}_{n=0}^{\infty}$ , respectively, the latter being

normalized as $||\varphi_{n}||_{L^{*}(0.1)}=1$ , and $\varphi_{n}(0)>0$ .

We call the quantities $S(P);=\{\lambda_{n}, \frac{\varphi_{n}(1)}{\varphi_{\iota}(0)}\}_{\iota=0}^{\infty}$ the spectral data. The following assertion }

follows from Gel’fand-Levitan’s theory [2] :

Theorem 2 The coefficients $P=(p, h, H)$ is recoverd by the spectral data $S(P)$ .

The proof is given in [5] for instance, under the assumption of $p\in C^{1}[0,1]$ . We can extend

the results to the general case $p\in C^{0}[0,1]$ by the method of [7].

3 Outline of the Proof

The unique solvability of

(3.1) $\frac{\partial u}{\theta t}=KV_{+}\{\frac{\partial^{2}u}{\partial x^{2}}-\frac{1}{K}\frac{\partial u}{\partial x}\}$ $(l<x<+\infty, 0<t<+\infty)$

with

(3.2) $u|_{t=0}=0$

and

(3.3) $u|_{x=i}=g(t)$ , $u\in O(1)$ as $xarrow+\infty$ $(0<t<+\infty)$

is well known. Here, $V_{+}=1^{\gamma}(x)$ $(l<x<+\infty)$ is a positive constant. $1\backslash e$ first calculate t.l, $e$

value

(3.4) $m(t)=KV_{+} \frac{\partial u}{\partial x}|_{x=t+r)}$ $(0<t<T)$

Next we consider

(3.5) $\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\{KV(x)(\frac{\partial u}{\partial x}-\frac{1}{K}u)\}$ $(0<x<l, 0<t<T)$
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vith

(3.6) $u|_{=0}=0$ $(0<x<l)$ ,

(3.7) $KV \frac{\partial u}{\partial x}|_{xarrow-0}=f(t)$ , $u|_{z=1}=g(t)$ $(0<t<T)$ ,

and

(3.8) $KV \frac{\partial u}{\partial x}|_{x=1-0}=m(t)$ $(0<t<T)$ .

Introducing the Liouvile transformation

(3.9) $z= \int_{0}^{x}\frac{dy}{\sqrt{KV(y)}}$ ,

we can deduce the equation

(3.10) $\frac{\partial U}{\theta t}=\frac{\partial^{2}U}{\partial z^{2}}-p(z)U$ $(0<z<L, 0<t<T)$ ,

with

(3.11) $U|_{t=0}=0$ $(0<z<L)$ ,

(3.12) $- \frac{\partial U}{\partial z}+hU|_{z=0}=F(t)$ , $\frac{\theta U}{\partial z}+HU|_{z=L}=M(t)$ $(0<t<T)$ ,

and

(3.13) $U|_{z=L}=J(t)$ $(0<t<T)$

in the previous section. Here, the non-homogeneous term $F=F(t),$ $M=M(t)$ , and $J=J(t)$ is

determined by the functions $f=f(t)$ and $g=g(t)$ . We want to derive a closed relation for $f$ and

$g$ through $(3.10)-(3.13)$ . Namely,

(3.14) $\int_{0}^{t}K_{3}(t-s)g’(s)ds=\int_{0}^{t}K_{4}(t-s)f(s)ds$ $(0<t<T)$ .

Therefore, the input $f\not\equiv O$ and the output $g$ determine the meromorphic function

(3.15) $\frac{\hat{K}_{4}(\lambda)}{\hat{K}_{3}(\lambda)}$ in $\lambda\in C$ ,
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which determines the values

$K,$ $V(l\pm 0),$ $f^{\prime’}(l-0)$

as $weU$ as the spectrtal data

(3.16) $\{\lambda_{\tau\iota},$ $\frac{\varphi,(L)}{\varphi_{\iota}(0)}\}_{\tau\iota=0}^{\infty}$

of $A_{P}$ .

From theorem 2 in \S 2, the latters determine

(3.17) $p=p(z)(0\leq z\leq)$ , $h$ and $H$

so does $V(x)= \frac{1}{Kz(x)^{2}}$ $(0\leq x\leq l)$ .
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