Colloque E.D.P.

Saint-Jean de Monts
JUIN 1987

PROPAGATION OF ANALYTIC SINGULARITIES UP TO NON SMOOTH BOUNDARIES

Pierre SCHAPIRA

1.- Propagation for sheaves

We shall follow the notations of $[X-S\ 1]$. In particular if X is a real manifold, we denote by $D^b(X)$ the derived category of the category of complexes of sheaves with bounded cohomology, and if $F \in D^b(X)$ we denote by SS(F) its microsupport. Recall that SS(F) is a closed conic involutive subset of T^*X . We shall also make use of the bifunctor μ hom, from $D^b(X)^0 \times D^b(X)$ to $D^b(T^*X)$, a slight generalization of the functor of Sato's microlocalization.

Let h be a real C^2 -function defined on an open subset U of T^*X , H_h its hamiltonian vectir field. If $(x;\xi)$ is a system of homogeneous symplectic coordinates, with $\omega_X = \sum_j \xi_j dx_j$, then:

(1.1)
$$H_{h} = \sum_{j} \left(\frac{\partial h}{\partial \xi_{j}} \frac{\partial}{\partial x_{j}} - \frac{\partial h}{\partial x_{j}} \frac{\partial}{\partial \xi_{j}} \right) .$$

If $p \in U$ we denote by b_p^+ the positive half integral curve of H_h issued at p. We define similarly b_p^- and $b_p^- = b_p^- \cup b_p^+$. We also set for * = 0, +, -:

(1.2)
$$V_{\#} = \{ p \in U : h(p) \ge 0 \ (* = +) \text{ or } h(p) \le 0 \ (* = -) \text{ or } h(p) = 0 \ (* = 0) \}.$$

The following result is easily deduced from [K-S 1, Th. 5.2.1].

Theorem 1.1. Let F and G belong to $D^b(X)$ with $SS(G) \cap U \subset V_{-}, SS(F) \cap U \subset V_{+}. \text{ Let } j \in \mathbf{Z} \text{ and let}$ u be a section of $H^j(\mu hom(G,F))$ on U. Then $p \in supp(u) \text{ implies } b_p^+ \subset supp(u).$

(Remark that supp(u) is contained in V_0).

2.- Wave front sets at the boundary [S 1]

Let M be a real analytic manifold of dimension on , X a complexification of M , Ω an open subset of M . We introduce :

(2.1)
$$C_{\Omega \mid X} = \mu hom(\mathbf{z}_{\Omega}, \mathcal{O}_{X}) \otimes \underline{\omega}_{M/X}[n]$$

where $\underline{\omega}_{M/X}$ is the relative orientation sheaf.

Let π denote the projection $T^*X \longrightarrow X$, and let $B_M = R\Gamma_M(\mathscr{O}_X) \otimes \underline{\omega}_{M/X} \ [n] \ denote the sheaf of Sato's hyperfunctions on M . There is a natural isomorphism :$

(2.2)
$$\alpha : \Gamma_{\Omega}(B_{\underline{M}}) \xrightarrow{\sim} \pi_{*} H^{O}(C_{\Omega}|_{X})$$
.

Hence a hyperfunction u on Ω defines a section; $\alpha\left(u\right)$ of $H^{O}\left(C_{\Omega\mid X}\right)$ all over $T^{*}X$. We set :

(2.3)
$$SS_{\Omega}(u) = supp(\alpha(u))$$
.

Since $H^O(C_{\Omega|X})$ is supported by the conormal boundle T_M^*X , $SS_{\Omega}(u)$ is a closed conic subset of T_M^*X . It coincides with the classical analytical wave front set above Ω , but it may be strictly larger that its closure in T_M^*X (cf. $[S\ 1]$).

Now let P be a differential operator defined on X, and assume for simplicity that the principal symbol $\sigma(P)$ never vanishes identically. Let σ_X^P denote the sheaf of holomorphic solutions of the equation Pf = 0. Replacing σ_X by σ_X^P in the preceding discussion, we define:

(2.4)
$$C_{\Omega \mid X}^{P} = \mu hom(\mathbb{Z}_{\Omega}, \Theta_{X}^{P}) \otimes \underline{\omega}_{M/X} [n]$$
.

Let B_M^P denote the sheaf of hyperfunction solutions of the equation Pu = 0. There is a natural isomorphism:

(2.5)
$$\alpha : \Gamma_{\Omega}(B_{M}^{P}) \xrightarrow{\sim} \pi_{*} H^{O}(C_{\Omega|X}^{P})$$
.

If u is a hyperfunction on Ω solution of the equation Pu = 0, we set:

(2.6)
$$SS_0^P(u) = supp(\alpha(u))$$
.

Remark that

(2.7)
$$SS_0^P(u) \subset SS(\mathbf{Z}_0) \cap char(P)$$

(where char(P) = $\sigma(P)^{-1}(0)$), but in general $SS_{\Omega}^{P}(u)$ is no more contained in $T_{M}^{*}X$.

I don't know if $SS_{\Omega}^{P}(u) \cap T_{M}^{*}X = SS_{\Omega}(u)$, but this is true when $M \setminus \Omega$ is convex (locally, up to analytic diffeomorphisms).

Of course the preceding discussion extends to solutions of general systems of differential equations (cf. [S:1]).

Now assume $\partial\Omega=N$ is a real analytic hypersurface and let Y be a complexification of N in X. Assume P of order m, Y is non-characteristic for P, and a normal vector field to N in M is given, so that the induced system $(D_X/D_XP)_Y$ is isomorphic to D_Y^m ; (as usual, D_X denotes the ring of differential operators).

Let ρ and \overline{w} denote the natural maps associated to $Y \longrightarrow X$:

(2.8)
$$T^*Y \leftarrow \frac{\rho}{\rho} Y \times T^*X \xrightarrow{\overline{\omega}} T^*X .$$

Let $u \in \Gamma(\Omega; B_M^P)$ be a hyperfunction on Ω solution of Pu = 0, and let $b(u) \in \Gamma(N; B_N^m)$ be its traces. Recall (cf. [S 1], [S 2]):

Theorem 2.1. In the preceding situation, one has:
$$SS_{N}(b(u)) = \rho \ \overline{w}^{-1} SS_{\Omega}^{P}(u) .$$

In other words, the analytic wave front set of b(u) is exactly the projection of $SS_{\Omega}^{P}(u)$. Remark that if $char(P) \cap SS(\mathbb{Z}_{\Omega})$ is contained in $T_{M}^{*}X$, $SS_{\Omega}^{P}(u)$ may be replaced by $SS_{\Omega}(u)$ in Theorem 2.1.

Remark moreover that b(u) does not make sense when $\partial\Omega$ is not smooth, but SS_{Ω} (u) always does.

3.- Transversal propagation for non smooth boundaries

Let M be a real analytic manifold, X a complexification of M , Ω an open subset of M .

If $x \in M$, the cone $N_{x}(\Omega)$ is defined in $[K-S \ 1]$. Recall that $N_{\mathbf{x}}(\Omega)$ is an open convex cone of $T_{\mathbf{x}}M$, and $\theta \in N_{\mathbf{x}}(\Omega)$, $\theta \neq 0$ implies that there exists a convex open cone γ (in a system of local coordinates around x) such that $\theta \in \gamma$ and $\Omega + \gamma \subset \Omega$.

We shall have to consider the real underlying structure of TTX. Recall that if w_{X} is the complex canonical 1-form on $T^{*}X$, this real symplectic structure in defined by $-2\text{Re}\;\omega_{_{\mathbf{Y}}}$.

If h is a real C2-function on $\mathbf{T}^*\mathbf{X}$, we denote by $\mathbf{H}_h^{\mathbf{I}\mathbf{R}}$ real Hamiltonian vector field.

 $(z; \zeta)$ is a system of homogeneous holomorphic symplectic coordinates on T^*X , such that $\omega_X = \sum_{i} \zeta_i dz_i$, and z = x + iy, $\zeta = \xi + i\eta$, then

$$(3.1) \qquad \mathcal{Q} \ H_h^{TR} = \sum_{j} \left(\frac{\partial h}{\partial \xi_j} \frac{\partial}{\partial x_j} - \frac{\partial h}{\partial x_j} \frac{\partial}{\partial \xi_j} + \frac{\partial h}{\partial y_j} \frac{\partial}{\partial \eta_j} - \frac{\partial h}{\partial \eta_j} \frac{\partial}{\partial y_j} \right) .$$

Now let P be a differential operator on X , u a hyperfunction on Ω , solution of the equation Pu = 0 . Let $p \in T_M^{\overline{\bullet}}X$, $x_0 = \pi(p)$.

Theorem 3.1. Assume:

a) Im
$$\sigma(P) \Big|_{T_M^* X} = 0$$

p)
$$\mu(H_{IM\alpha(b)}^{IM\alpha(b)}(b)) \in N^{X^{O}}(U)$$

a) Im $\sigma(P) \Big|_{T_{M}^{*}X} = 0$ b) $\pi(H_{Im \sigma(P)}^{IR}(p)) \in N_{K_{O}}(\Omega)$.

Let b_{p}^{+} be the positive half integral curve of $H_{Im \sigma(P)}^{R}$ issued at p. Then $p \in SS_{\Omega}(u)$ implies $b_{p}^{+} \subset SS_{\Omega}(u)$.

Remark that
$$2 H_{Im E(r)}^{R} \Big|_{T_{M}^{H} \times (r)} \Big|_{T_{M}^{H} \times} = \underbrace{\left(\frac{\partial \operatorname{Re} V(r)}{\partial x_{j}} \frac{\partial}{\partial z_{j}} - \frac{\partial \operatorname{Re} V(r)}{\partial z_{j}} \frac{\partial}{\partial z_{j}} \right)}_{5}.$$

Proof

We may assume X is open in \mathbb{C}^n and $M = X \cap \mathbb{R}^n$. Then there exists a convex open cone γ such that $\Omega + \gamma \subset \Omega$ (in a neighborhood of x_0) and $\pi(H_{\text{Im }\sigma(P)}^{\mathbb{R}}(p)) \in \gamma$. This last condition implies:

$$\ge c|\xi|$$

for some c>0 , and all $\xi \in \gamma^O$ (γ^O is the polar set to γ). Hence :

(3.2) Im
$$\sigma(P)(x, \xi + i\eta) \leq 0$$

for $(x, \xi + i\eta)$ in a neighborhood of p , $\xi \epsilon \gamma^{oa}$, where $\gamma^{oa} = -\gamma^{o}$

Since $\Omega + \gamma \subset \Omega$, we have (cf. [K-S 1]):

$$SS(\mathbb{Z}_0) \subset T_M^*X + \gamma^{Oa!}$$
.

Thus:

(3.3) Im
$$\sigma(P) \leq 0$$
 on $SS(\mathbb{Z}_{\Omega})$

in a neighborhood of p.

Now let $u \in \Gamma(\Omega; B_M)$ be a solution of the equation Pu = 0. Then u defines a section $\alpha(u) \in \Gamma(T^*X; H^n(\mu hom(\mathbb{Z}_\Omega, \mathcal{G}_X^P))$ and $p \in SS_\Omega(u)$ implies $p \in SS_\Omega^P(u)$, that is, $p \in supp(\alpha(u))$. Since $SS(\mathcal{O}_X^P) = char(P) \subset \{Im \ \sigma(P) = 0\}$, we may apply Theorem 1.1 and two obtain:

$$b_p^+ \subset ss_\Omega^P(u)$$
.

But $b_p^+ \setminus \{p\}$ is contained in $\pi^{-1}(\Omega)$ and $SS_\Omega^P(u) = SS_\Omega(u) = SS_M(u)$ above Ω . Thus $b_p^+ \subset SS_\Omega(u)$, which is the desired result.

4.- Diffraction

We keep the notations of §3, but we assume :

$$\Omega = \{x \in H \mid x_{\gamma} > 0\}$$

(4.2)
$$\sigma(P) = \zeta_1^2 - g(z, \zeta')$$

where $z = (z_1, z'), \zeta = (\zeta_1, \zeta')$.

Moreover we assume :

(4.3) a)
$$\frac{\partial}{\partial x_1} g < 0$$
 at p or b) $\frac{\partial}{\partial x_1} g \equiv 0$.

Theorem 4.1. Under these hypotheses, if $p \in SS_{\Omega}(u)$ then b_p^+ or b_p^- is contained in $SS_{\Omega}(u)$, in a neighborhood of p.

The idea of the proof is the following.

If $\zeta_1 \neq 0$ at p, the result is a particular case of Theorem 3.1 . Otherwise define for *=0,1,-:

$$\Omega_* = \{z \in X ; x_1 > 0, y' = 0, y_1 \in \mathbb{R} (* = 0) \\$$
or $y_1 \ge 0 (* = +)$ or $y_1 \le 0 (* = -)\}$

Thus Im $\sigma(P)$ is negative (resp. positive) on $SS(\mathbb{Z}_{\Omega^+})$ (resp. $SS(\mathbb{Z}_{\Omega^-})$) in a neighborhood of p. Then one can apply Theorem 1.1 to $\mu hom(\mathbb{Z}_{\Omega^*}, \mathfrak{G}_X^P)$, * = + or - , and one obtains that if $u \mid_{D} has compact support$, then $u \in H^{n-1}(\mu hom(\mathbb{Z}_{\Omega_0}, \mathfrak{O}_X^P))$ and it is not difficult to conclude using the holomorphic parameter z_1 (cf. $[S\ 2]$).

Remark that Theorem 4.1 has been first obtained by Kataoka [Ka] (under hypothesis (4.3) a)) then refined by G. Lebeau [Le].

An application: Let $(x_1, ..., x_n)$ be the coordinates on \mathbb{R}^n , and let Ω_1 and Ω_2 be two open half spaces. Set $\Omega = \Omega_1 \cup \Omega_2$ and let u be a hyperfunction on Ω . One can easily prove:

(4.4)
$$SS_{\Omega}(u) = SS_{\Omega_1}(u) U SS_{\Omega_2}(u) .$$

Now assume $\Omega_{i} = IR \times \Omega_{i}^{1}$, (i = 1,2) and u satisfies the wave equation Pu = 0, where $P = D_{1}^{2} - \sum_{j=2}^{n} D_{j}^{2}$.

Applying Theorem 4.1 we get that $p \in SS_{\Omega}(u) \Longrightarrow b_{p}^{+}$ or b_{p}^{-} is contained in $SS_{\Omega}(u)$, where b_{p}^{+} and b_{p}^{-} are the half bicharacteristic curves of m in $\sigma(P)$.

<u>Problem</u>: to extend this result to the case where $\mathbb{R}^n \setminus \Omega = \mathbb{R} \times A$, and A is any convex closed subset of \mathbb{R}^{n-1} .

BIBLIOGRAPHY

- [K-S 1] KASHIWARA, M. and SCHAPIRA, P.: Microlocal study of sheaves. Astérisque 128 (1985).
- [Ka] KATAOKA, K: Microlocal theory of boundary value problems. J. Fac. Sc. Univ. Tokyo Sect. A. I: 27, 355-399 (1980), II: 28, 31-56 (1981).
- [Le] LEBEAU, G.: Deuxième microlocalisation sur les sousvariétés isotropes. Ann. Inst. Fourier, Grenoble 35,2, 145-216 (1985).
- [S 1] SCHAPIRA, P.: Front d'onde analytique au bord II.

 Sem. E.D.P. Ecole Polytechnique, Exp. 13

 (1986).
- [S 2] SCHAPIRA, P.: Microfunctions for boundary value problems. Volume dedicated to Pr. M. Sato.

 To appear.