The Ihara zeta functions of algebraic groups

Takashi ICHIKAWA（市川尚志）
Department of Mathematics，Faculty of Science， Kyushu University 33，Fukuoka 812，JAPAN

Introduction

Let G be a connected and reductive algebraic group defined over \mathbf{Q} of her－ mitian type，and X the bounded symmetric domain induced from the identity component $G(\mathbf{R})_{+}$of $G(\mathbf{R})$ ．Let Γ_{0} be a congruence subgroup of $G(\mathbf{Z}) \cap G(\mathbf{R})_{+}$， and M the Shimura model of X / Γ_{0} ．Langlands＇program［10］to parametrize the set $M\left(\overline{\mathbf{F}}_{p}\right)$（ p ：a prime on which M has good reduction）was partially achieved by Kottwitz［9］for the Siegel modular case．In this note，when G has a similitude－ symplectic embedding（for the classification of such groups，see Satake［16］and Deligne［4］），we shall construct，without detailed proofs，a canonical bijection of a certain subset of X / Γ_{0} to an algebraically defined subset of $M\left(\overline{\mathbf{F}}_{p}\right)$ ．This result can be regarded as a generalization of the result of Ihara［8］on zeta functions of Selberg type（Ihara zeta functions）for congruence subgroups of $P S L_{2}(\mathrm{Z}[1 / p])$ ．

Following Ihara＇s idea，we take a congruence subgroup Γ of $G(\mathbf{Z}[1 / p]) \cap G(\mathbf{R})_{+}$ such that $\Gamma \cap G(\mathbf{Z})=\Gamma_{\mathbf{0}}$ ．We call $x \in X$ is a p－ordinary point if there exists a torsion－free stabilizer of x in Γ inducing a p－adic structure on a faithful rep－ resentation space V of G which is compatible with the Hodge structure on V induced from x（this definition is independent of the choice of V ）．When G is a similitude－symplectic group，we show that the reduction map induces a canon－ ical bijection of $\{p$－ordinary points of $X\} / \Gamma_{0}$ to the ordinary locus of $M\left(\overline{\mathrm{~F}}_{p}\right)$ ． This is nothing but a reformation of a result of Deligne［2］and the inverse map corresponds to canonical liftings of ordinary abelian varieties．When G has a
similitude-symplectic embedding, we show that the image of this bijection is algebraically defined which follows from that canonical liftings of abelian varieties preserve their deformations.

1 Zeta functions

1.1. Let G be a linear algebraic group defined over \mathbf{Q} which is connected and reductive. For any field K containing \mathbf{Q}, let $G(K)$ denote the group of K-rational points of G, and put $G_{K}=G \otimes_{\mathbf{Q}} K$. Let $G(\mathbf{R})_{+}$denote the identity component of the Lie group $G(\mathbf{R})$, and put $G(\mathbf{Q})_{+}=G(\mathbf{Q}) \cap G(\mathbf{R})_{+}$. We assume that there exists an \mathbf{R}-homomorphism $h: \mathbf{S}=R_{\mathbf{C} / \mathbf{R}}\left(\mathbf{G}_{m / \mathbf{C}}\right) \rightarrow G_{\mathbf{R}}$ such that

$$
X=\left\{\mathbf{R} \text {-homomorphisms } \mathbf{S} \rightarrow G_{\mathbf{R}} \text { conjugate to } h \text { over } G(\mathbf{R})_{+}\right\}
$$

is a bounded symmetric domain. Let V be a \mathbf{Q}-vector space of finite dimension, and $\phi: G \rightarrow G L(V)$ an injective representation defined over \mathbf{Q}. Let L be a Z-lattice of V, p a prime number, and put $L[1 / p]=L \otimes \mathbf{Z}[1 / p]$ which is a $\mathbf{Z}[1 / p]$ lattice of V. Let Γ be a congruence subgroup of

$$
\phi^{-1}(\operatorname{Aut}(L[1 / p]))_{+}=\left\{g \in G(\mathbf{Q})_{+} \mid \phi(g) \in \operatorname{Aut}(L[1 / p])\right\}
$$

One can show that if there exists an integer $n \geq 3$ prime to p such that $\phi(\Gamma) \subset$ $\{g \in \operatorname{Aut}(L[1 / p]) \mid g \equiv 1(n)\}$, then Γ is torsion-free. For each $x \in X$, put $\Gamma_{x}=$ $\{\gamma \in \Gamma \mid \gamma(x)=x\}$. Let $h_{x}: \mathbf{S} \rightarrow G_{\mathbf{R}}$ denote the homomorphism corresponding to x. Then $\phi_{\mathbf{R}} \circ h_{x}$ induces a Hodge decomposition

$$
V \otimes_{\mathbf{Q}} \mathbf{C}=\oplus_{i, j} V_{x}^{i, j}
$$

such that for any $\left(z, z^{\prime}\right) \in \mathbf{S}(\mathbf{C})=\mathbf{C}^{\mathbf{x}} \times \mathbf{C}^{\mathbf{x}}$ and $v \in V_{x}^{i, j},\left(\phi_{\mathbf{R}} \circ h_{x}\right)\left(\left(z, z^{\prime}\right)\right)(v)=$ $z^{i} \cdot z^{\prime j} \cdot v$. Then for any $\gamma \in \Gamma_{x}, V_{x}^{i, j}$ is stable under the action of $\phi(\gamma) \mathbf{C}_{\mathbf{C}}=\phi(\gamma) \otimes_{\mathbf{Q}} \mathbf{C}$. Fix an isomorphism $\iota: \mathbf{C} \underset{\rightarrow}{\boldsymbol{Q}} \overline{\mathbf{p}}_{p}$, and let Γ_{x}^{\prime} be the set which consists of $\gamma \in \Gamma_{x}$ such that there exists a rational number $d(\gamma)$ satisfying $\operatorname{ord}_{p}(\iota(e))=d(\gamma) \cdot i$ for any eigenvalue e of $\phi(\gamma)_{\mathbf{C}}$ on each $V_{x}^{i, j}$.
1.2. Proposition. For any $x \in X, \Gamma_{x}^{\prime}$ is independent of ϕ, and for any $x \in X$ and $\gamma \in \Gamma_{x}^{\prime}, d(\gamma)$ is independent of ϕ.
1.3. Proposition. Let Z be the centralizer of $h(\mathbf{S}(\mathbf{R}))=h\left(\mathbf{C}^{\times}\right)$in $G(\mathbf{R})$, and assume that $Z / h\left(\mathbf{R}^{\times}\right)$is compact. Then for any $x \in X$ and $\gamma \in \Gamma_{x}^{\prime}, d(\gamma) \neq 0$ if and only if γ is torsion-free.
1.4. Corollary. Assume that there exist a positive integer g and an injective \mathbf{Q}-homomorphism of G into the similitude-symplectic algebraic group of size $2 g$ which induces a map of X into the Siegel upper half space of degree g. Then for any $\gamma \in \Gamma_{x}^{\prime}, d(\gamma) \neq 0$ if and only if γ is torsion-free.
1.5. Proposition. Let $X^{\circ \mathrm{od}}(\Gamma)$ be the set consisting of $x \in X$ such that there exists $\gamma \in \Gamma_{x}^{\prime}$ with $d(\gamma) \neq 0$. Then $X^{\mathrm{ord}}(\Gamma)$ depends only on the \mathbf{Q}-structure of G, i.e., it is independent of the choice of Γ.
1.6. Remark. Propositions 1.2 and 1.5 follow the fact that any representation $G \rightarrow G L(W)$ is a direct summand of

$$
G \rightarrow G L\left(\oplus_{l}\left(V^{\otimes m_{l}} \otimes\left(V^{*}\right)^{\otimes n_{l}}\right)\right)
$$

for some m_{l} and n_{l} ([5], Proposition 3.1). Proposition 1.3 follows from the product formula for eigenvalues of $\phi(\gamma)$.
1.7. By Proposition 1.5, $X^{\text {ord }}(\Gamma)$ is independent of Γ. Then we put $X^{\text {ord }}=$ $X^{\text {ord }}(\Gamma)$, and call it the set of ordinary points of X with respect to ι. For any $x \in X^{\text {ord }}$, let $\Gamma_{x}^{\prime}(L)$ be the set consisting of $\gamma \in \Gamma_{x}^{\prime}$ such that there exists a decomposition $L \otimes \mathbf{Z} \mathbf{Z}_{p}$ as \mathbf{Z}_{p}-lattices:

$$
L \otimes \mathbf{Z} \mathbf{Z}_{p}=\oplus_{i, j} L^{i, j}
$$

which satisfies $\phi(\gamma) \mathbf{Q}_{\boldsymbol{p}}\left(L^{i, j}\right)=\iota(e) \cdot L^{i, j}$ for any eigenvalue e of $\phi(\gamma)_{\mathbf{C}}$ on each $V_{x}^{i, j}$. Put

$$
\operatorname{deg}(x)=\left\{\begin{array}{cl}
\min \left\{d(\gamma) \mid \gamma \in \Gamma_{x}^{\prime}(L) \text { with } d(\gamma)>0\right\} & \text { if } \Gamma_{x}^{\prime}(L) \neq \emptyset \\
0 & \text { if } \Gamma_{x}^{\prime}(L)=\emptyset
\end{array}\right.
$$

Let Γ_{0} be the subgroup of Γ defined by

$$
\Gamma_{0}=\{\gamma \in \Gamma \mid \phi(\gamma) \in \operatorname{Aut}(L)\}
$$

Then $\operatorname{deg}(x)$ depends only on the Γ_{0}-equivalence class containing x. Hence deg : $X \rightarrow \mathbf{R}$ induces the map of

$$
\mathbf{P}(\Gamma)=\left\{x \in X^{\text {ord }} \mid \operatorname{deg}(x): \text { positive integer }\right\} / \Gamma_{0}
$$

to \mathbf{N}, which we denote by the same symbol. Then we define the zeta function $Z(\Gamma, t)$ of Γ as the following formal power series with variable t :

$$
\exp \left(\sum_{r=1}^{\infty} N_{r} \frac{t^{r}}{r}\right)
$$

where N_{r} is the cardinality of $\{P \in \mathbf{P}(\Gamma) \mid \operatorname{deg}(P) \leq r\}$.
1.8. Conjecture. Let x be any ordinary point of X. Then
(1.8.1) x is a special point of X in the sense of [3].
(1.8.2) $\operatorname{deg}(x)$ is a positive integer, and

$$
\left\{d(\gamma) \mid \gamma \in \Gamma_{x}^{\prime}(L)\right\}=\mathbf{Z} \cdot \operatorname{deg}(x)
$$

(1.8.3) If Γ is torsion-free, then $\Gamma_{x}^{\prime}(L)$ is a cyclic group generated by an element $\gamma \in \Gamma_{x}^{\prime}(L)$ with $d(\gamma)=\operatorname{deg}(x)$.

Assuming this conjecture, $Z(\Gamma, t)$ can be regarded as a generalization of Ihara's zeta function for $P S L_{2}$.
1.9. By results of Satake [15] and Baily-Borel [1], the quotient complex manifold X / Γ_{o} is algebraizable. By results of Shimura [17], Deligne [4] [5], and Milne [13], there exist canonically a number field $K(\Gamma)$ contained in \mathbf{C} and an integral scheme M_{Γ} of finite type defined over $K(\Gamma)$, called the canonical model of X / Γ_{0}, such that $M_{\Gamma}(\mathbf{C})=X / \Gamma_{0}$ and the behavior of special point of M_{Γ} under the action of $\operatorname{Gal}(\overline{K(\Gamma)} / K(\Gamma))$ is described by the theory of complex multiplication.

If $G=G S p(V)$, then M_{Γ} is the moduli scheme of abelian varieties with polarization and level structure. If G has a similitude-symplectic embedding, then M_{Γ} is the moduli scheme of these objects with certain absolute Hodge cycles.
1.10. Conjecture. Let $k(\Gamma)$ be the residue field of $K(\Gamma)$ with respect to ι, and p^{a} the order of $k(\Gamma)$. Then there exists a separated scheme F of finite type defined over $k(\Gamma)$ whose zeta function $Z(F, t)$ satisfies

$$
Z(\Gamma, t)=Z\left(F, t^{a}\right)
$$

Moreover, if M has good reduction at ι, then F can be given as a locally closed subset of the special fiber of M with respect to ι.

Assuming this Conjecture, by a result of Dwork [6], one can see that $Z(\Gamma, t)$ is a rational function of t.

2 Symplectic case

2.1. Let g be a positive integer, V a \mathbf{Q}-vector space with basis $\left\{v_{1}, \ldots, v_{2 g}\right\}$, and $\psi: V \times V \rightarrow \mathbf{Q}$ be the alternating \mathbf{Q}-bilinear form given by

$$
\psi\left(v_{i}, v_{j}\right)=\delta_{i, j-g}(1 \leq i, j \leq 2 g)
$$

Let G denote the similitude-symplectic algebraic subgroup $G S p(V, \psi)$ of $G L(V)$ defined over \mathbf{Q} with respect to ψ, i.e., $g \in \operatorname{Aut}(V)$ belongs to $G(\mathbf{Q})$ if and only if there exists an element $\nu(g) \in \mathbf{Q}^{\mathbf{x}}$ such that $\psi(g v, g w)=\nu(g) \cdot \psi(v, w)$ for all $v, w \in V$. Let $h: \mathbf{S} \rightarrow G_{\mathbf{R}}$ be the \mathbf{R}-homomorphism given by

$$
h(a+b \sqrt{-1})\left(v_{i}\right)= \begin{cases}a w+b w^{\prime} & (1 \leq i \leq g) \\ -b w+a w^{\prime} & (g+1 \leq i \leq 2 g)\end{cases}
$$

where $(a, b) \in \mathbf{R}^{2}-\{(0,0)\}$ and $w=v_{1}+\ldots+v_{g}, w^{\prime}=v_{g+1}+\ldots+v_{2 g}$. Then X is the the Siegel upper half space H_{g} of degree g which is the bounded symmetric domain induced from $G(\mathbf{R})_{+}=\{g \in G(\mathbf{R}) \mid \nu(g)>0\}$. Let L be a Z-lattice of V such that $\psi(L \times L)=\mathbf{Z}$, and let d_{L} be the index of L in $\{v \in V \mid \psi(v, w) \in \mathbf{Z}$ for any $w \in L\}$.

For each $x \in X$, let A_{x} be the g-dimensional abelian variety defined over \mathbf{C} such that $H^{1}\left(A_{x}, \mathbf{Z}\right)=L$ and the Hodge decomposition of $H^{1}\left(A_{x}, \mathbf{C}\right)=V_{\mathbf{C}}$ is given by h_{x}, and θ_{x} the polarization of A_{x} whose Riemann form is given by ψ. Then by the correspondence

$$
X \ni x \longmapsto\left(A_{x}, \theta_{x}, i_{x}=\text { id. }: H^{1}\left(A_{x}, \mathbf{Z}\right) \stackrel{\sim}{\rightarrow} L\right)
$$

X becomes the moduli space of the isomorphism classes of triples

$$
\left(A, \theta, i: H^{1}(A, \mathbf{Z}) \underset{\rightarrow}{\sim} L\right)
$$

where A is a g-dimensional abelian variety defined over \mathbf{C} and θ is a polarization of A whose Riemann form is given by

$$
H^{1}(A, \mathbf{Z}) \times H^{1}(A, \mathbf{Z}) \ni(u, v) \longmapsto \psi(i(u), i(v)) \in \mathbf{Z}
$$

Let p be a prime number, and Γ a congruence subgroup of $G(\mathbf{Q})_{+} \cap \operatorname{Aut}(L[1 / p])$. Then $\Gamma_{0}=\Gamma \cap \operatorname{Aut}(L)$ is a subgroup of $G(\mathbf{Q})_{+} \cap \operatorname{Aut}(L)$ defined by congruence conditions prime to p. Two triples $\left(A_{1}, \theta_{1}, i_{1}\right)$ and $\left(A_{2}, \theta_{2}, i_{2}\right)$ are said to be Γ_{0} equivalent if there exists an element $\gamma \in \Gamma_{0}$ such that $\left(A_{1}, \theta_{1}, \gamma \circ i_{1}\right)$ and $\left(A_{2}, \theta_{2}, i_{2}\right)$ are isomorphic. For each Γ_{0}-equivalence class $(A, \theta, \sigma), \sigma$ is called a level $\Gamma_{0^{-}}$ structure of A. For each $x \in X$, let $\left(A_{x}, \theta_{x}, \sigma_{x}\right)$ denote the Γ_{0}-equivalence class containing $\left(A_{x}, \theta_{x}, i_{x}\right)$. Let $M=M_{\Gamma}$ be the canonical model of X / Γ_{0} defined over $K(\Gamma)$. Assume that $\left(p, d_{L}\right)=1$. Then by a result of Mumford [14], M has good reduction with respect to ι. Let M_{0} denote its special fiber with respect to ι. Let U be the ordinary locus of M_{0}, i.e., the open subscheme of M_{0} defined over $k(\Gamma)$ consisting of all points of M_{0} corresponding to ordinary abelian varieties.
2.2. Let k be a perfect field of characteristic p, and A_{0} an ordinary abelian variety defined oved k of dimension g. Then the p-divisible group $A_{0}(p)$ associated with A_{0} is the product of a multiplicative p-divisible group and an étale p-divisible group. Let $W(k)$ denote the ring of Witt vectors over k, and R a complete discrete valuation ring containing $W(k)$ with residue field k. Then by a result of \cdot Lubin-Tate-Serre [11], there exists a unique pair (A, i) up to isomorphim of an abelian
scheme A over R and an isomorphism $i: A \otimes_{R} k \rightarrow A_{0}$ such that $A(p)$ is the product of a multiplicative p-divisible group and an étale p-divisible group. The pair (A, i) is called the canonical lifting of A_{0} to R. Moreover, it is known that for all ordinary abelian varieties A_{0} and B_{0} defined over k, the reduction map induces the isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{R}((A, i),(B, i)) \underset{\rightarrow}{\operatorname{Hom}}\left(A_{0}, B_{0}\right), \tag{2.2.1}
\end{equation*}
$$

where (A, i) and (B, i) are the canonical liftings of A_{0} and B_{0} to R respectively ([11]).

Let k be a finite field \mathbf{F}_{q}, and A_{0} any ordinary abelian variety defined over k. Then by a result of Messing [12], a lifting (A, i) of A_{0} to R is the canonical lifting if and only if there exists an endomorphism f of A such that $f \otimes_{R} k$ is the q-th power Frobenius endomorphism of A_{0}. Let (A, i) be the canonical lifting of A_{0} to R. Since A_{0} has complex multiplication ([18]), by (2.2.1), A has also complex multiplication.
2.3. Proposition. For any $x \in X$, the following two conditions are equivalent.
(A) x is an ordinary point of X.
(B) There exists an ordinary abelian variety A_{0} defined over $\overline{\mathbf{F}}_{p}$ such that A_{x} is the canonical lifting of A_{0} with respect to ι, i.e.,

$$
A_{x} \otimes_{\mathbf{C}, \iota} \overline{\mathbf{Q}}_{p} \cong A \otimes_{W\left(\overline{\mathbf{F}}_{p}\right)} \overline{\mathbf{Q}}_{p}
$$

where A is the canonical lifting of A_{0} to $W\left(\overline{\mathbf{F}}_{p}\right)$.
2.4. Theorem. Assume that $\left(p, d_{L}\right)=1$. Then Conjectures 1.8 and 1.10 hold for any congruence subgroup Γ of $G S p(L[1 / p], \psi)_{+}$, where F is given as the ordinary locus U of M_{0}.
2.5. Remark. The key point of the proof of Proposition 2.3 and Theorem 2.4 is that any element $\gamma \in \Gamma_{x}^{\prime}$ with $d(\gamma)>0$ is the unique lifting of a Frobenius
endomorphism on a certain ordinary abelian variety defined over a finite field to its canonical lifting. To show the existence of such an abelian variety, we use a result of Honda [7].

3 Classical case

3.1. Let $\phi: G \rightarrow G L(V), X$, and Γ be as in 1.1, and let $\psi: V \times V \rightarrow \mathbf{Q}$ and L be as in 2.1. In what follows, assume the following:
(3.1.1) The image of ϕ is contained in $G S p(V, \psi)$ and ϕ induces a map h : $X \rightarrow H_{g}$.
(3.1.2) There exists a positive integer $n \geq 3$ prime to p such that

$$
\phi(\Gamma) \subset\{g \in \operatorname{Aut}(L[1 / p]) \mid g \equiv 1(n)\}
$$

Then h is known to be a holomorphic embedding, and by Proposition 1.15 of [3], there exists a unique congruence subgroup Γ^{\prime} of $G S p(L[1 / p], \psi)_{+}$such that $\Gamma=\Gamma^{\prime} \cap G(\mathbf{Q})_{+}$and the map

$$
X /\left(\Gamma \cap \phi^{-1}(\operatorname{Aut}(L))\right) \rightarrow H_{g} /\left(\Gamma^{\prime} \cap \operatorname{Aut}(L)\right)
$$

induced from h is injective. By (3.1.2),

$$
\Gamma^{\prime} \subset\{g \in \operatorname{Aut}(L[1 / p]) \mid g \equiv 1(n)\} .
$$

Hence Γ^{\prime} and Γ are torsion-free.
3.2. Let M^{\prime} be the canonical model of $H_{g} /\left(\Gamma^{\prime} \cap \operatorname{Aut}(L)\right)$ defined over $K^{\prime}=$ $K\left(\Gamma^{\prime}\right)$. Assume that $\left(p, d_{L}\right)=1$. Then M^{\prime} has good reduction with respect to ι. Let k^{\prime} be the residue field of K^{\prime} with respect to ι. Let U be the ordinary locus of the reduction of M^{\prime} with respect to ι. Then U is defined over k^{\prime}. Let $\alpha: U \rightarrow M^{\prime}$ be the map corresponding to the canonical lifting of ordinary abelian varieties, i.e., if $x \in U$ and $X=\alpha(x)$, then $\left(A_{X}, \theta_{X}, \sigma_{X}\right)$ is the canonical lifting of $\left(A_{x}, \theta_{x}, \sigma_{x}\right)$ with respect to ι.
3.3. Proposition. Let L be any finite field extention of $\iota\left(K^{\prime}\right)$, and \mathbf{F}_{q} its residue field. Then $\alpha: U \otimes_{k^{\prime}} \mathbf{F}_{q} \rightarrow M^{\prime} \otimes_{K^{\prime}, L} L$ is continuous map with respect to the Zariski topology, i.e., if $z \in U \otimes_{k^{\prime}} \mathbf{F}_{q}$ is a specialization of $y \in U \otimes_{k^{\prime}} \mathbf{F}_{q}$, then $\alpha(z)$ is a specialization of $\alpha(y)$ in $M^{\prime} \otimes_{K^{\prime}, \text {, }} L$.
3.4. Corollary. Put $Z=\{x \in U \mid \alpha(x) \in M\}$. Then Z is a closed subset of U defined over $k(\Gamma)$.
3.5. Proposition. Under Conditions (3.1.1) and (3.1.2), for any $x \in X^{\text {ord }}$,

$$
\phi\left(\Gamma_{x}^{\prime}(L)\right)=\left\{\gamma \in\left(\Gamma_{1}\right)_{h(x)}^{\prime}(L) \mid k(\Gamma) \subset \mathbf{F}_{p^{d(\gamma)}}\right\} .
$$

3.6. Theorem. Assume that $\left(p, d_{L}\right)=1$. Then under Conditions (3.1.1) and (3.1.2), Conjectures 1.8 and 1.10 hold for Γ, where Z is given in Corollary 3.4 .
3.7. Remark. To show Proposition 3.3, by using Serre-Tate's q-theory ([11], [12]), we construct an abelian scheme with a polarization and a level structure over a discrete valuation ring whose general and special fibers correspond to $\alpha(y)$ and $\alpha(z)$ respectively. The proof of Proposition 3.5 is straightforward. Theorem 3.6 follows from Theorem 2.4, Corollary 3.4 and Proposition 3.5.

References

1. W. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966), 442-528.
2. P. Deligne, Variétés abéliennes ordinaires sur un corps fini, Invent. Math. 8 (1969), 238-243.
3. P. Deligne, Travaux de Shimura, Sém. Bourbaki exp .389, Lecture notes in Math. 244, Springer (1971), 123-165.
4. P. Deligne, Variétés de Shimura, Interprétation modulaire, et techniques de construction des modéles canoniques, Proc. Symp. Pure Math. 33 (1979), 247-290.
5. P. Deligne, Hodge cycles on abelian varieties, in Hodge cycles, motives, and Shimura varieties, Lecture notes in Math. 900, Springer (1982), 9-100.
6. B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math. 82 (1960), 631-648.
7. T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83-95.
8. Y. Ihara, On congruence monodromy problems, vol.1, 2, Lecture notes, Univ. of Tokyo (1968,69).
9. R.E. Kottwitz, Shimura varieties and λ-adic representations, in Automorphic forms, Shimura varieties, and L-functions, Perspectives in Mathematics 4, Academic Press (1990), 161-209.
10. R.P. Langlands, Some contemporary problems with origins in the Jugendtraum, in Mathematical developments arising from Hilbert Problems, Proc. Symp. Pure Math. 28 (1976), 401-418.
11. J. Lubin, J.P. Serre, and J. Tate, Elliptic curves and formal groups, mimeographed note, Woods Hole summer institute (1964).
12. W. Messing, The crystals associated to Barsotti-Tate groups: with application to abelian schemes, Lecture notes in Math. 264, Springer (1972).
13. J.S. Milne, The action of an automorphism of \mathbf{C} on a Shimura variety and its special points, in Arithmetic and Geometry vol.1, Progress in Math. 35, Birkhäuser (1983), 239-265.
14. D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer grenzgebiete 34 , Springer (1965).
15. I. Satake, On the compactification of the Siegel spaces, J. Indian Math. Soc. 20 (1956), 259-281.
16. I. Satake, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math. 87 (1965), 425-461.
17. G. Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, I, II, Ann. of Math. 91 (1970), 144-222, 92 (1970), .528-549.
18. J. Tate, Endomorphisms of abelian varieties over finite fields, Invent.

Math. 2 (1966), 134-144.

