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Introduction

Let $G$ be a connected and reductive algebraic group defined over $Q$ of her-

mitian type, and $X$ the bounded symmetric domain induced from the identity

component $G(R)_{+}$ of $G(R)$ . Let $\Gamma_{0}$ be a congruence subgroup of $G(Z)\cap G(R)_{+}$ ,

and $M$ the Shimura model of $X/\Gamma_{0}$ . Langlands’ program [10] to parametrize the

set $M(\overline{F}_{p})$ ($p$ : a prime on which $M$ has good reduction) was partially achieved by

Kottwitz [9] for the Siegel modular case. In this note, when $G$ has a similitude-

symplectic embedding (for the classification of such groups, see Satake [16] and

Deligne [4]), we shall construct, without detailed proofs, a canonical bijection of

a certain subset of $X/\Gamma_{0}$ to an algebraically defined subset of $M(\overline{F}_{p})$ . This result

can be regarded as a generalization of the result of Ihara [8] on zeta functions of

Selberg type (Ihara zeta functions) for congruence subgroups of $PSL_{2}(Z[1/p])$ .

Following Ihara’s idea, we take a congruence subgroup $\Gamma$ of $G(Z[1/p])\cap G(R)_{+}$

such that $\Gamma\cap G(Z)=\Gamma_{0}$ . We call $x\in X$ is a p-ordinary point if there exists a

torsion-free stabilizer of $x$ in $\Gamma$ inducing a p-adic structure on a faithful rep

resentation space $V$ of $G$ which is compatible with the Hodge structure on $V$

induced from $x$ (this definition is independent of the choice of V). When $G$ is a

similitude-symplectic group, we show that the reduction map induces a canon-
ical bijection of {pordinary points of $X$ } $/\Gamma_{0}$ to the ordinary locus of $M(F_{p})$ .

This is nothing but a reformation of a result of Deligne [2] and the inverse map
corresponds to canonical liftings of ordinary abehan varieties. When $G$ has a
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similitude-symplectic embedding, we show that the image of this bijection is al-

gebraically defined which follows from that canonical liftings of abelian varieties

preserve their deformations.

1 Zeta functions

1.1. Let $G$ be a linear algebraic group defined over $Q$ which is connected and

reductive. For any field $K$ containing $Q$ , let $G(K)$ denote the group of K-rational

points of $G$ , and put $G_{K}=G\otimes_{Q}K$ . Let $G(R)_{+}$ denote the identity component

of the Lie group $G(R)$ , and put $G(Q)_{+}=G(Q)\cap G(R)_{+}$ . We assume that there

exists an R-homomorphism $h:S=R_{C/R}(G_{m[C})arrow G_{R}$ such that

$X=$ {R-homomorphisms $Sarrow G_{R}$ conjugate to $h$ over $G(R)_{+}$ }

is a bounded symmetric domain. Let $V$ be a Q-vector space of finite dimension,

and $\phi$ : $Garrow GL(V)$ an injective representation defined over Q. Let $L$ be a

Z-lattice of $V,$ $p$ a prime number, and put $L[1/p]=L\otimes Z[1/p]$ which is a $Z[1/p]-$

lattice of $V$. Let $\Gamma$ be a congruence subgroup of

$\phi^{-1}(Aut(L[1/p]))_{+}=\{g\in G(Q)_{+}|\phi(g)\in Aut(L[1/p])\}$ .

One can show that if there exists an integer $n\geq 3$ prime to $p$ such that $\phi(\Gamma)\subset$

$\{g\in Aut(L[1/p])|g\equiv 1(n)\}$ , then $\Gamma$ is torsion-free. For each $x\in X$ , put $\Gamma_{x}=$

$\{\gamma\in\Gamma|\gamma(x)=x\}$ . Let $h_{x}$ : $Sarrow G_{R}$ denote the homomorphism corresponding to
$x$ . Then $\phi_{R}oh_{x}$ induces a Hodge decomposition

$V\otimes_{Q}C=\oplus:,jV_{x}^{1,j}$

such that for any $(z, z’)\in S(C)=C^{x}x$ $C$ and $v\in V_{x}^{1,j},$ $(\phi_{R}oh_{x})((z, z’))(v)=$

$z^{i}\cdot z^{\prime j}\cdot v$ . Then for any $\gamma\in\Gamma_{x},$ $V^{i}$“ is stable under the action of $\phi(\gamma)_{C}=\phi(\gamma)\otimes_{Q}C$ .
Fix an isomorphism $\iota$ : $C\simarrow\overline{Q}_{p}$ , and let $\Gamma_{x}’$ be the set which consists of $\gamma\in\Gamma_{x}$

such that there exists a rational number $d(\gamma)$ satisfying $ord_{p}(\iota(e))=d(\gamma)\cdot i$ for
any eigenvalue $e$ of $\phi(\gamma)_{C}$ on each $V_{x^{1j}},$ .
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1.2. Proposition. For any $x\in X,$ $\Gamma_{x}’$ is independent of $\phi$ , and for any

$x\in X$ and $\gamma\in\Gamma_{x}’,$ $d(\gamma)$ is independent of $\phi$ .

1.3. Proposition. Let $Z$ be the centralizer of $h(S(R))=h(C^{x})$ in $G(R)$ ,

and assume that $Z/h(R^{x})$ is compact. Then for any $x\in X$ and $\gamma\in\Gamma_{x}’,$ $d(\gamma)\neq 0$

if and only if $\gamma$ is torsion-free.

1.4. Corollary. Assume that there exist a positive integer $g$ and an injective

Q-homomorphism of $G$ into the similitude-symplectic algebraic group of size $2g$

which induces a map of $X$ into the Siegel upper half space of degree $g$ . Then for
any $\gamma\in\Gamma_{x}’,$ $d(\gamma)\neq 0$ if and only if $\gamma$ is torsion-free.

1.5. Proposition. Let $X^{ord}(\Gamma)$ be the set consisting of $x\in X$ such that

there exists $\gamma\in\Gamma_{x}’$ with $d(\gamma)\neq 0$ . Then $X^{ord}(\Gamma)$ depends only on the Q-structure

of $G,$ $i.e.$ , it is independent of the choice of $\Gamma$ .

1.6. Remark. Propositions 1.2 and 1.5 follow the fact that any representation

$Garrow GL(W)$ is a direct summand of

$Garrow GL(\oplus_{l}(V^{\Phi m_{l}}\otimes(V^{*})^{\Phi n_{l}}))$

for some $m_{l}$ and $n_{1}$ ([5], Proposition 3.1). Proposition 1.3 follows from the product

formula for eigenvalues of $\phi(\gamma)$ .

1.7. By Proposition 1.5, $X^{ord}(\Gamma)$ is independent of T. Then we put $X^{ord}=$

$X^{ord}(\Gamma)$ , and call it the set of ordinary points of $X$ with respect to $\iota$ . For any
$x\in X^{ord}$ , let $\Gamma_{x}’(L)$ be the set consisting of $\gamma\in\Gamma_{x}’$ such that there exists a

decomposition $L\otimes_{Z}Z_{p}$ as $Z_{p}$-lattices:

$L\otimes_{Z}Z_{p}=\oplus_{i,j}L^{i,j}$

which satisfies $\phi(\gamma)_{Q_{p}}(L^{i,j})=\iota(e)\cdot L^{i}$“ for any eigenvalue $e$ of $\phi(\gamma)_{C}$ on each
$V^{i}$“. Put

$\deg(x)=\{\min${ $d(\gamma)|\gamma\in\Gamma_{x}’(L)0$
with $d(\gamma)>0$}

$if\Gamma_{x}’(L)if\Gamma^{x}(L)\neq=\emptyset\emptyset$

.
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Let $\Gamma_{0}$ be the subgroup of $\Gamma$ defined by

$\Gamma_{0}=\{\gamma\in\Gamma|\phi(\gamma)\in Aut(L)\}$ .

Then $\deg(x)$ depends only on the $\Gamma_{0}$-equivalence class containing $x$ . Hence $deg$ :

$Xarrow R$ induces the map of

$P(\Gamma)=$ { $x\in X^{ord}|\deg(x)$ : positive $integer$} $/\Gamma_{0}$

to $N$ , which we denote by the same symbol. Then we define the zeta function

$Z(\Gamma,t)$ of $\Gamma$ as the following formal power series with variable $t$ :

$\exp(\sum_{r=1}^{\infty}N,.\frac{t^{r}}{r})$ ,

where $N_{r}$ is the cardinality of $\{P\in P(\Gamma)|\deg(P)\leq r\}$ .

1.8. Conjecture. Let $x$ be any ordinary point of $X$ . Then

(1.8.1) $x$ is a special point of $X$ in the sense of [3].

(1.8.2) $\deg(x)$ is a positive integer, and

$\{d(\gamma)|\gamma\in\Gamma_{x}’(L)\}=Z\cdot\deg(x)$ .

(1.8.3) If $\Gamma$ is torsion-free, then $\Gamma_{x}’(L)$ is a cyclic group generated by an element

$\gamma\in\Gamma_{x}’(L)$ with $d(\gamma)=\deg(x)$ .

Assuming this conjecture, $Z(\Gamma, t)$ can be regarded as a generalization of

Ihara’s zeta function for $PSL_{2}$ .

1.9. By results of Satake [15] and Baily-Borel [1], the quotient complex man-

ifold $X/\Gamma_{o}$ is algebraizable. By results of Shimura [17], Deligne [4] [5], and Milne

[13], there exist canonicaUy a number field $K(\Gamma)$ contained in $C$ and an integral

scheme $M_{\Gamma}$ of finite type defined over $K(\Gamma)$ , called the canonical model of $X/\Gamma_{o}$ ,

such that $M_{\Gamma}(C)=X/\Gamma_{o}$ and the behavior of special point of $M_{\Gamma}$ under the

action of $Ga1(\overline{K(\Gamma)}/K(\Gamma))$ is described by the theory of complex multiplication.
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If $G=GSp(V)$ , then $M_{\Gamma}$ is the moduli scheme of abelian varieties with polariza-

tion and level structure. If $G$ has a similitude-symplectic embedding, then $M_{\Gamma}$ is

the moduli scheme of these objects with certain absolute Hodge cycles.

1.10. Conjecture. Let $k(\Gamma)$ be the residue field of $K(\Gamma)$ with respect to $\iota$ ,

and $p^{a}$ the order of $k(\Gamma)$ . Then there exists a separated scheme $F$ of finite type

defined over $k(\Gamma)$ whose zeta function $Z(F,t)$ satisfies

$Z(\Gamma,t)=Z(F,t^{a})$ .

Moreover, if $M$ has good reduction at $\iota$ , then $F$ can be given as a locally closed

subset of the special fiber of $M$ with respect to $\iota$ .

Assuming this Conjecture, by a result of Dwork [6], one can see that $Z(\Gamma,t)$

is a rational function of $t$ .

2 Symplectic case

2.1. Let $g$ be a positive integer, $V$ a Q-vector space with basis $\{v_{1}, \ldots, v_{2g}\}$ ,

and $\psi$ : $VxVarrow Q$ be the alternating Q-bilinear form given by

$\psi(v;, v_{j})=\delta_{i,j-g}(1\leq i,j\leq 2g)$ .

Let $G$ denote the similitude-symplectic algebraic subgroup $GSp(V, \psi)$ of $GL(V)$

defined over $Q$ with respect to $\psi$ , i.e., $g\in Aut(V)$ belongs to $G(Q)$ if and only

if there exists an element $\nu(g)\in Q^{x}$ such that $\psi(gv, gw)=\nu(g)\cdot\psi(v, w)$ for all

$v,$ $w\in V$. Let $h:Sarrow G_{R}$ be the R-homomorphism given by

$h(a+b\sqrt{-1})(v_{*})=\{\begin{array}{l}aw+bw’(1\leq i\leq g)-bw+aw’(g+1\leq i\leq 2g)\end{array}$

where $(a, b)\in R^{2}-\{(0,0)\}$ and $w=v_{1}+\ldots+v_{g},$ $w’=v_{g+1}+\ldots+v_{2g}$ . Then $X$ is the

the Siegel upper half space $H_{g}$ of degree $g$ which is the bounded symmetric domain

induced from $G(R)_{+}=\{g\in G(R)|\nu(g)>0\}$ . Let $L$ be a Z-lattice of $V$ such that

$\psi(LxL)=Z$ , and let $d_{L}$ be the index of $L$ in { $v\in V|\psi(v,$ $w)\in Z$ for any $w\in L$ }.
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For each $x\in X$ , let $A_{x}$ be the g-dimensional abelian variety defined over $C$ such

that $H^{1}(A_{x}, Z)=L$ and the Hodge decomposition of $H^{1}(A_{x}, C)=V_{C}$ is given

by $h_{x}$ , and $\theta_{x}$ the polarization of $A_{x}$ whose Riemann form is given by $\psi$ . Then

by the correspondence

$X\ni x-$ $(A_{x}, \theta_{x}, i_{x}=id. : H^{1}(A_{x}, Z)\simarrow L)$ ,

$X$ becomes the moduli space of the isomorphism classes of triples

$(A, \theta, i : H^{1}(A, Z)arrow\sim L)$ ,

where $A$ is a g-dimensional abehan variety defined over $C$ and $\theta$ is a polarization

ofA whose Riemann form is given by

$H^{1}(A, Z)\cross H^{1}(A, Z)\ni(u, v)\psi(i(u), i(v))\in Z$ .

Let $p$ be a prime number, and $\Gamma$ a congruence subgroup of $G(Q)_{+}\cap Aut(L[1/p])$ .

Then $\Gamma_{0}=\Gamma\cap Aut(L)$ is a subgroup of $G(Q)_{+}\cap Aut(L)$ defined by congruence

conditions prime to $p$ . Two triples $(A_{1}, \theta_{1}, i_{1})$ and $(A_{2}, \theta_{2}, i_{2})$ are said to be $\Gamma_{0^{-}}$

equivalent if there exists an element $\gamma\in\Gamma_{0}$ such that $(A_{1}’, \theta_{1}, \gamma\circ i_{1})$ and $(A_{2}, \theta_{2}, i_{2})$

are isomorphic. For each $\Gamma_{0}$-equivalence class $(A, \theta, \sigma),$ $\sigma$ is called a level $\Gamma_{0^{-}}$

structure of $A$ . For each $x\in X$ , let $(A_{x}, \theta_{x}, \sigma_{x})$ denote the $\Gamma_{0}$-equivalence class

containing $(A_{x}, \theta_{x}, i_{x})$ . Let $M=M_{\Gamma}$ be the canonical model of $X/\Gamma_{0}$ defined over
$K(\Gamma)$ . Assume that $(p, d_{L})=1$ . Then by a result of Mumford [14], $M$ has good

reduction with respect to $\iota$ . Let $M_{0}$ denote its special fiber with respect to $\iota$ . Let
$U$ be the ordinary locus of $M_{0}$ , i.e., the open subscheme of $M_{0}$ defined over $k(\Gamma)$

consisting of all points of $M_{0}$ corresponding to ordinary abelian varieties.

2.2. Let $k$ be a perfect field of characteristic $p$ , and $A_{0}$ an ordinary abelian

variety defined oved $k$ of dimension $g$ . Then the p-divisible group $A_{0}(p)$ associated

with $A_{0}$ is the product of a multiplicative p-divisible group and an \’etale p-divisible

group. Let $W(k)$ denote the ring of Witt vectors over $k$ , and $R$ a complete discrete

valuation ring containing $W(k)$ with residue field $k$ . Then by a result $of\cdot Lubin-$

Tate-Serre [11], there exists a unique pair $(A, i)$ up to isomorphim of an abelian
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scheme $A$ over $R$ and an isomorphism $i$ : $A\otimes_{R}karrow A_{0}$ such that $A(p)$ is the

product of a multiplicative p-divisible group and an \’etale p-divisible group. The

pair $(A, i)$ is called the canonical lifting of $A_{0}$ to $R$ . Moreover, it is known that

for all ordinary abelian varieties $A_{0}$ and $B_{0}$ defined over $k$ , the reduction map

induces the isomorphism

(2.2.1) $Hom_{R}((A, i),$ $(B, i))arrow\sim Hom_{k}(A_{0}, B_{0})$ ,

where $(A, i)$ and $(B, i)$ are the canonical liftings of $A_{0}$ and $B_{0}$ to $R$ respectively

([11]).

Let $k$ be a finite field $F_{q}$ , and $A_{0}$ any ordinary abelian variety defined over $k$ .
Then by a result of Messing [12], a lifting $(A, i)$ of $A_{0}$ to $R$ is the canonical lifting

if and only if there exists an endomorphism $f$ of $A$ such that $f\otimes_{R}k$ is the q-th

power Frobenius endomorphism of $A_{0}$ . Let $(A, i)$ be the canonical lifting of $A_{0}$

to $R$ . Since $A_{0}$ has complex multiplication ([18]), by (2.2.1), $A$ has also complex

multiplication.

2.3. Proposition. For any $x\in X$ , the following two conditions are equiva-

lent.

(A) $x$ is an ordinary point of $X$ .

(B) There exists an ordinary abelian variety $A_{0}$ defined over $\overline{F}_{p}$ such that $A_{x}$

is the canonical lifting of $A_{0}$ with respect to $\iota,$
$i,e.$ ,

$A_{x}\otimes_{C,\iota}\overline{Q}_{p}\cong A\otimes_{W(\overline{F}_{p})}\overline{Q}_{p}$,

where $A$ is the canonical lifting of $A_{0}$ to $W(\overline{F}_{p})$ .

2.4. Theorem. Assume that $(p, d_{L})=1$ . Then Conjectures 1.8 and 1.10

hold for any congruence subgroup $\Gamma$ of $GSp(L[1/p], \psi)_{+}$ , where $F$ is given as the

ordinary locus $U$ of $M_{0}$ .

2.5. Remark. The key point of the proof of Proposition 2.3 and Theorem 2.4
is that any element $\gamma\in\Gamma_{x}’$ with $d(\gamma)>0$ is the unique lifting of a Frobenius
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endomorphism on a certain ordinary abelian variety defined over a finite field to

its canonical lifting. To show the existence of such an abelian variety, we use a

result of Honda [7].

3 Classical case

3.1. Let $\phi$ : $Garrow GL(V),$ $X$ , and $\Gamma$ be as in 1.1, and let $\psi$ : $VxVarrow Q$ and
$L$ be as in 2.1. In what follows, assume the following:

(3.1.1) The image of $\phi$ is contained in $GSp(V, \psi)$ and $\phi$ induces a map $h$ :

$Xarrow H_{g}$ .

(3.1.2) There exists a positive integer $n\geq 3$ prime to $p$ such that

$\phi(\Gamma)\subset\{g\in Aut(L[1/p])|g\equiv 1(n)\}$ .

Then $h$ is known to be a holomorphic embedding, and by Proposition 1.15 of

[3], there exists a unique congruence subgroup I” of $GSp(L[1/p], \psi)_{+}$ such that

$\Gamma=\Gamma‘\cap G(Q)_{+}$ and the map

$X/(\Gamma\cap\phi^{-1}(Aut(L)))arrow H_{g}/(\Gamma’\cap Aut(L))$

induced from $h$ is injective. By (3.1.2),

$\Gamma’\subset\{g\in Aut(L[1/p])|g\equiv 1(n)\}$ .

Hence $\Gamma$ ‘ and $\Gamma$ are torsion-free.

3.2. Let $M’$ be the canonical model of $H_{g}/(\Gamma‘ \cap Aut(L))$ defined over $K’=$

$K(\Gamma’)$ . Assume that $(p, d_{L})=1$ . Then $M$ ‘ has good reduction with respect to $\iota$ .

Let $k’$ be the residue field of $K’$ with respect to $\iota$ . Let $U$ be the ordinary locus of the

reduction of $M’$ with respect to $\iota$ . Then $U$ is defined over $k’$ . Let $\alpha$ : $Uarrow M’$ be

the map corresponding to the canonical lifting of ordinary abelian varieties, i.e.,

if $x\in U$ and $X=\alpha(x)$ , then $(A_{X}, \theta_{X}, \sigma_{X})$ is the canonical lifting of $(A_{x}, \theta_{x}, \sigma_{x})$

with respect to $\iota$ .
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3.3. Proposition. Let $L$ be any finite field extention of $\iota(K’)$ , and $F_{q}$ its

residue field. Then $\alpha$ : $U\otimes_{k’}F_{q}arrow M’\otimes_{K’,\iota}L$ is continuous map with respect to

the Zariski topology, $i.e.$ , if $z\in U\otimes_{k’}F_{q}$ is a specialization of $y\in U\otimes_{k’}F_{q}$ , then

$\alpha(z)$ is a specialization of $\alpha(y)$ in $M’\otimes_{K’,\iota}L$ .

3.4. Corollary. Put $Z=\{x\in U|\alpha(x)\in M\}$ . Then $Z$ is a closed subset of
$U$ defined over $k(\Gamma)$ .

3.5. Proposition. Under Conditions (3.1.1) and (3.1.2), for any $x\in X^{ord}$ ,

$\phi(\Gamma_{x}’(L))=\{\gamma\in(\Gamma_{1})_{h(x)}’(L)|k(\Gamma)\subset F_{p^{d(\gamma)}}\}$ .

3.6. Theorem. Assume that $(p, d_{L})=1$ . Then under Conditions (3.1.1)

and (3.1.2), Conjectures 1.8 and 1.10 hold for $\Gamma$ , where $Z$ is given in Corollary

3.4.

3.7. Remark. To show Proposition 3.3, by using Serre-Tate’s q-theory ([11],

[12]), we construct an abelian scheme with a polarization and a level structure

over a discrete valuation ring whose general and special fibers correspond to $\alpha(y)$

and $\alpha(z)$ respectively. The proof of Proposition 3.5 is straightforward. Theorem

3.6 follows from Theorem 2.4, Corollary 3.4 and Proposition 3.5.
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