
53

A simple model for the control of cell-type
proportions in multicellular development
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Department of Botany, Faculty of Science, Kyoto University

Sakyo-ku, Kyoto 606 Japan

Abstract
A simple conceptual model is proposed for the generation of multiple
cell-types from an initially homogeneous population of cells. In the
model, the state of each cell is defined by its gene expression pattem
and physiological parameters, the former of which being discrete cor-
responding to different cell types, whereas the latter being govemed
by differential equations representing the physicochemical laws.
Using a simplified version of the model, requirements for the coexis-
tence of different cell types within a cell population, and factors influ-
encing their proportions, are studied.

Introduction
Since the pioneerin$g$ work by Turing (1952), a number of attempts have been
made to simulate the fornation of biological pattems by the use of mathemati-

cal models (for reviews, Meinhardt, 1982; Murray, 1989; Nagorcka, 1989).

Most models proposed so far concentrate on generating the spatial distribution
of the imaginary substance which is supposed to induce a definite cel differ-

entiation or the formation of specific structures (”morphogen” after Turing)

whereas the ability of proportion regulation seems to have been treated as a
subordinate property to be possessed by the pattern generating mechanisms.

There are cases, however, in which the cells differentiate in a definite
proportion but without any particular spatial pattem. Even in the case where
a clear spatial pattem arises, there are examples in which the cels differentiate
first without taking any particular spatial arrangement but sort themselves out

afterwards to generate a coherent pattem. The control of cell-type propor-

1

数理解析研究所講究録
第 762巻 1991年 53-65



54

tions and the formation of spatial pattems are therefore conceptually separa-
ble, and it will be important, especially in theoretical studies, to make this dis-

tinction clear. In addition, despite the important contributions of the theoreti-

cal models, they have been often criticized on the ground of biological reality.

In fact, the fornulation of the model, i.e. the specifications of the variables
and their interactions, are often arbitrary.

To extend the usefulness of mathematical models in the study of devel-

opmental biology, it is desired to construct a conceptual framework for theo-

retical models on accepted biological grounds. In this study I attempted to do
this by reducing the problems to as simple a model as possible. It is not

intended in the present paper to give a detailed description of the model but

only to put forward some basic ideas on which mathematical theories of
developmental phenomena might be constructed. Here we will focus on the

control of cell-type proportions. Formation of spatial pattems by different
$ceU$-types will be investigated elsewhere.

Main questions
The elemental processes constituting the control of cell-type proportions are:

(a) A specific set of cells expresses a specific set of genes, which
defmes a specific cell-type.

(b) Different cell-types coexist in the same developmental system.
(c) Proportions of different cell-types are controlled.
(d) When a part of the system is removed, the remaining part

restores itself to the normal proportion.
We will define by these statements the following terns, respectively; (a) cell
differentiation, (b) diversification, or “division of labour”, (c) cell-type pro-
portioning, and (d) proportion regulation. We will examine what are
required for each of these phenomena to take place using a simple model

system consisting of idealized cells.
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The model

Division of cell state into two components

We can postulate with little loss of generality that all the cells of the

developmental system under consideration are genetically identical. However,

individual cells may, despite their having an identical genetic infornation, take

different “states”. The change in the state of the cells is primarily deternined

by the cell-autonomous dynamics, but will also be influenced by the other cells

of the same system.

Since our primary interest is in cell differentiation, it may seem legiti-

mate to define the state of a cell by the genes that are being transcribed in that

cell. However, the cellular activities are mostly carried out by a huge number

of molecules and ions which constitute the physical entity of the cell.
Considering that cells, in ordinary development, influence each other not by

direct DNA-DNA interactions but via changes in the physiological parameters,

we are led to incorporate physiological variables explicitly in the model.

The state of a cell is defined in the model by specifying (i) the genes that

are being transcribed and (ii) the values of the physiological variables. For
the convenience’s sake, we will call the fonner component “gene state $(G)”$

and the latter “physiological state $(P)”$ . Corresponding to the division of the

cell state into two components, the dynamics of the cell state is divided into
two parts: one (which we designate by u) goveming the change in the former
(which change may be called “developmental change”) and the other (v) the

change in the latter (which may be called “physiologicaI change”).

How the cell state changes

Since the dynamics of the physiological state is after all chemical reac-
tions occurring in a very complex situation, its change should be basically
smooth, being described, in principle, by a set of partial differential equations.
On the contrary, the change in the gene state is discrete, being a succession of
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ONs and OFFs of the genes. The dynamics of the physiological change is
strongly restricted by the geometry of the cell and the enzymes active at each

instant. The latter element (and partly the former element also) of the

restriction is the effect of the genes that have been expressed. On the other
hand, transcription of any gene is believed to be controled by cellular compo-
nents other than DNA itself, such as DNA-binding proteins. In other words,

the dynamics of the gene state and that of the physiological state are imposing
strong constraints on each other:

$G_{i}(t+dt)=u(G_{i}(t);P(t))$ (1a)

$\frac{dP(t)}{dt}=v(P(t);G_{i}(t))$ . (1b)

A change in the gene state is, be it an ON of new genes or OFF of the

genes that have been expressed, induced when the physiological state moves, in
due course of its innate dynamics, into the domain where the prior gene state

is no longer stable. Any change of the gene state in tum must alter the

dynamics of physiological state and deviate the course of the physiological
change from the one it would otherwise take, and such a deviation could be

substantial if the gene that was switched on or off encoded a key enzyme of

some reaction network. Fig.1 shows changes in the state of a hypothetical cell

having only three genes, $A,$ $B,$ $C$ , and one physiological variable $P$ . In this
imaginary and highly simplified situation, $P$ first increases slowly, with the

dynamics defined by genes $B$ and $C$ which are being expressed, to reach a
point $P_{1}$ where gene $A$ is tumed on. The dynamics has now changed due to

the effect of gene $A$ so that $P$ starts to increase more rapidly. When $P$ reaches

a point $P_{2}$ , gene $B$ is switched off and $P$ now changes with a new dynamics
determined by genes $A$ and $C$ . This example illustrates how the gene state and

physiological state interact each other within a cell.
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Fig.1. A schematic diagram illustrating how the cell state changes. The state of the hypo-
thetical cell is represented by the gene state $(G)$ and the physiological state $(P)$ . In the
model the former is detemined by the expression of the genes in question (A and $B$) and a
group of common genes $(C)$ , and its physiological change is assumed to be described by a
single parameter $P$. The genes that are being expressed are indicated by thick lines.

Cell interaction and division of labour
Interaction between the cells is, as pointed out earlier, mediated by

changes in the physiological state of these cells. For the system comprising $N$

cells, the dynamics of cell state is given by

$G_{i}(t+dt)=u(G_{i}(t);P_{i}(t))$ (2a)

$\frac{dP_{i}(t)}{dt}=v(P_{i}(t);G_{i}(t), P_{1}, P_{2},\cdots P_{N})$ . (2b)

$i=1,2,$ $\prime N$

In reality, only a limited number of the components of $P_{i}$ will be involved in
the interaction of cells.

To illustrate how cell interaction affects the cell state, consider a system

comprising but two cells (cells 1 and 2) of the kind described earlier. Here,
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however, we assume that only gene $C$ is expressed by the cells initially, and

that gene $A$ is tumed on when $P$ reaches $P_{l}$ whereas $B$ becomes ON if $P$

decreases to $P_{2}$ . If there is no interaction between the cells, the time-course of

the state change will be identical (or nearly so if we allow a limited variation
between cells) to each other and to the one for a solitary cell. With a moder-
ate interaction, there may arise some modulation such as a delay or accelera-

tion of the expression of $A$ . Strong interaction, however, may give rise to

such a situation that the physiological state of, say, cell 1 reaches the critical
point $P_{l}$ slightly earlier than cell 2 (Fig.2). If the change in the physiological
state of cell 1 due to the expression of gene $A$ is such that it prevents the
physiological state of cell 2 from attaining $P_{l}$ by, for instance, forcing $P$ of
cell 2 to decrease, cell 2 will not express gene $A$ and eventually gene $B$ may be

$P$

$G$

$p$

$G$

Time

Fig.2. An example showing how cell interaction may give rise to division of labour.
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switched on, which is a situation representing the simplest form of division of

labour. The argument remains basically unchanged if we increase the number

of cells in the above model.

Two aspects of the model
Our model as expressed by eqs.(2) consists of two parts of different

nature: one representing continuous changes of the variables and the other

involving discrete changes of the states. When we are interested in the process
leading to cell differentiation, we may consider only the dynamics of physio-

logical state during the period before the gene state changes. If we can further

postulate that the cell interaction is mediated by metabolites diffusing in the
tissue, or by a process that can be described by a diffusion equation, the model

becomes a reaction-diffusion type.

On the contrary, in the cases, such as tissue proportioning and pattern

formation, which involve more than one cell-types, we will be more interested
in the changes of gene state, rather than the dynamics of physiological parame-
ters, for, in such cases, the stability of the coexistence of different cells-types
will be of primary importance. Since reaction-diffusion systems have been a
subject of extensive investigations, we concentrate hereafter on the latter

aspect of the model.

Factors influencing the expression ofnew genes
To be more specific, consider a hypothetical cell with two physiological

variables, $p$ and $q$ , and suppose there are $N$ such cells in the system. As
pointed out earlier, not all the components of the physiological state will

directly contribute to cell interaction. Here we assume that $q$ is the component

of the physiological state that directly participates in cell interaction, while $p$

represents the component involved in the cell-autonomous dynamics. The
fonner components will hereafter be called “intercellular signals\dagger t Assuming
that all the cells of the system express gene $C$ in the beginning, we ask how
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many of them come to express the gene of interest, gene $A$ , in addition to gene
$C$ . For the convenience’s sake, the cell expressing only $C$ will hereafter be
called C-cell and the cell expressing both $C$ and $A$ , A-cell.

Suppose one of the cells, cell I, is about to express gene $A$ . There are
three factors that influence the expression of gene $A$ in cell 1;

(1) its own physiological state,

(2) physiological state of other C-cells,

(3) physiological state of A-cells if they exist in the system.

Each of these factors has either activating, inhibiting, or no influence on the
expression of gene $A$ of cell 1, and whether it is switched on or not will be
determined by the sum of the effects of the factors (1) $-(3)$ .

Control of cell-type proportions

Consider a system comprising $N$ cells in which cell dynamics and cell
interaction are described by single parameters $p$ and $q$ , respectively. Then the

model can be written as

$r_{\{C\}}$ if $p_{i}<p^{*}$

$G_{i}(t)=$ {[ $\{C, A\}$ if $p_{i}\geq p^{*}$

(3a)

$B_{d^{i}t^{t}}d\Omega_{=v(p_{i}(t);G_{i}(t),Q_{j})}$ (3b)

where

$Q_{i}= \sum_{j=1}^{N}r_{ij}q_{j}$,

$r_{c}$ if $G_{j}=\{C\}$

$q_{j}=$
$\{$

$\square$

$a$ if $G_{j}=\{C, A\}$ .

Here, $r_{ij}$ represents the efficiency of the transmission of the jth cell’s effect
$(q_{j})$ to the ith cell. The initial conditions are $p_{i}(0)=p_{i^{0}}(<p^{*}),$ $G_{i}(0)=\{C\}$ .
Now we examine the conditions for division of labour. Although we deal with
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discrete phenomena ($ONrightarrow OFF$ switches), we cannot totally ignore the

physiological change, since any change of the gene state must be preceded by a
change in the physiological state. If $\exists p_{i}<p^{*}$ which satisfies

$v(p_{i}(t); \{C\}, c\cdot\sum r_{ij})\leq 0$

for all $i’s$ , all cells remain to be C-cells. If

$v(p^{*}; \{C\}, a\cdot\sum r_{ij})>0$ ,

holds for all $i’s$ , then all the cells become A-cells. If otherwise, division of

labour can result. The number ofA-cells, $N^{A}$ , is calculated from

$v(p^{*}, \{C\}, c c- ceus\sum r_{ij}+a\cdot\sum r_{ij})=0A- ce11s$ (4)

In the simple case where $r_{ij}=r$ holds for all $(i,j),$ $Q=(N^{C}c+N^{A}a)r$ ,

and we have division of labour if
$a\leq 0<c$ (5a)

and
$Q^{*}/rc<N$ if $Q^{*}\geq 0$

(5b)

$Q^{*}/ra\leq N$ if $Q^{*}<0$

hold, where $Q^{*}$ satisfies $v(p^{*}, \{C\}, Q^{*})=0$ . Here, without loss of generality
$\partial v/\partial Q>c$ was assumed. Inequality (5a) indicates that for division of labour to

occur the intercellular signals given off by C-cells need to promote the
expression of gene $A$ whereas that of A-cells must be inhibitory to it, whereas
inequalities (5b) shows the presence of a lower limit of the number of cells for
division of labour.to occur (Fig.3).

The proportion of $A$ cells is calculated to be

$\frac{N^{A}}{N}=\frac{c}{c- a}-R^{*}r(c- a)\frac{1}{N}$ (6)

which converges to a constant value $c/(c- a)$ for large $N$ , i.e. constancy of
cell-type proportions holds if the system is sufficiently large.
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Fig.3. Schematic graphs showing the dependency of the cell interaction parameter $(Q)$

on the total cell numbers $(N)$ and the number ofA-cells $(N^{A})$ . Proportion ofA-cells is
also shown as a function of N. a $,$

$Q^{*}>0;b,$ $Q\leq 0$. $Q=Nc+N^{A}(a- c)$ } $r$ . Solid
line, $Q=Q^{*}$ ; dotted line, $N=N^{A}$ ; dashed line, proportion. $p=c/(c- a)$ .

In real developmental systems, the cells, even when they have the same gene
state, are in general not identical to each other, and the time courses of their
physiological changes will also be non-identical, so that we can conceive that

some cells differentiate into A-cells earlier than others. Such a difference
results from differences in the dynamics goveming the physiological change.
If such a heterogeneity in $v$ is taken into account, the proportion is obtained
from the distribution of $Q^{*}$ within the cell population, $N=F(Q^{*})$ , and eq.(6).

The above argument postulates an equal efficiency of the transmission
of the intercellular signal $q$ irrespective of the cell state (i.e. same $r$ for $c$ and
$a)$ . In real developmental systems, there are cases in which one or more new
intercellular signals come into play upon the expression of new genes. By way
of example, suppose a system consisting of $N$ cells in which A-cells give off a
new intercellular signal, in addition to $c$ , as a result of the expression of gene
$A$ . The efficiency of transmission of this signal, $a$ , will in general be differ-
ent from that for $c$ . We designate these by $r^{A}$ and $r^{C}$ , respectively. These
signals will act on different reactions in the cell dynamics. The interaction
parameter $Q$ is therefore separated into $\{Q^{C}, Q^{A}\}$ . For clarity,we consider
the case where $v$ depends on $Q’s$ linearly. Then

$v(p, \{C\}, Q^{C}, Q^{A})=v(p, \{C\}, 0,0)+s^{C}Q^{C}+s^{A}Q^{A}$

$=v^{0}+Ns^{C}r^{C}c+N^{A}s^{A}r^{A}a$ , (7)
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where $s^{C}$ and $s^{A}$ are the sensitivities of the cell to the effects $c$ and $a$ , respec-
tively. The conditions for division of labour can be derived in a similar

manner as described above:
$a+c\leq 0<c$

and (8)

$Ns^{C}r^{C}c+N^{A}s^{A}r^{A}a\leq- v^{0}<Ns^{C}r^{C_{C}}$.
By equating $v$ to $0$ for $p=p^{*}$ , we obtain

$N^{A}$ $s^{C}r^{C_{C}}$ $v^{0}(\rho^{*})$ 1
$\overline{N}\overline{- s^{A}r^{A}a}=+- s^{A}r^{A}a\overline{N}$

(9)

In eq.(9), it can be seen that constant proportion holds for large $N$

under the condition (8). Six factors are identified which influence the pro-
portion: the effects of gene $C$ and gene $A(c, a)$ , the efficiency of transmission
of these effects $(r^{C} , r^{A})$ , and the sensitivities of the cells to these effects $(s^{C}$ ,

$s^{A})$ . For instance, the larger the inhibition by A-cells of other cells’ expres-
sion of gene $A$ , the lower the proportion of A-cells.

Stability andproportion regulation
In the above examples, expression of gene $A$ , and therefore division of

labour also, are stable if
$v(p, \{A\}, Q^{*})>0$ for $p\geq p^{*}$ (10)

holds. The proportion of A-cells is regulated automaticaly. If, for example,

all or part of of the A-cells are removed from the system, the average level of
$a$ , which has been suppressing the emergence of excessive A-cells, becomes

lower than at the equilibrium (i.e. $Q>Q^{*}$ ), and consequently part of the C-
cells come to express gene $A$ so that the proportion of A-cells would be

restored. On the other hand, removal of C-cells may not induce regulation.
Removal of C-cells causes $Q^{*}$ to decrease. However, for A-cells to dediffer-
entiate (i.e. to switch off gene $A$ ) to regenerate C-cells, $Q^{*}$ needs to become
sufficiently small so that $Q^{*}<Q^{*\prime}$ ($Q^{\star\prime}$ is defined by $v(\rho^{*}\{A\},$ $Q^{\star\prime})=0$).
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Hence $v(\backslash p, \{A\}, N^{A}ar)>0$ is required for regulation to occur after removal

of C-cells. It follows from $Q^{*\prime}>Q^{*}$ and $\partial v/\partial N^{A}<0$ that the new proportion
of A-cells after the regulation induced by removal of C-cells is generally
smaller than the initial proportion.

Discussion
We have concentrated in the preceding arguments on the problems of cell-type

proportion. Fornation of spatial patterns by differentiated cells is another

important aspects of multicellular development. Most existing mathematical
models aim at producing non-uniforn distributions of the “morphogen” in a
continuous field. There are cases in which a specific spatial pattem arises
within the continuum of cytoplasm, such as in the early development of
Drosophila, which will be described by a set of equations, defined on a contin-
uous field, that represent the chemical reactions and diffusion of the molecules

involved. In multicellular organisms, on the other hand, a pattem is forned
by discrete units (cells) each of which taking, roughly speaking, one state from

a set of discrete states. To deal with the problems of multicellular develop-
ment such as cell-type proportioning and pattem formation, there is no
reason, therefore, for adhering to dynamical systems on continuous space such

as ordinary reaction-diffusion systems. The present model, on the other hand,

is based on discrete units, and, by placing some additional constraints on $rij$, it
proves to be useful in studying pattem formation. For instance, by assuming
that $rij$ is reversibly proportional to the square of distance, the model can be
seen as modelling a tissue structure in which cell interaction is mediated by
diffusible substances (for reviews on diffusible morphogens, see e.g. Kay&
Smith, 1989). With such a model, it can be shown that the widely-accepted
principle of short-ranging activation and $long\cdot ranging$ inhibition (Meinhardt,

1982) is not the universal feature of the systems showing a stable coherent
pattem.
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The unit of the system has been called the “cell” throughout this paper,
implicating that the model is specifically concemed with cell differentiation.
The present model, however, may be applied to a variety of biological systems

in which “division of labour“ arises. What we called the “cell“ may be the

actual cell, a group of cells which behaves as a well defined unit (such as a
segment of the arthropod) or an individual in the society (such as an individual
in social insects). The applicability of the model will be further extended by
generalizing its fonnulation in appropriate ways.
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