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ABSTRACT

We consider a model composed of two patches and analyze two cases. One patch

has two competitors in one case and three competing species forming a heteroclinic

cycle in the other case. Another patch is a refuge for one of the two or three species,

which one can diffuse between the two patches. The remaining competitors are con-

fined to the competitive patch and cannot diffuse. It is proved that the system with

two competitors can be made persistent under appropriate diffusion conditions that

ensure the instability of boundary equilibria, even if the competitive patch is not

persistent without diffusion. With respect to the three-competitors case, a new hete-

roclinic cycle can exist in the model and the underlying one in the competitive patch

cannot appear with a positive diffusion rate. It is proved that the model of the latter

case also can be made persistent under appropriate diffusion conditions, even if the

underlying heteroclinic cycle is an attractor in the competitive patch.
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1 INTRODUCTION

One of the most important problems in mathematical ecology concerns the survival

of species. (Strong) persistence and permanence are well known concepts for dealing

with this problem and exclude the possibility of extinction of species and therefore

ensure the coexistence of the species in the system. With respect to references on

persistence, see Butler, Freedman and Waltman [4] and Freedman and Waltman [9],

which give a method to check persistence by examining limit sets on the boundary of

the phase space. Concerning permanence, see Hofbauer $[10,11]$ , Hutson [14], Hutson

and Vickers [15], Hofbauer and Sigmund [12].

When the system is not persistent, several authors considered the possibility to

make the system persistent by introducing predators [12,13,15,17,18] or by partition-

ing the system into patches and connecting them by diffusion [1,19,23,24,25].

When the system has two competitors and it is described by a Lotka-Volterra

model, three typical dynamical behaviours, Coexistence, Bistability and Dominance

are possible (see, for example, Freedman[6]).

Hutson and Vickers[15] showed that the coexistence is possible when a common

predator is introduced if the system is coexistent or dominant. For the bistable case,

the introduction of one predator is not enough to make the system persistent. We

need two predators (Kirlinger[18]). Further, it is known that the bistable system

cannot be made persistent by the introduction of any one species (a predator or a

competitor) if the whole system is described by Lotka-Volterra model (see Hofbauer

and Sigmund[12]).

When the system has three cyclically competing species, it can have a so called

heteroclinic cycle, whose existence was shown originally in May and Leonard [20] and

the system was investigated in detail in Coste et al. [5] and Schuster et al. [21].

The system with a heteroclinic cycle has three two-species competitive subsystems
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and each subsystem has a dominant species. When the cycle is an attractor, the

system is not persistent since the cycle belongs to the boundary of the phase space.

This system can be made permanent by the introduction of a suitable predator or a

suitable fourth competitor (Hofbauer and Sigmund [13]).

Concerning the possibility of diffusion-mediated persistence, the following is known.

The system is composed of two Lotka-Volterra patches, each of which has two com-

petitors, connected by diffusion. The system can be made persistent under appro-

priate diffusion conditions (Takeuchi [23]). But we need the heterogeneity for patch

structures, which means that two competitive patches are not identical, to establish

persistence of the system when both patches are bistable $[19,23]$ . The result in [23]

can be extended to the system composed of two competitors, one of which can diffuse

between the two patches but the other is confined to one of the patches.

From the above consideration, it may be natural to ask whether it is possible to

establish persistence for two competitors or three cyclically competing species by the

introduction of one of the species’ ability for the species to diffuse between patches.

In this paper we consider a system with two patches. One of the patches is composed

of two or three competitors. The other patch is composed of only one competitor

and the one-species patch may be regarded as a kind of refuge for a dispersable

competitor, since there exist no rivals in the patch. Therefore, the question can be

stated as follows: is it possible to establish persistence if a refuge for one of the two

or three species is introduced, when persistence is impossible without that refuge? It

is proved that the system can be made persistent by choosing the diffusion parameter

appropriately, even if the competitive patch is not persistent without diffusion.

2 MODEL

We consider the following models:
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For two-competitors case;

di $1=x_{1}(r_{1}-x_{1}-\alpha_{2}x_{2})+\epsilon(y-x_{1})$

$\dot{y}=y(R-y)+\epsilon(x_{1}-y)$ (1)

$\dot{x}_{2}=x_{2}(r_{2}-\beta_{1}x_{1}-x_{2})$

For three-species model;

$\dot{x}_{1}=x_{1}r_{1}(1-x_{1}-\alpha_{2}x_{2}-\beta_{3}x_{3})+\epsilon(y-x_{1})$

$\dot{y}=yR(1-y)+\epsilon(x_{1}-y)$

$\dot{x}_{2}=x_{2}r_{2}(1-\beta_{1}x_{1}-x_{2}-\alpha_{3}x_{3})$ (2)

ab $s=x_{3}r_{3}(1-\alpha_{1}x_{1}-\beta_{2}x_{2}-x_{3})$

with all coefficients positive.

Here $x:(i=1,2,3)$ are the numbers of competitors $i$ in patch $X;y$ is the number

of species 1 in patch $Y;\alpha_{i},$ $\beta_{j}(i,j=1,2,3)$ describe the effects of competition in patch

$X;r;(i=1,2,3)$ (or $R$) are carrying capacities for species $i$ (or 1) in patch $X$ (or $Y$ );

and $\epsilon$ is the diffusion coefficient between the two patches for species 1.

The system is composed of two patches $X$ and $Y$ which are connected by diffusion.

Only species 1 can diffuse between the patches. For species 1, patch $Y$ may be better

than patch $X$ in the sense that patch $Y$ has no rivals. Therefore, patch $Y$ can be

regarded as a refuge for species 1.

We call system (1) (or (2)) persistent if all solutions to (1) (or (2)) with positive

initial values satisfy $\lim\inf_{tarrow\infty}x_{i}(t)>0$ (for all i) and $\lim\inf_{tarrow\infty}y(t)>0$ . Namely,

the system is persistent if all species in the system can survive for all future times. The

key for proving persistence of system (1) (or (2)) is the Butler-McGehee lemma (see

[9] and its extentions and applications can be found, for example, in [4,7,18,22,23,24]

$)$ , which can be stated as follows in our system (2):
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Let $P$ be a point in $R_{+}^{4}=\{(x_{1}, y;x_{2}, x_{3}) : x;\geq 0(i=1,2,3), y\geq 0\}$ and $Q$ be an

equilibrium point. Then if $Q\in\Omega(P)$ (the omega-limit set of the orbit thorough $P$ ),

then either (i) $Q=\Omega(P)$ or (ii) there exist $Q^{+}$ and $Q^{-}$ such that $Q^{+}\in W^{+}(Q)\backslash \{Q\}$ ,

$Q^{-}\in W^{-}(Q)\backslash \{Q\}$ , and $Q^{+}(Q^{-})\in\Omega(P)_{;}$ where $W^{+}(Q)(W^{-}(Q))$ is the strong stable

(unstable) manifold of $Q$ .

First we consider the existence of nonnegative equilibria of system (1) (or (2)).

Let us denote them by $E_{1}^{1},$ $E_{12}^{1},$ $E_{3}$ etc., the subscripts referring to the species with

positive densities in patch $X$ and the superscript to species 1 in patch Y.

Clearly, system (1) has three equilibrium points $E_{0}=(0,0;0),$ $E_{2}=(0,0;r_{2})$ and

$E_{1}^{1}=(\hat{x}_{1}(\epsilon),\hat{y}(\epsilon);0)$ .

On the other hand, $E_{0}=(0,0;0,0)$ is always an equilibrium for system (2). Also

there exists $E_{1}^{1}=(1,1;0,0)$ , which is globally stable for any $\epsilon>0$ with respect to

the $twe\succ dimensional$ space $\{x_{1}>0, y>0;x_{2}=x_{3}=0\}[7,8]$ . Further, there exist

$E_{2}=(0,0;1,0)$ and $E_{3}=(0,0;0,1)$ . The $E_{13}^{1}$ does not exist for any $\epsilon>0$ , since no

positive equilibria exist on the face $\{x_{2}=0\}$ . $E_{12}^{1}$ and $E_{123}^{1}$ , the last one is a positive

equilibrium point in $R_{+}^{4}$ , may exist.

Hereafter we consider only generic case where all equiibrium points have hyper-

bolic Jacobian matrices, that is, no eigenvalue of the matrices has its real part equal

to zero.

3 TWO-COMPETITORS CASE

For dispersable species 1, patch $Y$ may be better than patch $X$, since patch $X$ has

a rival species 2. If $r_{1}\leq R$ , the best strategy for species 1 may be to stay in rich

patch $Y$ and avoid severe competition with species 2. In fact, it can be shown that

any choice of $\epsilon$ cannot make the system persistent for the particular cases satisfying
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that $r_{1}\leq R$ . Therefore we suppose that

$r_{1}>R$ (3)

which means that patch $X$ is more abundant for species 1 than patch $Y$. There is a

conflict for species 1 between the need to choose more food and the need to avoid

competition.

We can prove the following persistence theorem [24]:

THEOREM 1

If both $E_{1}^{1}$ and $E_{2}$ are unstable, then system (1) is persistent.

The instabilities of $E_{1}^{1}$ and $E_{2}$ are ensured under the assumption (3) if we choose

$\epsilon>0$ satisfying the following theorem [24]:

THEOREM 2

$E_{1}^{1}$ is unstable if $\epsilon$ satisfies one of the indicated conditions:

(i) any $\epsilon>0$ for $r_{2}-\beta_{1}r_{1}\geq 0$ ,

(ii) $\epsilon>\epsilon^{*}$ for $r_{2}-\beta_{1}r_{1}\leq 0$ .

Here $\epsilon^{*}$ is a value of $\epsilon$ satisfying $r_{2}-\beta_{1}\hat{x}_{1}(\epsilon^{*})=0$ and it exists if and only if

$r_{2}-\beta_{1}(r_{1}+R)/2>0$ . (4)

$E_{2}$ is unstable if $\epsilon$ satisfies one of the indicated conditions:

(iii) any $\epsilon>0$ for $r_{1}-\alpha_{2}r_{2}+R\geq 0$ ,

(iv) $\epsilon<R(r_{1}-\alpha_{2}r_{2})/(r_{1}-\alpha_{2}r_{2}+R)=\overline{\epsilon}$ for $r_{1}-\alpha_{2}r_{2}+R<0$ .

In the following subsections, it is shown that for system (1) the value of the diffu-

sion parameter $\epsilon>0$ can be chosen so that $E_{1}^{1}$ and $E_{2}$ are unstable simultaneously,

regardless of the patch dynamics without diffusion.
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3.1 Coexistence case

First suppose that patch $X$ without diffusion is coexistent, that is,

$r_{1}-\alpha_{2}r_{2}>0$ and $r_{2}-\beta_{1}r_{1}>0$ . (5)

By Theorem 2 (i), $E_{1}^{1}$ is unstable for any $\epsilon>0$ and by Theorem 2 (iii), so is $E_{2}$ for

any $\epsilon>0$ . Therefore, system (1) is always persistent for any diffusion rate when two

competitors are coexistent without diffusion.

When $\epsilon=0,$ $E_{1}^{1}=(r_{1}, R;0)$ and $E_{2}=(0,0;r_{2})$ are unstable. Therefore, they

continue to be unstable for sufficiently small $\epsilon>0$ and the system is persistent for

small $\epsilon>0$ . The above analysis shows that persistence is ensured for any $\epsilon>0$ when

the competitive patch is coexistent.

3.2 Dominance case

First, Let us consider the case where species 2 is dominant in patch $X$, that is,

$r_{1}-\alpha_{2}r_{2}\leq 0$ and $r_{2}-\beta_{1}r_{1}\geq 0$ . (6)

By Theorem 2 (i), $E_{1}^{3}$ is unstable for any $\epsilon>0$ and by Theorem 2 (iii) and (iv), so is

$E_{2}$ for any $\epsilon>0$ if $r_{1}-\alpha_{2}r_{2}+R\geq 0$ or for $\epsilon<\overline{\epsilon}$ if $r_{1}-\alpha_{2}r_{2}+R<0$ . Therefore system

(1) is persistent for any $\epsilon>0$ if $r_{1}-\alpha_{2}r_{2}+R\geq 0$ or for $\epsilon<\overline{\epsilon}$ if $r_{1}-\alpha_{2}r_{2}+R<0$ .

Next, we consider the case where species 1 is dominant in patch $X,\cdot that$ is,

$r_{1}-\alpha_{2}r_{2}\geq 0$ and $r_{2}-\beta_{1}r_{1}\leq 0$ . (7)

This case is qualitatively different from the former dominance case. For case (6), $E_{1}^{1}$

and $E_{2}$ are unstable at $\epsilon=0$ and so are they for sufficiently small $\epsilon>0$ . Therefore,

the system is persistent for small $\epsilon>0$ when species 2 is dominant. Concerning

case (7), $E_{1}^{1}$ is stable for sufficiently small $\epsilon>0$ . Therefore, we need large $\epsilon>0$ to

establish persistence for the system when species 1 is dominant. By Theorems 1 and
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2, $E_{1}^{1}$ and $E_{2}$ are unstable and the system is persistent if $\epsilon>\epsilon^{*}$ . A necessary and

sufficient condition for $\epsilon^{*}>0$ to exist is given by (4).

3.3 Bistability case

Finally, consider the case where patch $X$ is bistable, that is,

$r_{1}-\alpha_{2}r_{2}<0$ and $r_{2}-\beta_{1}r_{1}<0$ . (8)

Similarly to the last dominance case, $E_{1^{1}}$ is unstanle at $\epsilon=0$ . Therefore, we need

again large $\epsilon>0$ to attain persistence for the system.

By Theorems 1 and 2, the system is persistent for $\epsilon>\epsilon^{*}$ if $r_{2}-\alpha_{2}r_{2}+R\geq 0$ or for

$\epsilon^{*}<\epsilon<\overline{\epsilon}$ if $r_{2}-\alpha_{2}r_{2}+R<0$ . The former case implies that the system is persistent

for sufficiently large diffusion, but for the latter case so is the system for moderate

diffusion $\epsilon^{*}<\epsilon<\overline{\epsilon}$ . This may be reasonable from the biological point of view. Since

for the former case the total carrying capacity for species 1 in two patches (that is,

$r_{1}+R)$ can be large, species 1 can disperse frequently between the patches. But

for the latter case, $r_{1}+R$ is less than $\alpha_{2}r_{2}$ and the frequent dispersal does not give

much benefit for species 1. Another explanation seems to be possible. Parameter

$\alpha_{2}$ represents the competitive effect by species 2 on species $x$ . For the former case

$\alpha_{2}\leq(r_{1}+R)/r_{2}$ , but for the latter $\alpha_{2}>(r_{1}+R)/r_{2}$ . That is, for the former case

species 1 can disperse between the patches without worrying about competition with

species 2.

4 THREE-COMPETITORS CASE

Now we consider system (2) and assume that

$0<\beta_{i}<1<\alpha_{i}$ $i=1,2,3$ . (9)
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It is known that patch $X$ of system (2) satisfying (9) represents cyclic competition

with a heteroclinic cycle $\gamma_{0}$ on the boundary of the phase space [5,12,13,20,21]. We

suppose that the heteroclinic cycle $\gamma_{0}$ is an attractor, that is,

$\prod_{i=1}^{3}(\alpha;-1)>\prod_{=1}^{3}(1-\beta_{1})$ (10)

Therefore, system (2) is not permanent (persistent) $[12,13]$ without diffusion.

Further we suppose that

$\alpha_{2}\beta_{1}<1$ , (11)

$\alpha_{1}\beta_{3}<1$ . (12)

Condition (11) ensures the global stability of $E_{12}^{1}$ with respect to the positive $x_{1}yx_{2}$

face for system (2), if it exists [24]. Further, $E_{1}^{1}=(1,1;0,0)$ is globally stable in the

$x_{1}yx_{3}$ face if (12) is satisfied [24].

It is easy to show that $E_{12}^{1}$ exists [25] if and only if

$(\alpha_{2}-1)r_{1}-R\leq 0$ for any $\epsilon>0$ (13)

or

$(\alpha_{2}-1)r_{1}-R>0$ for $\epsilon<\epsilon^{*}=\frac{Rr_{1}(\alpha_{2}-1)}{(\alpha_{2}-1)r_{1}-R}$ (14)

Now we give conditions for persistence of system (2). We consider two cases, one

is the case where $E_{12}^{1}$ exists and the other is the case where there exists no $E_{12}^{1}$ .

4.1 Persistence for the case where $E_{1^{1}2}$ exists

First suppose that $E_{12}^{1}$ exists. Then, $E_{2}$ is unstable with respect to { $(x_{1}, y;x_{2}, x_{3})$ :

$x_{1}\geq 0,$ $y\geq 0,$ $x_{2}>0,$ $x_{3}=0$ }.
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THEOREM 3.

Suppose that an equilibrium point $E_{1^{1}2}=(\overline{x}_{1},\overline{y};\overline{x}_{2},0)$ exists for system (2), Then

system (2) is persistent if and only if $E_{12}^{1}$ is unstable with respect to { $(x_{1}, y;x_{2}, x_{3})$ :

$x_{1}>0,$ $y>0,$ $x_{2}>0,$ $x_{3}\geq 0$ }.

The necessity of Theorem 3 is obvious, since some solutions starting near $E_{12}^{1}$

converge to it if it is stable.

Note that the equilibrium point $\tilde{E}_{12}^{1}=(\overline{x}_{1},\overline{y};\overline{x}_{2})$ is globally stable with respect

to $\{(x_{1}, y;x_{2}) : x_{1}>0, y>0, x_{2}>0\}[24]$ . Therefore, the instability of $E_{12}^{1}$ implies

that the solution starting near the equilibrium point (not on the boundary of $R_{+}^{4}$ )

tends to go into the interior of $R_{+}^{4}$ . In fact, it can be shown that $E_{12}^{1}$ is unstable with

respect to $\{(x_{1}, y;x_{2}, x_{3}) : x_{1}>0, y>0, x_{2}>0, x_{3}\geq 0\}$ if and only if

$1-\alpha_{1}\overline{x}_{1}-\beta_{2}\overline{x}_{2}>0$ . (15)

Condition (15) imphes that $E_{12}^{1}$ is not saturated, that is, that the eigenvalue corre-

sponding to the $x_{3}$-direction is positive [12].

4.2 Persistence for the case where $E_{12}^{1}$ does not exist

Next, let us consider the case where $E_{1^{1}2}$ does not exist and $E_{2}$ is stable with respect

to $\{(x_{1}, y;x_{2}, x_{3}) : x_{1}\geq 0, y\geq 0, x_{2}>0, x_{3}=0\}$ . From (13) and (14), the following

must be satisfied.

$(\alpha_{2}-1)r_{1}-R>0$ and $\epsilon>\epsilon^{*}$ . (16)

In this case, a new heteroclinic cycle $E_{1}^{1}arrow E_{2}arrow E_{3}arrow E_{1^{1}}arrow\cdots$ exists for system

(2), which we denote by $\gamma$ . We can prove the following:

THEOREM 4.
Suppose that system (2) does not have an equilibrium point $E_{12}^{1}$ , Then a hetero-

clinic cycle $\gamma$ exists for (2). System (2) is persistent if and only if $\gamma$ is a repellor.
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Example. Let $\alpha_{i}=3,$ $\beta_{i}=0.2,$ $r_{i}=R=1(i=1,2,3)$ which satisfy (9), (11) and

(12). Further condition (10) is also satisfied. Therefore, an attracting heteroclinic

cycle $\gamma_{0}$ appears in system (2) with $\epsilon=0$ and patch $X$ is not persistent. These

parameters satisfy (14) if $\epsilon<\epsilon^{*}=2$ and $E_{12}^{1}$ exists for any $\epsilon<2$ . The instability

condition (15) on $E_{12}^{1}$ is trivially satisfied for small $\epsilon>0$ and system (2) is persistent

by Theorem 3. Numerical simulations suggest that the condition (15) is satisfied for

any $\epsilon<2$ and system (2) may be persistent.

On the other hand, for $\epsilon\geq 2,$ $E_{12}^{1}$ does not exist and a heteroclinic cycle $\gamma$ exists

in system (2) by Theorem 4. Numerical simulations show that $\gamma$ is a repellor for

$2<\epsilon<2.5$ and the system is persistent by Theorem 4.
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