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THEORY OF SUPER-ISOLATED SINGULARITIES
AND ITS APPLICATIONS

OSAMU SAEKI 佐伯 修

1. Introduction.

In this paper, we consider the following problem.

PROBLEM 1.1. Is there a holomorphic function germ $f$ : $C^{n},$ $0arrow C,$ $0$ with an

isolated singularity at the origin which cannot be connected to a real germ

through a topologically constant deformation?

Here, a function germ is real if it takes real values on $R^{n}\subset C^{n}$ . Note that

a holomorphic function germ $f$ : $C^{n},$ $0arrow C,$ $0$ with an isolated singularity at the

origin is connected to a real germ through a topologically constant deformation

provided that $n=2$ or that $f$ has a non-degenerate Newton principal part ([3,

11, 15]).

Our purpose of this paper is to give holomorphic function germs of three

variables which are candidates for answering the above problem positively, i.e.,

which are probably not connected to real germs through topologically constant

deformations. Our idea is to use the theory of super-isolated singularities ([8])

to reduce the problem to that of the tangent cones, which are projective curves

in $CP^{2}$ in this case. More precisely, we divide the problem into the following

two steps.
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PROBLEM 1.2. Find a class of holomorphic function germs $f$ : $C^{3},0arrow C,$ $0$ such

that a topologically constant deformation starting with $f$ always induces a topo-

logically constant deformation of the tangent cones.

PROBLEM 1.3. Find a projective curve in $CP^{2}$ which cannot be connected,

through a topologically constant deformation, to a curve defined by a real poly-

nomial.

In this paper, we answer Problem 1.3 (\S 3). As to Problem 1.2, we try to

show that the class of super-isolated singularities (SIS) ([8]) is such a class (\S 2).

However, there is still a hole to fill in. In the author’s lecture at R.I.M.S. on

March 26, 1991, he claimed that Problem 1.2 had been solved; however, it was

not correct, since the statement of Theorem 2.10 was not correct.

A large part of this paper is a survey of Luengo’s work, especially that of

\S 2. In fact, the above idea of using the theory of super-isolated singularities

to attack Problem 1.1 is due to him. Furthermore, he even claims that he has

recently solved Problem 1.1 $(n=3)$ completely. Since we unfortunately do not

know his proof, we will not discuss it in this paper.

This paper is organized as follows. In \S 2, we recall some of Luengo’s work

on super-isolated singularities. In \S 3, we give an example of a plane projective

curve which cannot have the same topological type as a curve defined by a

real polynomial. In fact, we will construct an arrangement of lines with this

property. Furthermore, at the end of \S 3, we discuss the relation to our original
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problem concerning the topological types (the right equivalence and the right-left

equivalence) of holomorphic function germs with isolated singularities (cf. [15]).

In \S 4, we discuss other applications of the theory of super-isolated singularities.

The author wishes to express his sincere gratitude to Prof. Luengo for his

kind help.

2. Super-isolated singularities.

This section is a survey of Luengo’s work on super-isolated singularities. Thus

we omit most of the proofs. For details, see [8].

DEFINITION (LUENGO [8]). Let (V, $0$ ) $\subset(C^{3},0)$ be the germ of a hypersurface

singularity. We say that (V, $0$ ) is a super-isola $t$ed singularity (SIS) if $\tilde{V}$ is smooth

along $C=\pi^{-1}(0)$ , where $\pi$ : $\tilde{V}arrow V$ is the monoidal transformation with center

0. Note that a SIS is always an isolated singularity.

We can define a SIS of an arbitrary dimension. However, we consider only

two-dimensional ones in this paper.

Let $f\in C\{X, Y, Z\}$ be the defining function of $V$ , i.e. $V=f^{-1}(0)$ , and let

$m=mult(V, 0)$ (the multiplicity of $V$ at $0$ ). Then we can decompose $f$ into the

sum of homogeneous polynomials

$f=f_{m}+f_{m+1}+\cdots$ ,

where $f_{i}$ is of degree $i$ . Let $\tilde{\pi}$ : $C^{3}-arrow C^{3}$ be the monoidal transformation with

center $0$ . Then we have $\tilde{V}=\sim\pi^{-1}(V),$ $\pi=\tilde{\pi}|\tilde{V}$ and $C=\pi^{-1}(0)\subset CP^{2}=$

$3$
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$\overline{\pi}^{-1}(0)$ . $C$ is called the tangent cone of $V$ and it is known that $C$ is identified

with the curve $f_{m}^{-1}(0)\subset CP^{2}$ . Note that $\tilde{V}$ is tangent to $CP^{2}$ at the singular

points of $C$ .

$arrow^{\pi}$

LEMMA 2.1. (V, $0$ ) is a $SIS$ ifand only if Sing$(C)\cap f_{m+1}^{-1}(0)=\emptyset$ , where Sing$(C)$

is $tl_{1}e$ singular point set of the projective $c$ urve $C\subset CP^{2}$ .

REMARK 2.2. Using this lemma, we can construct a SIS from any projective

curve $C$ in $CP^{2}$ with isolated singularities. For example, it is constructed as

follows. Let $h\in C[X, Y, Z]$ be the homogeneous polynomial of degree $m$ which

defines $C$ and let $l\in C[X, Y, Z]$ be homogeneous of degree 1 such that Sing$(C)\cap$

$l^{-1}(0)=\emptyset$ . Then $f=h+l^{m+1}$ defines a SIS in $C^{3}$ . The topological type of $f$

does not depend on the choice of $l$ . In fact, as we see later (Remark 2.13), the

topological type of a SIS is determined by its tangent cone $C$ .
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PROPOSITION 2.3(IOMDIN $[5|$ ). We have

$\mu(V, 0)=(nz-1)^{3}+\sum_{p\in Sing(C)}\mu(C,p)$
,

where $m=mult(V, 0)$ , $\mu(V, 0)$ is the Milnor $numb$er of $V$ at $0$ and $\mu(C, p)$ is the

local Milnor number of $C$ at $p$ .

REMARK 2.4. Siersma [16] and Stevens [17] have independently obtained a

formula for the characteristic polynomial of the monodromy of $a$ SIS. It is ex-

pressed in terms of the multipllcity $m$ and the characteristic polynomials of the

local monodromy of $C$ at its singular points.

Let $C=\pi^{-1}(0)=C_{1}\cup\cdots\cup C_{r}$ . where $C_{i}$ are the irreducible components

of $C$ , and let $m_{i}$ be the degree of $C_{i}$ .

LEMMA 2.5. If we consider $C=C_{1}\cup\cdots\cup C_{f}$ as embedded in $\overline{V}$ , then we have

$C_{i}\cdot C_{j}=m_{i}m_{j}$ $(i\neq j)$

$C_{i}\cdot C_{i}=-m(m-m_{i}+1)(\leq-2)$ .

COROLLARY 2.6. $\pi$ : $\tilde{V}arrow V$ is the $m$inimal resol$u$ tion of $V$ .

COROLLARY 2.7. $Z=C_{1}+\cdots+C_{r}$ is the fundamen$tal$ cycle of the (minimal)

resolution $\pi$ : $\tilde{V}arrow V$ , and $Z\cdot Z=-m$ .

REMARK 2.8. The concept of the fundamental cycle was introduced by Artin

[1]. Note that it is uniquely determined by the intersection matrix $(C:\cdot C_{j})$ of

the resolution.
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LEMMA 2.9 (WAGREICH [18]). Let $\alpha$ : $\overline{W}arrow W$ be a resolution of a normal

two-dimensional singularity $(W, 0)$ . Then mult $(W, 0)\geq-Z\cdot Z$ , where $Z$ is the

$fu$ndamental cycle of the resolution $\alpha$ .

Now we can state one of our main theorems of this section.

THEOREM 2.10. Let $p$ : $Barrow T$ be a topologically constant (analytic) defor-

mation of a $SIS(V, 0)$ with the smooth base $T_{\}}$ and let $\sigma$ : $Tarrow B$ be th $e$

section $wh$ich picks the singular points. Then $T’=\{t\in T;mult(V_{t}, \sigma(t))=$

$mult(V, 0)$ and $(V_{t}, \sigma(t))$ is a $SIS.$ } is a (non-empty) $Z$ariski open set in $T$ ,

$rvh$ere $V_{t}=p^{-1}(t)$ .

Ou tline ofProof. By assumption, $(V_{t}, \sigma(t))$ has the same topological type

as (V, $0$ ). Thus, by Neumann [10], they have homeomorphic resolutions. Then

they have the same fundamental cycle and Lemma 2.9 and Corollary 2.7 imply

that mult $(V_{t}, \sigma(\mathfrak{i}))\geq mult(V, 0)$ . If $t$ is sufficiently close to $0,$ $mult(V_{t}, \sigma(t))\leq$

$mult(V, 0)$ . Thus mult $(V_{t}, \sigma(t))=mult(V, 0)$ for all $t$ sufficiently close to $0$ .

Furthermore, by Lemma 2.1, (V, $\sigma(t)$ ) is a SIS if $t$ is sufficiently $c$lose to $0$ . Il

REMARK 2.11. In the author’s lecture at R.I.M.S. on March 26, 1991, he claimed

that $T=T$ in Theorem 2.10. However, it was not correct, since the above proof

does not guarantee that $T’=T$.

Let $F=F(X, Y, Z,t)=0$ be the defining equation of $B$ . Then by the
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above theorem we can write

$F=F_{m}+F_{m+1}+\cdots$ ,

where $F_{i}$ is homogeneous of degree $i$ with respect to $X,$ $Y$ and $Z$ . Thus we have

a family of plane projective curves as follows.

$D=F_{m}^{-1}(O)(\subset CP^{2}\cross T’)$

$\downarrow\overline{p}$

$T’$

Note that $(V_{t}, \sigma(t))$ is a SIS with tangent cone $C_{t}=\overline{p}^{-1}(t)$ .

THEOREM 2.12. $\overline{p}$ is equisingular, $i.e$ . there exists a continuous family of home-

omorphisms $\varphi_{t}$ : $CP^{2}arrow CP^{2}(t\in T’)$ such that $\varphi 0=id$ and $\varphi_{t}(C_{0})=C_{t}$ .

Proof. Since $p|p^{-1}(T’)$ : $p^{-1}(T’)arrow T’$ is a topologically constant

deformation, it is $\mu$-constant. Furthermore, by Theorem 2.10, it is equimultiple.

Thus, by Proposition 2.3, the total Milnor number of $\overline{p}^{-1}(t)$ is independent of

$t\in T’$ . It is known that such a family of plane projective curves is equisingular.

Il

REMARK 2.13. For a SIS (V, $0$ ) with multiplicity $m$ , we have

$\mu^{(3)}=\mu(V, 0)$ (cf. Proposition 1.2)

$\mu^{(2)}=(m-1)^{2}$

$\mu^{(1)}=m-1$ .
Thus a family of SIS’s is topologically constant if and only if it is $\mu^{*}$ -constant.

The author has been informed that Luengo has obtained the following.
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THEOREM 2.14. Let (V, $0$ ) and (V’, $0$ ) $\subset(C^{3},0)$ be isolated hypersurface $si_{11-}$

$gu$larities. If the link 3-manifolds of $V$ and $V’$ are homeomorphic and (V, $0$ ) is a

$SIS$, then (V’, $0$ ) is also a $SIS$ and their tangent cones $C$ and C’ have the same

local topological type, $i.e$. there exist open sets $U\supset C$ and $U’\supset C’$ in $CP^{2}$ and

a homeomorphism $\varphi$ : $Uarrow U’$ such that $\varphi(C)=C’$ .

If this theorem is true, we see immediately that $T’=T$ in Theorem 2.10,

which solves Problem 1.2 in \S 1.

3. Topologically non-real curves in $CP^{2}$ .

In this section, we prove the following.

PROPOSITION 3.1. There exists a (reduced) plane projective curve $C(\subset CP^{2})$

such that if a plane projective curve C’ has th$e$ same topological type as $C$ , i.e.

if there exists a homeomorphism $\varphi$ : $CP^{2}arrow CP^{2}$ with $\varphi(C)=C’$ , then $C’$

cannot be defined by any real polynomials.

Before proving Proposition 3.1, we discuss how to construct a potential

example of a topologically non-real germ of a holomorphic function. Using a

curve $C$ as in Proposition 3.1, we can construct, as in Remark 2.2, a germ of a

holomorphic function $f:C^{3},0arrow C,$ $0$ with an isolated singularity at the origin

whose tangent cone is identified with $C$ . Then, assuming $T=T$ in Theorem

2.10, we see that $f$ cannot be connected to a real germ through a topologically

constant deformation, since its tangent cone $C$ is non-real. Even if $T’\neq T$
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in Theorem 2.10, we see that $f$ cannot be connected, through a topologically

constant deformation, to a real germ which is a SIS.

Before we proceed to the proof of Proposition 3.1, we must note that Luengo

has independently found a non-real curve. His example is an irreducible rational

curve of degree 11 with exactly one singularity, which is of type $x^{4}+y^{31}=0$ . He

proves that this curve is topologically non-real, using his theory as in [7] with

the help of a computer. Since his example seems difficult, we give here another

example whose non-realness we can prove seemingly much easier.

Proof of Proposition 3.1. We will construct an arrangement $A(\subset CP^{2})$

which cannot have the same topological type as a curve defined by a real poly-

nomial. We note that an arrangement is a reduced curve in $CP^{2}$ all of whose

irreducible components are lines.

First consider the arrangement $A_{0}$ defined by the equation $(x^{3}-y^{3})(y^{3}-$

$z^{3})(z^{3}-x^{3})=0$ . We see easily that $A_{0}$ consists of 9 lines and that it has 12

singularities, all of which are triple points.

LEMMA 3.2 (MELCHIOR [9]). Let $A’$ be an arrangement each of whose com-

ponent is defined by a real $p$olynom$ial$. Suppose $A’$ has more than 1 singular

points. Then $A’$ has more than 2 double points.

Lemma 3.2 can be proved by an easy calculation of the Euler characteristic

of $RP^{2}$ by means of the cell decomposition associated with $A’$ . For details see

$[2, 4]$ .
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In view of Lemma 3.2, we see that $A_{0}$ cannot have the same topological

type as an arrangement each of whose component is defined by a real polynomial,

dthough $A_{0}$ itself is defined by a real polynomial.

Now we construct a desired arrangement by adding several lines to $A_{0}$ . Let

$q_{0)}\cdots q_{11}\in A_{0}$ be the singular points of $A_{0}$ . Remember that all these points

are triple points of $A_{0}$ . Define the arrangements $A_{i}(i=1, \cdots , 11)$ inductively

as follows. Set $A_{1}=A_{0}\cup l_{1,1}$ , where $l_{1,1}$ is a line which passes through $q_{1}$ but

does not pass through the other singular points of $A_{0}$ . Set $A;=A_{i-1} \cup\bigcup_{j=1}^{i}l_{i,j}$ ,

where $l_{i,1},$ $\cdots l_{i,i}$ are distinct lines each of which passes through $q_{i}$ but does not

pass through the other singular points of $A_{i-1}$ .

Now we show that $A=A_{11}$ is a desired non-real plane projective curve.

Suppose that a plane projective curve $C$ defined by a real polynomial has the

same topological type as $A$ . Then we see easily that $C$ is also an arrangement.

Since $C$ is defined by a real polynomial, $C$ is invariant under the conjugation

$\gamma$ : $CP^{2}arrow CP^{2}$ ; i.e., $\gamma(C)=C$ . On the other hand, for $3\leq\forall_{m}\leq 14,$ $C$ has

exactly one m-fold point $p_{m}$ . ( $\{q_{0}, \cdots q_{11}\}$ corresponds to $\{p_{3}, \cdots p_{14}\}$ by a

homeomorphism from $A$ to $C.$ ) Thus we must have $\gamma(p_{m})=p_{m}$ , which implies

that $p_{m}\in RP^{2}\subset CP^{2}$ $(3 \leq m\leq 14)$ . Hence, the subarrangement $C_{0}$ of $C$

which corresponds to the subarrangement $A_{0}$ of $A$ has all its singular points on

$RP^{2}$ . This means that every component of $C_{0}$ is defined by a real polynomial.

Since $C_{0}$ , which is homeomorphic to $A_{0}$ , has 12 singular points none of which is

a double point, this contradicts to Lemma 3.2. This completes the proof. $||$
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REMARK 3.3. The arrangement which we constructed is of degree 75 and has

2333 singular points. If we construct a SIS (V, $0$ ) from this arrangement, we have

$\mu(V, 0)=408363$ , by Proposition 2.3. Even if we use the example of Luengo,

which is of degree 11, we have $\mu=1090$ , which is very large. We do not know

if there exists a non-real curve of degree less than 11.

Before ending this section, we must mention our original problem which

led us to consider Problem 1.1. In [15], we defined the topological right equiva-

lence and $right$-left equivalence between two germs of holomorphic functions with

isolated singularities. The right equivalence implies the right-left equivalence.

However, we do not know if the converse is true. This is our original problem.

By King [6], if we can prove that, for any $f$ : $C^{n},$ $0arrow C,$ $0,$ $f$ and its conjugate

$\overline{f}$, which is defined by $\overline{f}(z)=\overline{f(\sim)}$, are right equivalent, then we can deduce

that the right-left equivalence implies the right equivalence. Furthermore, we

see easily that if $f$ is connected to a real germ through a topologically constant

deformation, then $f$ and $\overline{f}$ are right equivalent. If we consider the holomorphic

function germ $f$ : $C^{3},0arrow C,$ $0$ (SIS) constructed from a non-real plane projec-

tive curve as in this section, we do not know if it can be connected to a real

germ. Thus there is a possibility that $f$ and $\overline{f}$ may not be right equivalent. If

we can show that $f$ and $\overline{f}$ are not right equivalent (by another method), then

it implies that $f$ cannot be connected to a real germ through a topologically

constant deformation.

11



34

4. Other applications.

In [8], Luengo introduced the concept of a SIS to show that the $\mu$-constant

stratum in the miniversal deformation of an isolated hypersurface singularity is

not necessarily smooth. His idea was to reduce the problem to that of the tangent

cones. He showed that for a SIS, the topologically constant stratum is (locally)

isomorphic to the equisingular stratum of the tangent cone and he constructed

a plane projective curve whose equisingular stratum is not smooth. After that,

Stevens [17] showed that, in this case, the topologically constant stratum is a

component of the $\mu$-constant stratum, thus solving the above problem.

Here, we give another application of the theory of super-isolated singulari-

ties concerning the following two conjectures.

CONJECTURE 4.1 (YAU [20]). Let (V, $0$ ) and $(W, 0)\subset(C^{3},0)$ be isolated hy-

persurface singularities, i.e. $V=f^{-1}(0)$ and $W=g^{-1}(0)$ for some holomorphic

function germs $f,$ $g$ : $C^{3},0arrow C,$ $0$ with isolated singularities at the origin.

Then (V, $0$ ) and $(W, 0)$ are topologically equivalent, $i.e.$ , there exists a germ

of a homeomorphism $\varphi$ : $C^{3},0arrow C^{3},0$ such that $\varphi(V)=W$ , if and only if

$\pi_{1}(K(V))\cong\pi_{1}(K(W))$ and $\Delta_{V}(t)=\Delta_{W}(t)$ , where $K(V)$ and $K(W)$ are the

link 3-manifolds of $V$ and $W$ respectively, and $\Delta_{V}(t)$ and $\Delta_{W}(t)$ are the char-

acteristic polynomials of the monodromy for $V$ and $W$ respectively.

CONJECTURE 4.2 (cf. O’SHEA [13, p.124]). If $f$ and $g$ : $C^{n},$ $0arrow C,$ $0$ have

the same topological type, then they are embedded in a topologically constant
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family.

We note that the both conjectures are true for weighted homogeneous iso-

lated hypersurface singularities in $C^{3}$ ([14, 19]).

PROPOSITION 4.3. There exist holomorphic $funct$ion germ$sf$ and $g$ : $C^{3},0arrow$

$C,$ $0$ with isolated singularities at the origin which do not satisfy either Conjec-

ture 4.1 or Conjecture 4.2; i.e., either of them is false.

Proof. Zariski [21] showed that there exist plane projective curves $C_{1}$

and $C\circ\sim$ of degree 6 such that

(i) $C_{1}\cdot(i=1,2)$ has exactly six singularities, all of which are cusps,

(ii) $\tau_{\iota_{1}}(CP^{2}-C_{1})\not\cong\pi_{1}(CP^{2}-C_{2})$ .

$C_{1}$ has the six cusps on a conic, while $C_{2}$ does not.

Construct holomorphic function germs $f_{i}$ : $C^{3},0arrow C,$ $0(i=1,2)$ from $C_{i}$

as in Remark 2.2. $f_{1}$ and $f_{2}$ define SIS’s and we see that $K(V)$ is diffeomorphic

to $K(W)$ and that $\Delta_{V}(t)=\Delta_{W}(t)$ (cf. [16, 17]), where $V=f_{1}^{-1}(0)$ and

$W=f_{\underline{9}}^{-1}(0)$ . However, in view of Theorem 2.12, $f_{1}$ cannot be connected to

$f_{2}$ through a topologically constant deformation, since their tangent cones have

different topological types. II
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