Torelli theorem for certain rational surfaces and root system of type A

J．Matsuzawa，Кyoto University

For an integer $n \geqslant 2$ ，let Σ_{n} be the n－th Hirzebruch surface defined by

$$
\begin{equation*}
\left\{\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right)(s: t) \in \mathbb{P}^{2} \times \mathbb{P}^{1} \mid s^{n} \zeta_{0}=t^{n} \zeta_{1}\right\} \tag{0.1}
\end{equation*}
$$

where \mathbb{P}^{k} is n －dimensional complex projective space．Let X_{n} be a surface obtained by blowing up $n+1$ points of Σ_{n} and D be an anti－canonical divisor on X_{n} such that D consists of four nonsingular rational curves and its intersection diagram is a circle（thus D forms a square）．

We study the isomorphism classes of the pairs $\left(X_{n}, D\right)$ ．The isomorphism classes can be characterized in terms of the root system of type A ．E．Looijenga in－ vestigated the isomorphism classes of rational surfaces with anti－canonical divisors ［L］．We deal with another class of rational surfaces．The method and formulation are very similar to those of Looijenga＇s．

1．Hirzebruch surfaces

We assume $n \geqslant 3 . \Sigma_{n}$ is a subvariety of $\mathbf{P}^{\mathbf{2}} \times \mathbf{P}^{\mathbf{1}}(\mathrm{cf}(0.1))$ ．Let $\pi: \Sigma_{n} \longrightarrow \mathbf{P}^{1}$ be the second projection．Σ_{n} is a \mathbb{P}^{1}－bundle over \mathbb{P}^{1} ．Let F be a fiber of the projection $\pi: \Sigma_{n} \longrightarrow \mathbf{P}^{1}$ and S be the section defined by $\zeta_{0}=\zeta_{1}=0$ ．
Definition．we say that $n+1$ points P_{1}, \ldots, P_{n+1} of Σ_{n} are in＇general posi－ tion＇if they satisfy the following conditions：（1）$P_{i} \neq P_{j}$ for $i \neq j$ and（2）there exists a nonsingular curve in the complete linear system $|n F+S|$ passing through P_{1}, \ldots, P_{n+1} ．

Remark．If P_{1}, \ldots, P_{n+1} are in general position，then $P_{i} \notin S$ and no two of P_{i} are on a fiber．

Let $p: X_{n} \longrightarrow \Sigma_{n}$ be the morphism obtained by blowing up $n+1$ points P_{1}, \ldots, P_{n+1} in general position．

Lemma 1．1．If D is an anti－canonical divisor on X_{n} and satisfies the following conditions：
（1）D is the strict transform of an anti－canonical divisor D^{\prime} on Σ_{n} ，
(2) D^{\prime} consists of four irreducible components and its intersection diagram is a circle,
(3) P_{1}, \ldots, P_{n+1} are on only one component of D^{\prime} and not on other components,
then

$$
D=F_{1}+F_{2}+S+C
$$

where F_{i} is a strict transform of a fiber of the projection $\pi: \Sigma_{n} \longrightarrow \mathbf{P}^{1}, S$ is the strict transform of the $(-n)-$ section of Σ_{n} and C is the strict transform of the unique nonsingular curve of $|n F+S|$ passing through P_{1}, \ldots, P_{n+1}.
Notation. We say that an anti-canonical divisor D on X_{n} is of '\#-type' if it satisfies the condition of lemma 1.1. We denote by F_{0} and F_{∞} the components of D which are the strict transforms of the fibers of π.

2. Homology and root system

Let X_{n} and $D=F_{0}+F_{\infty}+S+C$ be as in $\S 1$. Consider the homology exact sequence:

$$
\begin{aligned}
& \xrightarrow{\partial_{.}} H_{2}\left(X_{n}-D ; \mathbb{Z}\right) \xrightarrow{\text { i. }} H_{2}\left(X_{n} ; \mathbb{Z}\right) \xrightarrow{\dot{j}_{.}} H_{2}\left(X_{n}, X_{n}-D ; \mathbb{Z}\right) \\
& \rightarrow \quad \cdots
\end{aligned}
$$

We extend the intersection form in $H_{2}\left(X_{n} ; \mathbb{Z}\right)$ to $H_{2}\left(X_{n} ; \mathbb{Z}\right) \underset{\mathbb{Z}}{\otimes} \mathbb{R}$. Let

$$
Q=\operatorname{ker} j_{*} \subset H_{2}\left(X_{n} ; \mathbb{Z}\right)
$$

and

$$
R=\{\alpha \in Q \mid \alpha \cdot \alpha=-2\} .
$$

Lemma 2.1. R is a root system of type A_{n} in $Q \underset{\mathbb{Z}}{\otimes} \mathbb{R}$ and Q is generated by R. The set $\left\{e_{i}-e_{i-1} \mid 1 \leqslant i \leqslant n\right\}$ is the basis of R, where e_{i} is the class of the exceptional curve $E_{i}=p^{-1}\left(P_{i}\right)$.

We now have the short exact sequence:

$$
\begin{equation*}
0 \rightarrow H_{3}\left(X_{n}, X_{n}-D ; \mathbb{Z}\right) \xrightarrow{\partial} H_{2}\left(X_{n}-D ; \mathbb{Z}\right) \xrightarrow{i} Q \rightarrow 0 . \tag{2.1}
\end{equation*}
$$

Lemma 2.2 (K.Irie).

$$
H_{3}\left(X_{n}, X_{n}-D ; \mathbb{Z}\right) \simeq \mathbb{Z}
$$

Let ε be the generator of $H_{3}\left(X_{n}, X_{n}-D ; \mathbb{Z}\right)$. We next consider a meromorphic 2 -form on X_{n} which has poles only along D.
Lemma 2.3. There exists a unique meromorphic 2 -form ω on X_{n} such that
(1) ω has poles only along D,
(2) $\omega\left(\partial_{*}(\varepsilon)\right)=1$.

Furthermore, we can chose an affine coordinate z on $C(\subset D)$ such that $F_{0} \cap C=$ $0, F_{\infty} \cap C=\infty$ and

$$
\operatorname{Res}_{C} \omega=\frac{1}{(2 \pi i)^{2}} \frac{d z}{z}
$$

It follows from this lemma, we can define a character $\chi: Q \longrightarrow \mathbb{C}^{*}$ by

$$
\chi\left(i_{*}[\Gamma]\right)=\exp 2 \pi i \int_{\Gamma} \omega,
$$

where $\Gamma \in H_{2}\left(X_{n}-D ; \mathbb{Z}\right)$.

3. Torelli theorem for the pair $\left(X_{n}, D\right)$

We first consider the value of χ at the class $e_{i}-e_{j} \in Q$, where e_{i} and e_{j} are the homology classes of the exceptional curves $E_{i}=p^{-1}\left(P_{i}\right)$ and $E_{j}=p^{-1}\left(P_{j}\right)$ respectively. Let $B_{i}=E_{i} \cap C$ and let T be a closed tubular neighborhood of C in X_{n} such that $T \cap E_{i}$ and $T \cap E_{j}$ are fibers. Let γ be an injective path in C from B_{i} to B_{j} and let

$$
\Gamma_{i, j}=\left.\left(E_{i} \backslash\left(E_{i} \cap T\right)\right) \cup \partial T\right|_{\gamma} \cup\left(E_{j} \backslash\left(E_{j} \cap T\right)\right) .
$$

We can take the orientation such that $\Gamma_{i, j}$ is homologous to $E_{i}-E_{j}$ in X_{n}. Hence we have

$$
i_{*}\left(\left[\Gamma_{i, j}\right]\right)=e_{i}-e_{j} .
$$

Since E_{i} and E_{j} are the inverse image of the points P_{i} and P_{j} respectively, we have

$$
\int_{E_{i} \backslash\left(E_{i} \cap T\right)} \omega=\int_{E_{j} \backslash\left(E_{j} \cap T\right)} \omega=0
$$

Therefore

$$
\int_{\Gamma_{i, j}} \omega=\int_{\left.\partial T\right|_{\gamma}} \omega .
$$

By the residue formula, we have

$$
\begin{aligned}
\int_{\left.\partial T\right|_{\gamma}} \omega & =2 \pi i \int_{\gamma} \operatorname{Res}_{C} \omega \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z} \\
& =\frac{1}{2 \pi i} \int_{t_{i}}^{t_{j}} \frac{d z}{z} \\
& =\frac{1}{2 \pi i} \log \frac{t_{j}}{t_{i}} \quad(\bmod \mathbb{Z})
\end{aligned}
$$

where t_{i} and t_{j} are the affine coordinates of the points B_{i} and B_{j} respectively. Then we now have

$$
\begin{aligned}
\chi\left(e_{i}-e_{j}\right) & =\exp 2 \pi i \int_{\Gamma_{i, j}} \omega \\
& =\frac{t_{j}}{t_{i}}
\end{aligned}
$$

The important point is that this is the cross ratio of $C \cap F_{0}, C \cap F_{\infty}, B_{j}$ and B_{i}. Thus we have the theorem of Torelli type.

Theorem. Let X_{n} and X_{n}^{\prime} be the surfaces defined in $\S 1$ and let D and D^{\prime} be anticanonical divisors of \#-type on X_{n} and X_{n}^{\prime} respectively (cf. notation in §1). Let denote root lattices by Q and Q^{\prime}, root systems by R and R^{\prime}, and characters by χ and χ^{\prime} defined as in $\S 2$ for X_{n} and X_{n}^{\prime} respectively. If $\varphi: H_{2}\left(X_{n} ; \mathbb{Z}\right) \rightarrow H_{2}\left(X_{n}^{\prime} ; \mathbb{Z}\right)$ is an isometry such that
(1) $\varphi\left(\left[F_{i}\right]\right)=\left[F_{i}^{\prime}\right]$,
(2) $\varphi([C])=\left[C^{\prime}\right]$,
(3) $\varphi(R)=R^{\prime}$,
(4) $\varphi^{*}\left(\chi^{\prime}\right)=\chi$,
then there exists a unique isomorphism $\Phi: X_{n} \rightarrow X_{n}^{\prime}$ which maps F_{i} to F_{i}^{\prime} and C to C^{\prime} and induces φ.

REFERENCE

[L] E.Looijenga, Rational surfaces with anti-canonical cycle, Annals of Math. 114 (1981), 267-322.
[M] J.Matsuzawa, Monoidal transformations of Hirzebruch surfaces and Weyl groups of type C, J.Fac.Sci.Univ. Tokyo 35 (1988), 425-429; Correction, J.Fac.Sci.Univ. Tokyo 36 (1989), p. 827.

