Torelli theorem for certain rational surfaces and root system of type A

J.MATSUZAWA, KYOTO UNIVERSITY

For an integer $n \ge 2$, let Σ_n be the *n*-th Hirzebruch surface defined by

(0.1)
$$\{(\zeta_0:\zeta_1:\zeta_2)(s:t)\in \mathbb{P}^2\times\mathbb{P}^1|s^n\zeta_0=t^n\zeta_1\},\$$

where \mathbb{P}^k is n-dimensional complex projective space. Let X_n be a surface obtained by blowing up n + 1 points of Σ_n and D be an anti-canonical divisor on X_n such that D consists of four nonsingular rational curves and its intersection diagram is a circle (thus D forms a square).

We study the isomorphism classes of the pairs (X_n, D) . The isomorphism classes can be characterized in terms of the root system of type A. E.Looijenga investigated the isomorphism classes of rational surfaces with anti-canonical divisors [L]. We deal with another class of rational surfaces. The method and formulation are very similar to those of Looijenga's.

1. HIRZEBRUCH SURFACES

We assume $n \ge 3$. Σ_n is a subvariety of $\mathbb{P}^2 \times \mathbb{P}^1$ (cf (0.1)). Let $\pi : \Sigma_n \longrightarrow \mathbb{P}^1$ be the second projection. Σ_n is a \mathbb{P}^1 -bundle over \mathbb{P}^1 . Let F be a fiber of the projection $\pi : \Sigma_n \longrightarrow \mathbb{P}^1$ and S be the section defined by $\zeta_0 = \zeta_1 = 0$.

DEFINITION. we say that n + 1 points P_1, \ldots, P_{n+1} of Σ_n are in 'general position' if they satisfy the following conditions: $(1)P_i \neq P_j$ for $i \neq j$ and (2) there exists a nonsingular curve in the complete linear system |nF + S| passing through P_1, \ldots, P_{n+1} .

REMARK. If P_1, \ldots, P_{n+1} are in general position, then $P_i \notin S$ and no two of P_i are on a fiber.

Let $p: X_n \longrightarrow \Sigma_n$ be the morphism obtained by blowing up n+1 points P_1, \ldots, P_{n+1} in general position.

LEMMA 1.1. If D is an anti-canonical divisor on X_n and satisfies the following conditions:

(1) D is the strict transform of an anti-canonical divisor D' on Σ_n ,

- (2) D' consists of four irreducible components and its intersection diagram is a circle,
- P₁,..., P_{n+1} are on only one component of D' and not on other components,

then

$$D = F_1 + F_2 + S + C,$$

where F_i is a strict transform of a fiber of the projection $\pi : \Sigma_n \longrightarrow \mathbb{P}^1$, S is the strict transform of the (-n)- section of Σ_n and C is the strict transform of the unique nonsingular curve of |nF + S| passing through P_1, \ldots, P_{n+1} .

NOTATION. We say that an anti-canonical divisor D on X_n is of '#-type' if it satisfies the condition of lemma 1.1. We denote by F_0 and F_{∞} the components of D which are the strict transforms of the fibers of π .

2. HOMOLOGY AND ROOT SYSTEM

Let X_n and $D = F_0 + F_\infty + S + C$ be as in §1. Consider the homology exact sequence:

$$\begin{array}{cccc} \cdots & \to & H_3(X_n; \mathbb{Z}) & \to & H_3(X_n, X_n - D; \mathbb{Z}) \\ & & & \parallel \\ \stackrel{0}{\bullet} & & \\ \end{array} \\ \xrightarrow{\theta_{\bullet}} & H_2(X_n - D; \mathbb{Z}) & \xrightarrow{i_{\bullet}} & H_2(X_n; \mathbb{Z}) & \xrightarrow{j_{\bullet}} & H_2(X_n, X_n - D; \mathbb{Z}) \end{array}$$

We extend the intersection form in $H_2(X_n; \mathbb{Z})$ to $H_2(X_n; \mathbb{Z}) \bigotimes_{\mathbb{Z}} \mathbb{R}$. Let

 $Q = \ker j_* \subset H_2(X_n; \mathbb{Z})$

and

$$R = \{ \alpha \in Q | \alpha \cdot \alpha = -2 \}.$$

LEMMA 2.1. R is a root system of type A_n in $Q \bigotimes_{\mathbb{Z}} \mathbb{R}$ and Q is generated by R. The set $\{e_i - e_{i-1} | 1 \leq i \leq n\}$ is the basis of R, where e_i is the class of the exceptional curve $E_i = p^{-1}(P_i)$.

We now have the short exact sequence:

(2.1)
$$0 \to H_3(X_n, X_n - D; \mathbb{Z}) \xrightarrow{\partial_*} H_2(X_n - D; \mathbb{Z}) \xrightarrow{i_*} Q \to 0.$$

Lemma 2.2 (K.Irie).

 $H_3(X_n, X_n - D; \mathbb{Z}) \simeq \mathbb{Z}$

Let ε be the generator of $H_3(X_n, X_n - D; \mathbb{Z})$. We next consider a meromorphic 2-form on X_n which has poles only along D.

LEMMA 2.3. There exists a unique meromorphic 2-form ω on X_n such that

- (1) ω has poles only along D,
- (2) $\omega(\partial_*(\varepsilon)) = 1.$

Furthermore, we can chose an affine coordinate z on $C(\subset D)$ such that $F_0 \cap C = 0$, $F_{\infty} \cap C = \infty$ and

$$\operatorname{Res}_C \omega = \frac{1}{(2\pi i)^2} \frac{dz}{z}.$$

It follows from this lemma, we can define a character $\chi: Q \longrightarrow \mathbb{C}^*$ by

$$\chi(i_*[\Gamma]) = \exp 2\pi i \int_{\Gamma} \omega,$$

where $\Gamma \in H_2(X_n - D; \mathbb{Z})$.

3. TORELLI THEOREM FOR THE PAIR (X_n, D)

We first consider the value of χ at the class $e_i - e_j \in Q$, where e_i and e_j are the homology classes of the exceptional curves $E_i = p^{-1}(P_i)$ and $E_j = p^{-1}(P_j)$ respectively. Let $B_i = E_i \cap C$ and let T be a closed tubular neighborhood of C in X_n such that $T \cap E_i$ and $T \cap E_j$ are fibers. Let γ be an injective path in C from B_i to B_j and let

$$\Gamma_{i,j} = (E_i \setminus (E_i \cap T)) \cup \partial T|_{\gamma} \cup (E_j \setminus (E_j \cap T)).$$

We can take the orientation such that $\Gamma_{i,j}$ is homologous to $E_i - E_j$ in X_n . Hence we have

$$i_*([\Gamma_{i,j}]) = e_i - e_j.$$

Since E_i and E_j are the inverse image of the points P_i and P_j respectively, we have

$$\int_{E_i \setminus (E_i \cap T)} \omega = \int_{E_j \setminus (E_j \cap T)} \omega = 0.$$
$$\int_{\Gamma_{i,j}} \omega = \int_{\partial T|_{\gamma}} \omega.$$

Therefore

By the residue formula, we have

$$\int_{\partial T|_{\gamma}} \omega = 2\pi i \int_{\gamma} \operatorname{Res}_{C} \omega$$
$$= \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z}$$
$$= \frac{1}{2\pi i} \int_{t_{i}}^{t_{j}} \frac{dz}{z}$$
$$= \frac{1}{2\pi i} \log \frac{t_{j}}{t_{i}} \pmod{\mathbb{Z}}$$

where t_i and t_j are the affine coordinates of the points B_i and B_j respectively. Then we now have

$$\chi(e_i - e_j) = \exp 2\pi i \int_{\Gamma_{i,j}} \omega$$
$$= \frac{t_j}{t_i}$$

The important point is that this is the cross ratio of $C \cap F_0, C \cap F_\infty, B_j$ and B_i . Thus we have the theorem of Torelli type.

THEOREM. Let X_n and X'_n be the surfaces defined in §1 and let D and D' be anticanonical divisors of #-type on X_n and X'_n respectively (cf. notation in §1). Let denote root lattices by Q and Q', root systems by R and R', and characters by χ and χ' defined as in §2 for X_n and X'_n respectively. If $\varphi: H_2(X_n; \mathbb{Z}) \to H_2(X'_n; \mathbb{Z})$ is an isometry such that

- (1) $\varphi([F_i]) = [F'_i],$
- (2) $\varphi([C]) = [C'],$
- (3) $\varphi(R) = R'$,
- (4) $\varphi^*(\chi') = \chi$,

then there exists a unique isomorphism $\Phi: X_n \to X'_n$ which maps F_i to F'_i and C to C' and induces φ .

REFERENCE

- [L] E.Looijenga, Rational surfaces with anti-canonical cycle, Annals of Math. 114 (1981), 267-322.
- [M] J.Matsuzawa, Monoidal transformations of Hirzebruch surfaces and Weyl groups of type C, J.Fac.Sci.Univ. Tokyo 35 (1988), 425-429; Correction, J.Fac.Sci.Univ. Tokyo 36 (1989), p. 827.