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Finite size approximation for representations of $U_{q}(\mathfrak{s}^{\widehat}\mathfrak{l}(n))$

神保道夫, 京大理

Michio Jimbo, Kyoto University

1. The present note is an elucidation of an observation made in [1] concerning
the crystal base of integrable representations of $U_{q}(\mathfrak{s}1\widehat(n))$ .

Let $\zeta T_{q}=U_{q}(\mathfrak{s}1\widehat(2))$ denote the quantized affine algebra of type $A_{1}^{(1)}$ . Just as
in the classical case $q=1$ , it admits the following two classes of representations of
particular interest:
(1) Highest weight representations. These are irreducible modules $L(A)$ with

dominant integral highest weight A. For simplicity we consider here the level 1
representations $L(A_{i})(i=0,1)$ where the $A$: denote the fundamental weights.

(2) Finite dimensional representations. These are level $0$ , non-highest weight
representations (cf.[C]). For example, the natural representation $V=C^{2}$ of
$U_{q}(s\downarrow(2))$ can be made a $U_{q}(\mathfrak{s}l\widehat(2))$-module by letting the Chevalley genera-
tors act on $V$ as follows:

$e_{0}=f_{1}=(\begin{array}{ll}0 01 0\end{array})$ , $e_{1}=f_{0}=(\begin{array}{ll}0 10 0\end{array}),$ $t_{0}=t_{1}^{-1}=(\begin{array}{ll}q^{-1} 00 q\end{array})$ ,

where $t_{i}=q^{h}:$ . (Here we follow the notations of [2]).

Given two modules $L,$ $L’$ over $U_{q}$ one can form their tensor product $L\otimes L’$

via the comultiplication

$\Delta(e_{i})=e:\otimes 1+t:\otimes e;$ , $\Delta(f_{i})=f_{i}\otimes t_{:}^{-1}+1\emptyset f:$ , $\Delta(t:)=t_{i}\otimes t_{i}$ .

Let us consider the $N$-fold tensor product $V^{\Phi N}$ of $V=C^{2}$ . Our objective here is
to show the following fact

Jim $V^{\Phi N}\sim L(A_{0})$ 目 $L(A_{1})$ , $(*)$
$Narrow\infty$

whose meaning will be made clear below.
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2. The algebra $U_{q}$ loses meaning at $q=0$ . However, Kashiwara’s theory of

crystal base [2] $teUs$ that on each integrable module $L$ one can define the action of

‘the Chevaley generators at $q=0’\tilde{e}:,\tilde{f_{i}}$ . Moreover there exists a unique canonical

base $B=B(L)$ of $L$ ‘at $q=0’$ , such that

If $\prime u,$ $v\in B$ , then $\tilde{f_{i}}\tau\iota=v\Leftrightarrow u=\tilde{e}_{i}v$

holds. For precise statements see [2]. The above situation is represented as

$uarrow^{i}v$ .

This equips $B$ with a structure of colored (by the index $i=0,1$), oriented graph,

called the crystal graph of $L$ . It is known also that the crystal base $B$ has a unique

canonical extention to nonzero $q$ [$].

There ar$e$ some subtle points for finite-dimensional representations, since they

are not integrable in the sense of [2]; but one can $stiU$ consider crystal graphs for

them. For instance $V=C^{2}$ has the crystal graph
$\underline{\iota}$

$\mathfrak{U}_{0}$

$arrow^{0}$
$u_{l}$

with $u_{i}$ denoting the natural base of $V$ .
According to [2] the crystal graph behaves remarkably nicely under tensor

products. The vertices of $B(L_{1}\otimes L_{2})$ are simply $B(L_{1})\cross B(L_{2})$ as a set. The edges

of the graph are described by a simple rule [2], $color-by-color$ . It is an amusing

exercise to work out the crystal graphs for $B(V^{\Phi N})$ using this rule. Their vertices

consist of sequences $\xi=(\xi_{1}, \xi_{2}, \ldots\xi_{N})$ with $\xi;\in\{0,1\}$ , representing the vectors

$\tau\iota_{\xi:}\otimes\cdots\otimes u_{\zeta_{N}}$ . We show how they look like at the end of this note.

3. Let $B_{:}^{N}(i=0,1)$ be the full subgraph of the crystal graph $B(V^{\otimes N})$ , whose

vertices consist of sequences $\xi=(\xi_{1},\xi_{2}, \ldots\xi_{N})$ with $\xi_{N}=i$ . From the figure for

$N=2,3,4$ the following is already apparent:

Theorem. There is an imbedding ofgraphs $B_{:}^{N}arrow B_{:+1}^{N+1}$ given by $varrow\rangle$ $v\otimes\tau_{4+1}$ ,

where the $su$ffix: is to $be$ read mod$ulo2$. As $Nevenarrow\infty,$ $B_{:}^{N}$ converges to

th $e$ crystal graph $B(L(A:))$ of the highest weight representation $L(A_{i})$ (with th$e$

arrows reversed, $bec$ause ofconventions).

Thus the equality $(*)$ makes sense in the language of crystal base. The proof

of the theorem can be done by straightforward induction using Kashiwara’s rule.

As a consequence, $L(A_{i})$ has a basis labeled by infinite sequences (called paths)

2-
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$\xi=(\xi_{1}, \xi_{2}, \cdots)$ , whose $tA$‘ is $\cdots 010101\cdots$ (i.e. $\zeta\equiv j+i-1mod 2$ for $j\gg O$).
Though we have omitted here, the$re$ is also a formula for the weight of these base
vectors given in terms of the paths [1]. This type of result has an important
appIication in solvable lattice models of statistical mechanics [4]; in fact the whole
story was motivated by the latter.

4. $h[1]$ a similar result is established for $U_{q}(\epsilon l(n))\wedge$ . Integrable representa-
tions of aribitrary level $l$ can be ‘approximat$ed$ ’ by taking $V=S^{l}(C$“ $)$ , the l-th
symmetric power of the standard representation $C$“.

Remark. At the stage of writing this note, Kashiwara found a simple explanation
to this phenomenom.

References

[1] M. Jimbo, K. C. Misra, M. Okado and T. Miwa, Combinatorics of represen-
tations of $U_{q}(\epsilon \mathfrak{l}\wedge(n))$ at q $=0,$ preprint RIMS 709 (1990)

[C] V. Chari, Integrable representations of affine Lie algebras, Invent. Math. 85
(1986) 317-335.

[2] M. Kashiwara, Crystalizing the $q$-analogue of universal enveloping algebras,
to appear in Commun. Math. Phys..

[3] M. Kashiwara, On crystal bases of the -analogue of universal enveloping
algebras, RIMS preprint, Kyoto Univ. 1990.

[4] See e.g. the review ‘Solvable Lattice Models’, Prvceedinga of Symposia in Pure
Mathematics, 49 (1989) 295-331.

9



65

$N=2$

0110 $={}^{t}k^{\otimes u_{I}\otimes u_{t}\otimes u_{0}}$ $\iota k$ .

$\neq$


